Simple Question Answering over Knowledge Graph Enhanced by Question Pattern Classification
Question answering over knowledge graph (KGQA), which automatically answers natural language questions by querying the facts in knowledge graph (KG), has drawn significant attention in recent years. In this paper, we focus on single-relation questions, which can be answered through a single fact in...
Uložené v:
| Vydané v: | Knowledge and information systems Ročník 63; číslo 10; s. 2741 - 2761 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
01.10.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0219-1377, 0219-3116 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Question answering over knowledge graph (KGQA), which automatically answers natural language questions by querying the facts in knowledge graph (KG), has drawn significant attention in recent years. In this paper, we focus on single-relation questions, which can be answered through a single fact in KG. This task is a non-trivial problem since capturing the meaning of questions and selecting the golden fact from billions of facts in KG are both challengeable. We propose a pipeline framework for KGQA, which consists of three cascaded components: (1) an entity detection model, which can label the entity mention in the question; (2) a novel entity linking model, which considers the contextual information of candidate entities in KG and builds a question pattern classifier according to the correlations between question patterns and relation types to mitigate entity ambiguity problem; and (3) a simple yet effective relation detection model, which is used to match the semantic similarity between the question and relation candidates. Substantial experiments on the
SimpleQuestions
benchmark dataset show that our proposed method could achieve better performance than many existing state-of-the-art methods on accuracy, top-
N
recall and other evaluation metrics. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0219-1377 0219-3116 |
| DOI: | 10.1007/s10115-021-01609-w |