Simple Question Answering over Knowledge Graph Enhanced by Question Pattern Classification

Question answering over knowledge graph (KGQA), which automatically answers natural language questions by querying the facts in knowledge graph (KG), has drawn significant attention in recent years. In this paper, we focus on single-relation questions, which can be answered through a single fact in...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge and information systems Vol. 63; no. 10; pp. 2741 - 2761
Main Authors: Cui, Hai, Peng, Tao, Feng, Lizhou, Bao, Tie, Liu, Lu
Format: Journal Article
Language:English
Published: London Springer London 01.10.2021
Springer Nature B.V
Subjects:
ISSN:0219-1377, 0219-3116
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Question answering over knowledge graph (KGQA), which automatically answers natural language questions by querying the facts in knowledge graph (KG), has drawn significant attention in recent years. In this paper, we focus on single-relation questions, which can be answered through a single fact in KG. This task is a non-trivial problem since capturing the meaning of questions and selecting the golden fact from billions of facts in KG are both challengeable. We propose a pipeline framework for KGQA, which consists of three cascaded components: (1) an entity detection model, which can label the entity mention in the question; (2) a novel entity linking model, which considers the contextual information of candidate entities in KG and builds a question pattern classifier according to the correlations between question patterns and relation types to mitigate entity ambiguity problem; and (3) a simple yet effective relation detection model, which is used to match the semantic similarity between the question and relation candidates. Substantial experiments on the SimpleQuestions benchmark dataset show that our proposed method could achieve better performance than many existing state-of-the-art methods on accuracy, top- N recall and other evaluation metrics.
AbstractList Question answering over knowledge graph (KGQA), which automatically answers natural language questions by querying the facts in knowledge graph (KG), has drawn significant attention in recent years. In this paper, we focus on single-relation questions, which can be answered through a single fact in KG. This task is a non-trivial problem since capturing the meaning of questions and selecting the golden fact from billions of facts in KG are both challengeable. We propose a pipeline framework for KGQA, which consists of three cascaded components: (1) an entity detection model, which can label the entity mention in the question; (2) a novel entity linking model, which considers the contextual information of candidate entities in KG and builds a question pattern classifier according to the correlations between question patterns and relation types to mitigate entity ambiguity problem; and (3) a simple yet effective relation detection model, which is used to match the semantic similarity between the question and relation candidates. Substantial experiments on the SimpleQuestions benchmark dataset show that our proposed method could achieve better performance than many existing state-of-the-art methods on accuracy, top- N recall and other evaluation metrics.
Question answering over knowledge graph (KGQA), which automatically answers natural language questions by querying the facts in knowledge graph (KG), has drawn significant attention in recent years. In this paper, we focus on single-relation questions, which can be answered through a single fact in KG. This task is a non-trivial problem since capturing the meaning of questions and selecting the golden fact from billions of facts in KG are both challengeable. We propose a pipeline framework for KGQA, which consists of three cascaded components: (1) an entity detection model, which can label the entity mention in the question; (2) a novel entity linking model, which considers the contextual information of candidate entities in KG and builds a question pattern classifier according to the correlations between question patterns and relation types to mitigate entity ambiguity problem; and (3) a simple yet effective relation detection model, which is used to match the semantic similarity between the question and relation candidates. Substantial experiments on the SimpleQuestions benchmark dataset show that our proposed method could achieve better performance than many existing state-of-the-art methods on accuracy, top-N recall and other evaluation metrics.
Author Bao, Tie
Feng, Lizhou
Cui, Hai
Peng, Tao
Liu, Lu
Author_xml – sequence: 1
  givenname: Hai
  surname: Cui
  fullname: Cui, Hai
  organization: College of Computer Science and Technology, Jilin University
– sequence: 2
  givenname: Tao
  surname: Peng
  fullname: Peng, Tao
  organization: College of Computer Science and Technology, Jilin University, College of Software, Jilin University, Key Laboratory of Symbol Computation and Knowledge Engineer of the Ministry of Education
– sequence: 3
  givenname: Lizhou
  surname: Feng
  fullname: Feng, Lizhou
  organization: Department of Computer Science, University of Illinois at Chicago
– sequence: 4
  givenname: Tie
  surname: Bao
  fullname: Bao, Tie
  organization: College of Computer Science and Technology, Jilin University, College of Software, Jilin University, Key Laboratory of Symbol Computation and Knowledge Engineer of the Ministry of Education
– sequence: 5
  givenname: Lu
  surname: Liu
  fullname: Liu, Lu
  email: liulu@jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, College of Software, Jilin University, Key Laboratory of Symbol Computation and Knowledge Engineer of the Ministry of Education
BookMark eNp9kEFLwzAUx4NMcJt-AU8Bz9W8tmna4xhzigMV9eIlZGmyZXRpTTrLvr3tOhh42Onlhfd7789vhAa2tAqhWyD3QAh78EAAaEBCCAgkJAuaCzRsuyyIAJLB8Q0RY1do5P2GEGAJwBB9f5htVSj8vlO-NqXFE-sb5Yxd4fJXOfxiy6ZQ-UrhuRPVGs_sWlipcrzcn5g3UdfKWTwthPdGGym672t0qUXh1c2xjtHX4-xz-hQsXufP08kikBFkdaBBwDKMRSQV1TplOY3VMhW07WJCKY3CTAqWyZykkjEGOk-0IKBjpgQJSRaN0V2_t3LlTxeJb8qds-1JHlKWsDiKE9JOpf2UdKX3TmkuTX3IWTthCg6EdyZ5b5K3vvjBJG9aNPyHVs5shdufh6Ie8lVnU7lTqjPUH_bKiZ8
CitedBy_id crossref_primary_10_1007_s10115_022_01764_8
crossref_primary_10_1016_j_eswa_2024_124652
crossref_primary_10_1016_j_fss_2024_109117
crossref_primary_10_1016_j_ins_2022_11_042
crossref_primary_10_3233_JIFS_239090
crossref_primary_10_1016_j_ipm_2023_103283
crossref_primary_10_1109_TASLP_2023_3336526
crossref_primary_10_1016_j_eswa_2022_118678
crossref_primary_10_1007_s11280_023_01166_y
crossref_primary_10_1186_s40537_022_00631_1
crossref_primary_10_1016_j_knosys_2023_110760
crossref_primary_10_1007_s10489_022_04127_6
crossref_primary_10_1007_s10115_022_01793_3
Cites_doi 10.18653/v1/D16-1166
10.1145/1376616.1376746
10.1109/TASLP.2019.2926125
10.1145/1242572.1242667
10.24963/ijcai.2020/500
10.18653/v1/P16-1076
10.1145/3038912.3052675
10.18653/v1/D16-1054
10.18653/v1/2020.acl-main.91
10.18653/v1/N18-2047
10.24963/ijcai.2019/701
10.1609/aaai.v32i1.12057
10.18653/v1/P17-1021
10.1145/1376616.1376660
10.1007/s42979-020-00421-7
10.1609/aaai.v24i1.7519
10.1016/j.ins.2020.08.037
10.3115/v1/P15-1128
10.18653/v1/N19-1029
10.14778/3236187.3236192
10.3233/SW-140134
10.1007/978-3-030-30793-6_27
10.1007/978-3-319-68204-4_22
10.1609/aaai.v29i1.9513
10.1109/TKDE.2017.2766634
10.18653/v1/D18-1190
10.1007/978-3-030-27618-8_18
10.18653/v1/D18-1051
10.18653/v1/2020.nli-1.1
10.18653/v1/D19-1248
10.1609/aaai.v34i05.6426
10.1007/978-3-030-30796-7_5
10.1007/s10115-018-1155-4
10.1145/3289600.3290956
10.3115/v1/D14-1181
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10115-021-01609-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0219-3116
EndPage 2761
ExternalDocumentID 10_1007_s10115_021_01609_w
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61872163; 61806084
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Education Department of Jilin Province
  grantid: JJKH20190160KJ
  funderid: http://dx.doi.org/10.13039/501100010211
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M0N
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-f1a1b24a3ce5ff87d54eb8a5e5f40555329ca79cd08c7771fd6fa01f47ea02093
IEDL.DBID M0C
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692297700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0219-1377
IngestDate Sat Nov 08 14:36:13 EST 2025
Tue Nov 18 20:40:21 EST 2025
Sat Nov 29 02:29:24 EST 2025
Fri Feb 21 02:48:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Entity linking
Question answering
Entity detection
Relation detection
Simple questions
Knowledge graph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f1a1b24a3ce5ff87d54eb8a5e5f40555329ca79cd08c7771fd6fa01f47ea02093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2576743460
PQPubID 43394
PageCount 21
ParticipantIDs proquest_journals_2576743460
crossref_citationtrail_10_1007_s10115_021_01609_w
crossref_primary_10_1007_s10115_021_01609_w
springer_journals_10_1007_s10115_021_01609_w
PublicationCentury 2000
PublicationDate 20211000
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle An International Journal
PublicationTitle Knowledge and information systems
PublicationTitleAbbrev Knowl Inf Syst
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Zhang Y, Dai H, Kozareva Z, Smola AJ, Song L (2018) Variational reasoning for question answering with knowledge graph. In: ‘AAAI’. AAAI Press 6069–6076
Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: ‘SIGMOD’. ACM 1247–1250
Bordes A, Usunier N, Chopra S, Weston J (2015) ‘Large-scale simple question answering with memory networks. arXiv:1506.02075
Dai Z, Li L, Xu W (2016) CFO: conditional focused neural question answering with large-scale knowledge bases. In: ‘ACL’. The Association for Computer Linguistics
Lukovnikov D, Fischer A, Lehmann J, Auer S (2017) Neural network-based question answering over knowledge graphs on word and character level In: ‘WWW’. ACM 1211–1220
Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka E, Mitchell T (2010) Toward an architecture for never-ending language learning. In: ‘AAAI’, vol 24. AAAI Press
Su Y, Sun H, Sadler BM, Srivatsa M, Gur I, Yan Z, Yan X (2016) On generating characteristic-rich question sets for QA evaluation. In: ‘EMNLP’. The Association for Computer Linguistics 562–572
Bhutani N, Zheng X, Qian K, Li Y, Jagadish H (2020) Answering complex questions by combining information from curated and extracted knowledge bases. In: ‘ACL’. The association for computer linguistics 1–10
Trivedi, P., Maheshwari, G., Dubey, M. and Lehmann, J. ( 2017) , Lc-quad: A corpus for complex question answering over knowledge graphs, in ‘ISWC’, Vol. 10588, Springer, pp. 210–218
Lan Y, Wang S, Jiang J (2019b) Knowledge base question answering with topic units. In: ‘IJCAI’. IJCAI/AAAI Press 5046–5052
He X, Golub D (2016) Character-level question answering with attention. In: ‘EMNLP’. The Association for computer linguistics 1598–1607
Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: ‘ICLR’, OpenReview.net
Herzig J, Berant J (2018) Decoupling structure and lexicon for zero-shot semantic parsing. In: ‘EMNLP’. Association for Computational Linguistics 1619–1629
Mohammed S, Shi P, Lin J (2018) Strong baselines for simple question answering over knowledge graphs with and without neural networks. In: ‘NAACL’. The Association for Computer Linguistics 291–296
Shen T, Geng X, Qin T, Guo D, Tang D, Duan N, Long G, Jiang D (2019) Multi-task learning for conversational question answering over a large-scale knowledge base. In: ‘EMNLP’. Association for Computational Linguistics 2442–2451
ZhengWYuJXZouLChengHQuestion answering over knowledge graphs: question understanding via template decompositionProc VLDB Endow201811111373138610.14778/3236187.3236192
Buzaaba H, Amagasa T (2019) A modular approach for efficient simple question answering over knowledge base. In: ‘DEXA’. Springer 237–246
Petrochuk M, Zettlemoyer L (2018) Simplequestions nearly solved: a new upperbound and baseline approach. In: ‘EMNLP’. The Association for Computer Linguistics 554–558
Huang X, Zhang J, Li D, Li P (2019) Knowledge graph embedding based question answering. In: ‘WSDM’. ACM 105–113
HuSZouLYuJXWangHZhaoDAnswering natural language questions by subgraph matching over knowledge graphsIEEE Trans Knowl Data Eng201830582483710.1109/TKDE.2017.2766634
Lan Y, Jiang J (2020) Query graph generation for answering multi-hop complex questions from knowledge bases. In: ‘ACL’. The Association for Computer Linguistics 969–974
Qu Y, Liu J, Kang L, Shi Q, Ye D (2018) ‘Question answering over freebase via attentive RNN with similarity matrix based CNN’. arXiv:1804.03317
BuzaabaHAmagasaTQuestion answering over knowledge base: a scheme for integrating subject and the identified relation to answer simple questionsSN Comput Sci2021212510.1007/s42979-020-00421-7
LanYWangSJiangJKnowledge base question answering with a matching-aggregation model and question-specific contextual relationsIEEE/ACM Trans Audio Speech Lang Process201927101629163810.1109/TASLP.2019.2926125
Liu P, Qiu X, Huang X (2016) Recurrent neural network for text classification with multi-task learning. In: ‘IJCAI’. IJCAI/AAAI Press 2873–2879
Sun Y, Zhang L, Cheng G, Qu Y (2020) SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases. In: ‘AAAI’. AAAI Press 8952–8959
Lai S, Xu L, Liu K, Zhao J (2015) Recurrent convolutional neural networks for text classification. In: ‘AAAI’. AAAI Press 2267–2273
Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. In: ‘WWW’. ACM 697–706
Yin W, Yu M, Xiang B, Zhou B, Schütze H (2016) Simple question answering by attentive convolutional neural network. In: ‘COLING’. ACL 1746–1756
ZhouGXieZYuZHuangJXDFM: a parameter-shared deep fused model for knowledge base question answeringInf Sci202154710311810.1016/j.ins.2020.08.037
Hao Y, Zhang Y, Liu K, He S, Liu Z, Wu H, Zhao J (2017) An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. In: ‘ACL’. The Association for computer linguistics 221–231
Hao Y, Liu H, He S, Liu K, Zhao J (2018) Pattern-revising enhanced simple question answering over knowledge bases. In: ‘COLING’. ACL 3272–3282
Yih SW-T, Chang M-W, He X, Gao J (2015) Semantic parsing via staged query graph generation: question answering with knowledge base. In: ‘ACL’. The Association for Computer Linguistics 1321–1331
Chen Z-Y, Chang C-H, Chen Y-P, Nayak J, Ku L-W (2019) Uhop: An unrestricted-hop relation extraction framework for knowledge-based question answering. In: ‘NAACL’. Association for computational linguistics 345–356
Lukovnikov D, Fischer A, Lehmann J (2019) Pretrained transformers for simple question answering over knowledge graphs. In: ‘ISWC’, Vol. 11778, Springer, pp 470–486
Kim Y (2014) Convolutional neural networks for sentence classification. In: ‘EMNLP’. The Association for computer linguistics 1746–1751
Zhao W, Chung T, Goyal AK, Metallinou A (2019) Simple question answering with subgraph ranking and joint-scoring. In: ‘NAACL-HLT’. The Association for Computer Linguistics 324–334
Dubey M, Banerjee D, Abdelkawi A, Lehmann J (2019) Lc-quad 2.0: a large dataset for complex question answering over wikidata and dbpedia. In: ‘ISWC’, Vol. 11779, Springer, pp 69–78
He H, Singh AK (2008) Graphs-at-a-time: query language and access methods for graph databases. In: ‘SIGMOD’. ACM 405–418
WangMLiuJWeiBYaoSZengHShiLAnswering why-not questions on SPARQL queriesKnowl Inf Syst201958116920810.1007/s10115-018-1155-4
Wang Y, Zhang R, Xu C, Mao Y (2018) The APVA-TURBO approach to question answering in knowledge base. In: ‘COLING’. ACL 1998–2009
Han J, Cheng B, Wang X (2020) Two-phase hypergraph based reasoning with dynamic relations for multi-hop KBQA. In: ‘IJCAI’. IJCAI/AAAI Press 3615–3621
Bao J, Duan N, Yan Z, Zhou M, Zhao T (2016) Constraint-based question answering with knowledge graph. In: ‘COLING’, ACL 2503–2514
LehmannJIseleRJakobMJentzschAKontokostasDMendesPNHellmannSMorseyMVan KleefPAuerSDbpedia-a large-scale, multilingual knowledge base extracted from wikipediaSemantic web20156216719510.3233/SW-140134
1609_CR24
1609_CR22
S Hu (1609_CR18) 2018; 30
1609_CR28
1609_CR29
1609_CR26
1609_CR27
G Zhou (1609_CR44) 2021; 547
M Wang (1609_CR37) 2019; 58
Y Lan (1609_CR23) 2019; 27
1609_CR31
1609_CR10
1609_CR32
1609_CR30
1609_CR13
1609_CR35
1609_CR14
1609_CR36
1609_CR11
1609_CR33
1609_CR12
1609_CR34
1609_CR17
1609_CR39
1609_CR15
1609_CR16
1609_CR38
1609_CR19
J Lehmann (1609_CR25) 2015; 6
1609_CR2
1609_CR3
1609_CR1
1609_CR6
1609_CR4
1609_CR5
H Buzaaba (1609_CR7) 2021; 2
W Zheng (1609_CR43) 2018; 11
1609_CR8
1609_CR9
1609_CR20
1609_CR42
1609_CR21
1609_CR40
1609_CR41
References_xml – reference: Hao Y, Liu H, He S, Liu K, Zhao J (2018) Pattern-revising enhanced simple question answering over knowledge bases. In: ‘COLING’. ACL 3272–3282
– reference: Lan Y, Jiang J (2020) Query graph generation for answering multi-hop complex questions from knowledge bases. In: ‘ACL’. The Association for Computer Linguistics 969–974
– reference: Liu P, Qiu X, Huang X (2016) Recurrent neural network for text classification with multi-task learning. In: ‘IJCAI’. IJCAI/AAAI Press 2873–2879
– reference: Huang X, Zhang J, Li D, Li P (2019) Knowledge graph embedding based question answering. In: ‘WSDM’. ACM 105–113
– reference: Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. In: ‘WWW’. ACM 697–706
– reference: LehmannJIseleRJakobMJentzschAKontokostasDMendesPNHellmannSMorseyMVan KleefPAuerSDbpedia-a large-scale, multilingual knowledge base extracted from wikipediaSemantic web20156216719510.3233/SW-140134
– reference: Zhao W, Chung T, Goyal AK, Metallinou A (2019) Simple question answering with subgraph ranking and joint-scoring. In: ‘NAACL-HLT’. The Association for Computer Linguistics 324–334
– reference: Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: ‘SIGMOD’. ACM 1247–1250
– reference: Hao Y, Zhang Y, Liu K, He S, Liu Z, Wu H, Zhao J (2017) An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. In: ‘ACL’. The Association for computer linguistics 221–231
– reference: HuSZouLYuJXWangHZhaoDAnswering natural language questions by subgraph matching over knowledge graphsIEEE Trans Knowl Data Eng201830582483710.1109/TKDE.2017.2766634
– reference: Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka E, Mitchell T (2010) Toward an architecture for never-ending language learning. In: ‘AAAI’, vol 24. AAAI Press
– reference: Yin W, Yu M, Xiang B, Zhou B, Schütze H (2016) Simple question answering by attentive convolutional neural network. In: ‘COLING’. ACL 1746–1756
– reference: Petrochuk M, Zettlemoyer L (2018) Simplequestions nearly solved: a new upperbound and baseline approach. In: ‘EMNLP’. The Association for Computer Linguistics 554–558
– reference: Bao J, Duan N, Yan Z, Zhou M, Zhao T (2016) Constraint-based question answering with knowledge graph. In: ‘COLING’, ACL 2503–2514
– reference: Yih SW-T, Chang M-W, He X, Gao J (2015) Semantic parsing via staged query graph generation: question answering with knowledge base. In: ‘ACL’. The Association for Computer Linguistics 1321–1331
– reference: Herzig J, Berant J (2018) Decoupling structure and lexicon for zero-shot semantic parsing. In: ‘EMNLP’. Association for Computational Linguistics 1619–1629
– reference: WangMLiuJWeiBYaoSZengHShiLAnswering why-not questions on SPARQL queriesKnowl Inf Syst201958116920810.1007/s10115-018-1155-4
– reference: LanYWangSJiangJKnowledge base question answering with a matching-aggregation model and question-specific contextual relationsIEEE/ACM Trans Audio Speech Lang Process201927101629163810.1109/TASLP.2019.2926125
– reference: ZhengWYuJXZouLChengHQuestion answering over knowledge graphs: question understanding via template decompositionProc VLDB Endow201811111373138610.14778/3236187.3236192
– reference: ZhouGXieZYuZHuangJXDFM: a parameter-shared deep fused model for knowledge base question answeringInf Sci202154710311810.1016/j.ins.2020.08.037
– reference: Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: ‘ICLR’, OpenReview.net
– reference: Trivedi, P., Maheshwari, G., Dubey, M. and Lehmann, J. ( 2017) , Lc-quad: A corpus for complex question answering over knowledge graphs, in ‘ISWC’, Vol. 10588, Springer, pp. 210–218
– reference: Zhang Y, Dai H, Kozareva Z, Smola AJ, Song L (2018) Variational reasoning for question answering with knowledge graph. In: ‘AAAI’. AAAI Press 6069–6076
– reference: Dai Z, Li L, Xu W (2016) CFO: conditional focused neural question answering with large-scale knowledge bases. In: ‘ACL’. The Association for Computer Linguistics
– reference: Mohammed S, Shi P, Lin J (2018) Strong baselines for simple question answering over knowledge graphs with and without neural networks. In: ‘NAACL’. The Association for Computer Linguistics 291–296
– reference: BuzaabaHAmagasaTQuestion answering over knowledge base: a scheme for integrating subject and the identified relation to answer simple questionsSN Comput Sci2021212510.1007/s42979-020-00421-7
– reference: Dubey M, Banerjee D, Abdelkawi A, Lehmann J (2019) Lc-quad 2.0: a large dataset for complex question answering over wikidata and dbpedia. In: ‘ISWC’, Vol. 11779, Springer, pp 69–78
– reference: Shen T, Geng X, Qin T, Guo D, Tang D, Duan N, Long G, Jiang D (2019) Multi-task learning for conversational question answering over a large-scale knowledge base. In: ‘EMNLP’. Association for Computational Linguistics 2442–2451
– reference: Buzaaba H, Amagasa T (2019) A modular approach for efficient simple question answering over knowledge base. In: ‘DEXA’. Springer 237–246
– reference: Su Y, Sun H, Sadler BM, Srivatsa M, Gur I, Yan Z, Yan X (2016) On generating characteristic-rich question sets for QA evaluation. In: ‘EMNLP’. The Association for Computer Linguistics 562–572
– reference: He X, Golub D (2016) Character-level question answering with attention. In: ‘EMNLP’. The Association for computer linguistics 1598–1607
– reference: Bhutani N, Zheng X, Qian K, Li Y, Jagadish H (2020) Answering complex questions by combining information from curated and extracted knowledge bases. In: ‘ACL’. The association for computer linguistics 1–10
– reference: Lukovnikov D, Fischer A, Lehmann J, Auer S (2017) Neural network-based question answering over knowledge graphs on word and character level In: ‘WWW’. ACM 1211–1220
– reference: Qu Y, Liu J, Kang L, Shi Q, Ye D (2018) ‘Question answering over freebase via attentive RNN with similarity matrix based CNN’. arXiv:1804.03317
– reference: Lai S, Xu L, Liu K, Zhao J (2015) Recurrent convolutional neural networks for text classification. In: ‘AAAI’. AAAI Press 2267–2273
– reference: Chen Z-Y, Chang C-H, Chen Y-P, Nayak J, Ku L-W (2019) Uhop: An unrestricted-hop relation extraction framework for knowledge-based question answering. In: ‘NAACL’. Association for computational linguistics 345–356
– reference: Han J, Cheng B, Wang X (2020) Two-phase hypergraph based reasoning with dynamic relations for multi-hop KBQA. In: ‘IJCAI’. IJCAI/AAAI Press 3615–3621
– reference: He H, Singh AK (2008) Graphs-at-a-time: query language and access methods for graph databases. In: ‘SIGMOD’. ACM 405–418
– reference: Lukovnikov D, Fischer A, Lehmann J (2019) Pretrained transformers for simple question answering over knowledge graphs. In: ‘ISWC’, Vol. 11778, Springer, pp 470–486
– reference: Bordes A, Usunier N, Chopra S, Weston J (2015) ‘Large-scale simple question answering with memory networks. arXiv:1506.02075
– reference: Lan Y, Wang S, Jiang J (2019b) Knowledge base question answering with topic units. In: ‘IJCAI’. IJCAI/AAAI Press 5046–5052
– reference: Wang Y, Zhang R, Xu C, Mao Y (2018) The APVA-TURBO approach to question answering in knowledge base. In: ‘COLING’. ACL 1998–2009
– reference: Kim Y (2014) Convolutional neural networks for sentence classification. In: ‘EMNLP’. The Association for computer linguistics 1746–1751
– reference: Sun Y, Zhang L, Cheng G, Qu Y (2020) SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases. In: ‘AAAI’. AAAI Press 8952–8959
– ident: 1609_CR16
  doi: 10.18653/v1/D16-1166
– ident: 1609_CR4
  doi: 10.1145/1376616.1376746
– volume: 27
  start-page: 1629
  issue: 10
  year: 2019
  ident: 1609_CR23
  publication-title: IEEE/ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2019.2926125
– ident: 1609_CR34
  doi: 10.1145/1242572.1242667
– ident: 1609_CR12
  doi: 10.24963/ijcai.2020/500
– ident: 1609_CR10
  doi: 10.18653/v1/P16-1076
– ident: 1609_CR28
  doi: 10.1145/3038912.3052675
– ident: 1609_CR33
  doi: 10.18653/v1/D16-1054
– ident: 1609_CR22
  doi: 10.18653/v1/2020.acl-main.91
– ident: 1609_CR26
– ident: 1609_CR29
  doi: 10.18653/v1/N18-2047
– ident: 1609_CR24
  doi: 10.24963/ijcai.2019/701
– ident: 1609_CR41
  doi: 10.1609/aaai.v32i1.12057
– ident: 1609_CR14
  doi: 10.18653/v1/P17-1021
– ident: 1609_CR15
  doi: 10.1145/1376616.1376660
– volume: 2
  start-page: 25
  issue: 1
  year: 2021
  ident: 1609_CR7
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-020-00421-7
– ident: 1609_CR1
– ident: 1609_CR8
  doi: 10.1609/aaai.v24i1.7519
– volume: 547
  start-page: 103
  year: 2021
  ident: 1609_CR44
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.08.037
– ident: 1609_CR9
– ident: 1609_CR31
– ident: 1609_CR5
– ident: 1609_CR39
  doi: 10.3115/v1/P15-1128
– ident: 1609_CR42
  doi: 10.18653/v1/N19-1029
– volume: 11
  start-page: 1373
  issue: 11
  year: 2018
  ident: 1609_CR43
  publication-title: Proc VLDB Endow
  doi: 10.14778/3236187.3236192
– volume: 6
  start-page: 167
  issue: 2
  year: 2015
  ident: 1609_CR25
  publication-title: Semantic web
  doi: 10.3233/SW-140134
– ident: 1609_CR27
  doi: 10.1007/978-3-030-30793-6_27
– ident: 1609_CR36
  doi: 10.1007/978-3-319-68204-4_22
– ident: 1609_CR21
  doi: 10.1609/aaai.v29i1.9513
– ident: 1609_CR40
– volume: 30
  start-page: 824
  issue: 5
  year: 2018
  ident: 1609_CR18
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2766634
– ident: 1609_CR17
  doi: 10.18653/v1/D18-1190
– ident: 1609_CR6
  doi: 10.1007/978-3-030-27618-8_18
– ident: 1609_CR30
  doi: 10.18653/v1/D18-1051
– ident: 1609_CR3
  doi: 10.18653/v1/2020.nli-1.1
– ident: 1609_CR32
  doi: 10.18653/v1/D19-1248
– ident: 1609_CR35
  doi: 10.1609/aaai.v34i05.6426
– ident: 1609_CR11
  doi: 10.1007/978-3-030-30796-7_5
– volume: 58
  start-page: 169
  issue: 1
  year: 2019
  ident: 1609_CR37
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-018-1155-4
– ident: 1609_CR38
– ident: 1609_CR13
– ident: 1609_CR19
  doi: 10.1145/3289600.3290956
– ident: 1609_CR2
– ident: 1609_CR20
  doi: 10.3115/v1/D14-1181
SSID ssj0017611
Score 2.34931
Snippet Question answering over knowledge graph (KGQA), which automatically answers natural language questions by querying the facts in knowledge graph (KG), has drawn...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2741
SubjectTerms Candidates
Classification
Computer Science
Data Mining and Knowledge Discovery
Database Management
Decomposition
Deep learning
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Knowledge
Knowledge representation
Methods
Natural language
Neural networks
Pattern classification
Questions
Regular Paper
Semantics
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50-uCL8ydOp-TBNw20W7qkj0M2BWUMpzJ8KUmW4ECqrNPhf28ua1cVFfSxNAnlLte75O6-D-CYK-xolIJqqTllKtJUSeTQaGmMl6Vl2jcKX_FeTwyHcT9vCsuKavciJen_1B-a3Vz0QrGkAFHRYjpbhhXn7gQSNlwP7ha5A3cw9zx5zhYp4unlrTLfr_HZHZUx5pe0qPc23er_vnMD1vPokrTn22ETlky6BdWCuYHkhrwN94MxogITf93pNEPaaTbzoIQESzrJZXHTRs4R0Jp00gdfKUDUWzmn76E5U-J5NbHiyCt5B267nZuzC5qzLFDtzG9KbShD1WCyqU1kreCjiBklZOSeGKKBNRuxljzWo0BoznloRy0rg9AybpxSg7i5C5X0KTV7QCLDVKCblrtDHItCoUxLGqGkcGGQ1SyqQVgIO9E5BDkyYTwmJXgyCi9xwku88JJZDU4Wc57nABy_jq4XOkxyY8wSPFO5QIm1ghqcFjorX_-82v7fhh_AWgPV7kv96lCZTl7MIazq1-k4mxz5TfoOBqfiDw
  priority: 102
  providerName: Springer Nature
Title Simple Question Answering over Knowledge Graph Enhanced by Question Pattern Classification
URI https://link.springer.com/article/10.1007/s10115-021-01609-w
https://www.proquest.com/docview/2576743460
Volume 63
WOSCitedRecordID wos000692297700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: RSV
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6s9eDFt1gfJQdvGtxts83uSVRaBbWU-vayJGmCBdlWWy3-ezNp1kVBL14CYTdh2S-PyWTm-wB2ucSMRhFTJRSnTEaKSoEaGg2F9rIwTLlE4Qvebsf390nHO9xGPqwyXxPdQt0bKPSRH6BhbHc71ggOhy8UVaPwdtVLaJSgjJYNhvRdBidftwj2iO4U8-yspMis55NmfOqcbUExQAE51hI6-b4xFdbmjwtSt--0Fv_7xUuw4C1OcjQdIsswo7MVWMzVHIif3KvweNVHpmDiXKAWLXKUjSaOqJBgmCc5z71v5BRJrkkze3LRA0R-FG06jq4zI05rE6OQHPBrcNNqXp-cUa-8QJWdkmNqQhHKGhN1pSNjYt6LmJaxiGyNIUNYvZYowRPVC2LFOQ9Nr2FEEBrGtQU6SOrrMJsNMr0BJNJMBqpuuD3YsSiMpW4IHUsRW9PIKBZVIMx_e6o8LTmqYzynBaEyQpVaqFIHVTqpwN5Xm-GUlOPPt7dzfFI_QUdpAU4F9nOEi8e_97b5d29bMF_DQeXC_bZhdvz6pndgTr2P-6PXKpT43UMVysfNdqdra-ecVt2QtWUnerRl9-r2E2tq8N8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5EBb24PnF95qAnDW67aZMeRMQ3uy6CCuKlJtkEF6Tq7urin_I3msm2FgW9efBY2gTSfJmZJDPfB7DBFVY0SkG11JwyFWmqJGpoxBrjZWmZ9oXCTd5qiZub5GIE3otaGEyrLGyiN9TtR41n5DsYGDtvx-La3tMzRdUovF0tJDSGsGiYt4HbsvV2zw7d_G6G4fHR1cEpzVUFqHZw61MbyECFTNa1iawVvB0xo4SM3BND9qt6mGjJE92uCc05D2w7trIWWMaNG4QnX3Imf4zVBcd11eD089aCx17v17nNhCKTX16kk5fqudiLYkIEcroldPDVEZbR7bcLWe_njiv_7Q9Nw1QeUZP94RKYgRGTzUKlUKsgufGag9vLDjIhE3_E69BI9rPewBMxEkxjJY3idJGcIIk3OcrufXYEUW9lmwtPR5oRryWKWVYe2PNw_ScjXIDR7DEzi0Aiw1RN1y13G1cWBUKZWBqhpHChn9UsqkJQTHOqc9p1VP94SEvCaIRG6qCRemikgypsfbZ5GpKO_Pr1SoGHNDdAvbQEQxW2C0SVr3_uben33tZh4vTqvJk2z1qNZZgMEdA-tXEFRvvdF7MK4_q13-l11_zSIHD310j7AAgYSQo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PS8MwFH6IinjxtzidmoOeNLh2adMeREQ3lckYqDB2qUmW4EDqj03H_jX_OvOy1qKgtx08ljaBNF_ee0ne-z6APS6xolFEVAnFKZOBolKghkaoMF4WhilXKHzNm82o3Y5bU_CR18JgWmVuE52h7j4pPCM_wsDYejsWVo5MlhbROq-fPL9QVJDCm9ZcTmMMkYYeDe32rX98dW7net_367Xbs0uaKQxQZaE3oMYTnvSZqCodGBPxbsC0jERgnxgyYVX9WAkeq24lUpxzz3RDIyqeYVzbATkiJmv-Z7jdY2I6YSvofN1g8NBp_1oXGlNk9csKdrKyPRuHUUyOQH63mA6_O8Ui0v1xOet8Xn3xP_-tJVjIIm1yOl4ayzCl0xVYzFUsSGbUVqFz00OGZOKOfi1KyWnaHzqCRoLpraSRnzqSCyT3JrX0wWVNEDkq2rQcTWlKnMYoZl85wK_B3URGuA7T6VOqN4AEmsmKqhpuN7Qs8CKpQ6EjKSIbEhrFghJ4-ZQnKqNjR1WQx6QgkkaYJBYmiYNJMizBwVeb5zEZyZ9fl3NsJJlh6icFMEpwmKOreP17b5t_97YLcxZgyfVVs7EF8z5i22U8lmF68Pqmt2FWvQ96_dcdt0oI3E8aaJ8LlVIu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple+Question+Answering+over+Knowledge+Graph+Enhanced+by+Question+Pattern+Classification&rft.jtitle=Knowledge+and+information+systems&rft.au=Cui%2C+Hai&rft.au=Peng%2C+Tao&rft.au=Feng%2C+Lizhou&rft.au=Bao%2C+Tie&rft.date=2021-10-01&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=63&rft.issue=10&rft.spage=2741&rft.epage=2761&rft_id=info:doi/10.1007%2Fs10115-021-01609-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10115_021_01609_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon