Simple Question Answering over Knowledge Graph Enhanced by Question Pattern Classification
Question answering over knowledge graph (KGQA), which automatically answers natural language questions by querying the facts in knowledge graph (KG), has drawn significant attention in recent years. In this paper, we focus on single-relation questions, which can be answered through a single fact in...
Saved in:
| Published in: | Knowledge and information systems Vol. 63; no. 10; pp. 2741 - 2761 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.10.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0219-1377, 0219-3116 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Question answering over knowledge graph (KGQA), which automatically answers natural language questions by querying the facts in knowledge graph (KG), has drawn significant attention in recent years. In this paper, we focus on single-relation questions, which can be answered through a single fact in KG. This task is a non-trivial problem since capturing the meaning of questions and selecting the golden fact from billions of facts in KG are both challengeable. We propose a pipeline framework for KGQA, which consists of three cascaded components: (1) an entity detection model, which can label the entity mention in the question; (2) a novel entity linking model, which considers the contextual information of candidate entities in KG and builds a question pattern classifier according to the correlations between question patterns and relation types to mitigate entity ambiguity problem; and (3) a simple yet effective relation detection model, which is used to match the semantic similarity between the question and relation candidates. Substantial experiments on the
SimpleQuestions
benchmark dataset show that our proposed method could achieve better performance than many existing state-of-the-art methods on accuracy, top-
N
recall and other evaluation metrics. |
|---|---|
| AbstractList | Question answering over knowledge graph (KGQA), which automatically answers natural language questions by querying the facts in knowledge graph (KG), has drawn significant attention in recent years. In this paper, we focus on single-relation questions, which can be answered through a single fact in KG. This task is a non-trivial problem since capturing the meaning of questions and selecting the golden fact from billions of facts in KG are both challengeable. We propose a pipeline framework for KGQA, which consists of three cascaded components: (1) an entity detection model, which can label the entity mention in the question; (2) a novel entity linking model, which considers the contextual information of candidate entities in KG and builds a question pattern classifier according to the correlations between question patterns and relation types to mitigate entity ambiguity problem; and (3) a simple yet effective relation detection model, which is used to match the semantic similarity between the question and relation candidates. Substantial experiments on the
SimpleQuestions
benchmark dataset show that our proposed method could achieve better performance than many existing state-of-the-art methods on accuracy, top-
N
recall and other evaluation metrics. Question answering over knowledge graph (KGQA), which automatically answers natural language questions by querying the facts in knowledge graph (KG), has drawn significant attention in recent years. In this paper, we focus on single-relation questions, which can be answered through a single fact in KG. This task is a non-trivial problem since capturing the meaning of questions and selecting the golden fact from billions of facts in KG are both challengeable. We propose a pipeline framework for KGQA, which consists of three cascaded components: (1) an entity detection model, which can label the entity mention in the question; (2) a novel entity linking model, which considers the contextual information of candidate entities in KG and builds a question pattern classifier according to the correlations between question patterns and relation types to mitigate entity ambiguity problem; and (3) a simple yet effective relation detection model, which is used to match the semantic similarity between the question and relation candidates. Substantial experiments on the SimpleQuestions benchmark dataset show that our proposed method could achieve better performance than many existing state-of-the-art methods on accuracy, top-N recall and other evaluation metrics. |
| Author | Bao, Tie Feng, Lizhou Cui, Hai Peng, Tao Liu, Lu |
| Author_xml | – sequence: 1 givenname: Hai surname: Cui fullname: Cui, Hai organization: College of Computer Science and Technology, Jilin University – sequence: 2 givenname: Tao surname: Peng fullname: Peng, Tao organization: College of Computer Science and Technology, Jilin University, College of Software, Jilin University, Key Laboratory of Symbol Computation and Knowledge Engineer of the Ministry of Education – sequence: 3 givenname: Lizhou surname: Feng fullname: Feng, Lizhou organization: Department of Computer Science, University of Illinois at Chicago – sequence: 4 givenname: Tie surname: Bao fullname: Bao, Tie organization: College of Computer Science and Technology, Jilin University, College of Software, Jilin University, Key Laboratory of Symbol Computation and Knowledge Engineer of the Ministry of Education – sequence: 5 givenname: Lu surname: Liu fullname: Liu, Lu email: liulu@jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, College of Software, Jilin University, Key Laboratory of Symbol Computation and Knowledge Engineer of the Ministry of Education |
| BookMark | eNp9kEFLwzAUx4NMcJt-AU8Bz9W8tmna4xhzigMV9eIlZGmyZXRpTTrLvr3tOhh42Onlhfd7789vhAa2tAqhWyD3QAh78EAAaEBCCAgkJAuaCzRsuyyIAJLB8Q0RY1do5P2GEGAJwBB9f5htVSj8vlO-NqXFE-sb5Yxd4fJXOfxiy6ZQ-UrhuRPVGs_sWlipcrzcn5g3UdfKWTwthPdGGym672t0qUXh1c2xjtHX4-xz-hQsXufP08kikBFkdaBBwDKMRSQV1TplOY3VMhW07WJCKY3CTAqWyZykkjEGOk-0IKBjpgQJSRaN0V2_t3LlTxeJb8qds-1JHlKWsDiKE9JOpf2UdKX3TmkuTX3IWTthCg6EdyZ5b5K3vvjBJG9aNPyHVs5shdufh6Ie8lVnU7lTqjPUH_bKiZ8 |
| CitedBy_id | crossref_primary_10_1007_s10115_022_01764_8 crossref_primary_10_1016_j_eswa_2024_124652 crossref_primary_10_1016_j_fss_2024_109117 crossref_primary_10_1016_j_ins_2022_11_042 crossref_primary_10_3233_JIFS_239090 crossref_primary_10_1016_j_ipm_2023_103283 crossref_primary_10_1109_TASLP_2023_3336526 crossref_primary_10_1016_j_eswa_2022_118678 crossref_primary_10_1007_s11280_023_01166_y crossref_primary_10_1186_s40537_022_00631_1 crossref_primary_10_1016_j_knosys_2023_110760 crossref_primary_10_1007_s10489_022_04127_6 crossref_primary_10_1007_s10115_022_01793_3 |
| Cites_doi | 10.18653/v1/D16-1166 10.1145/1376616.1376746 10.1109/TASLP.2019.2926125 10.1145/1242572.1242667 10.24963/ijcai.2020/500 10.18653/v1/P16-1076 10.1145/3038912.3052675 10.18653/v1/D16-1054 10.18653/v1/2020.acl-main.91 10.18653/v1/N18-2047 10.24963/ijcai.2019/701 10.1609/aaai.v32i1.12057 10.18653/v1/P17-1021 10.1145/1376616.1376660 10.1007/s42979-020-00421-7 10.1609/aaai.v24i1.7519 10.1016/j.ins.2020.08.037 10.3115/v1/P15-1128 10.18653/v1/N19-1029 10.14778/3236187.3236192 10.3233/SW-140134 10.1007/978-3-030-30793-6_27 10.1007/978-3-319-68204-4_22 10.1609/aaai.v29i1.9513 10.1109/TKDE.2017.2766634 10.18653/v1/D18-1190 10.1007/978-3-030-27618-8_18 10.18653/v1/D18-1051 10.18653/v1/2020.nli-1.1 10.18653/v1/D19-1248 10.1609/aaai.v34i05.6426 10.1007/978-3-030-30796-7_5 10.1007/s10115-018-1155-4 10.1145/3289600.3290956 10.3115/v1/D14-1181 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s10115-021-01609-w |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 0219-3116 |
| EndPage | 2761 |
| ExternalDocumentID | 10_1007_s10115_021_01609_w |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61872163; 61806084 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Education Department of Jilin Province grantid: JJKH20190160KJ funderid: http://dx.doi.org/10.13039/501100010211 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6KP 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAS LLZTM M0C M0N M4Y MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-f1a1b24a3ce5ff87d54eb8a5e5f40555329ca79cd08c7771fd6fa01f47ea02093 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692297700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0219-1377 |
| IngestDate | Sat Nov 08 14:36:13 EST 2025 Tue Nov 18 20:40:21 EST 2025 Sat Nov 29 02:29:24 EST 2025 Fri Feb 21 02:48:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Entity linking Question answering Entity detection Relation detection Simple questions Knowledge graph |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-f1a1b24a3ce5ff87d54eb8a5e5f40555329ca79cd08c7771fd6fa01f47ea02093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2576743460 |
| PQPubID | 43394 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2576743460 crossref_citationtrail_10_1007_s10115_021_01609_w crossref_primary_10_1007_s10115_021_01609_w springer_journals_10_1007_s10115_021_01609_w |
| PublicationCentury | 2000 |
| PublicationDate | 20211000 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Knowledge and information systems |
| PublicationTitleAbbrev | Knowl Inf Syst |
| PublicationYear | 2021 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Zhang Y, Dai H, Kozareva Z, Smola AJ, Song L (2018) Variational reasoning for question answering with knowledge graph. In: ‘AAAI’. AAAI Press 6069–6076 Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: ‘SIGMOD’. ACM 1247–1250 Bordes A, Usunier N, Chopra S, Weston J (2015) ‘Large-scale simple question answering with memory networks. arXiv:1506.02075 Dai Z, Li L, Xu W (2016) CFO: conditional focused neural question answering with large-scale knowledge bases. In: ‘ACL’. The Association for Computer Linguistics Lukovnikov D, Fischer A, Lehmann J, Auer S (2017) Neural network-based question answering over knowledge graphs on word and character level In: ‘WWW’. ACM 1211–1220 Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka E, Mitchell T (2010) Toward an architecture for never-ending language learning. In: ‘AAAI’, vol 24. AAAI Press Su Y, Sun H, Sadler BM, Srivatsa M, Gur I, Yan Z, Yan X (2016) On generating characteristic-rich question sets for QA evaluation. In: ‘EMNLP’. The Association for Computer Linguistics 562–572 Bhutani N, Zheng X, Qian K, Li Y, Jagadish H (2020) Answering complex questions by combining information from curated and extracted knowledge bases. In: ‘ACL’. The association for computer linguistics 1–10 Trivedi, P., Maheshwari, G., Dubey, M. and Lehmann, J. ( 2017) , Lc-quad: A corpus for complex question answering over knowledge graphs, in ‘ISWC’, Vol. 10588, Springer, pp. 210–218 Lan Y, Wang S, Jiang J (2019b) Knowledge base question answering with topic units. In: ‘IJCAI’. IJCAI/AAAI Press 5046–5052 He X, Golub D (2016) Character-level question answering with attention. In: ‘EMNLP’. The Association for computer linguistics 1598–1607 Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: ‘ICLR’, OpenReview.net Herzig J, Berant J (2018) Decoupling structure and lexicon for zero-shot semantic parsing. In: ‘EMNLP’. Association for Computational Linguistics 1619–1629 Mohammed S, Shi P, Lin J (2018) Strong baselines for simple question answering over knowledge graphs with and without neural networks. In: ‘NAACL’. The Association for Computer Linguistics 291–296 Shen T, Geng X, Qin T, Guo D, Tang D, Duan N, Long G, Jiang D (2019) Multi-task learning for conversational question answering over a large-scale knowledge base. In: ‘EMNLP’. Association for Computational Linguistics 2442–2451 ZhengWYuJXZouLChengHQuestion answering over knowledge graphs: question understanding via template decompositionProc VLDB Endow201811111373138610.14778/3236187.3236192 Buzaaba H, Amagasa T (2019) A modular approach for efficient simple question answering over knowledge base. In: ‘DEXA’. Springer 237–246 Petrochuk M, Zettlemoyer L (2018) Simplequestions nearly solved: a new upperbound and baseline approach. In: ‘EMNLP’. The Association for Computer Linguistics 554–558 Huang X, Zhang J, Li D, Li P (2019) Knowledge graph embedding based question answering. In: ‘WSDM’. ACM 105–113 HuSZouLYuJXWangHZhaoDAnswering natural language questions by subgraph matching over knowledge graphsIEEE Trans Knowl Data Eng201830582483710.1109/TKDE.2017.2766634 Lan Y, Jiang J (2020) Query graph generation for answering multi-hop complex questions from knowledge bases. In: ‘ACL’. The Association for Computer Linguistics 969–974 Qu Y, Liu J, Kang L, Shi Q, Ye D (2018) ‘Question answering over freebase via attentive RNN with similarity matrix based CNN’. arXiv:1804.03317 BuzaabaHAmagasaTQuestion answering over knowledge base: a scheme for integrating subject and the identified relation to answer simple questionsSN Comput Sci2021212510.1007/s42979-020-00421-7 LanYWangSJiangJKnowledge base question answering with a matching-aggregation model and question-specific contextual relationsIEEE/ACM Trans Audio Speech Lang Process201927101629163810.1109/TASLP.2019.2926125 Liu P, Qiu X, Huang X (2016) Recurrent neural network for text classification with multi-task learning. In: ‘IJCAI’. IJCAI/AAAI Press 2873–2879 Sun Y, Zhang L, Cheng G, Qu Y (2020) SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases. In: ‘AAAI’. AAAI Press 8952–8959 Lai S, Xu L, Liu K, Zhao J (2015) Recurrent convolutional neural networks for text classification. In: ‘AAAI’. AAAI Press 2267–2273 Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. In: ‘WWW’. ACM 697–706 Yin W, Yu M, Xiang B, Zhou B, Schütze H (2016) Simple question answering by attentive convolutional neural network. In: ‘COLING’. ACL 1746–1756 ZhouGXieZYuZHuangJXDFM: a parameter-shared deep fused model for knowledge base question answeringInf Sci202154710311810.1016/j.ins.2020.08.037 Hao Y, Zhang Y, Liu K, He S, Liu Z, Wu H, Zhao J (2017) An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. In: ‘ACL’. The Association for computer linguistics 221–231 Hao Y, Liu H, He S, Liu K, Zhao J (2018) Pattern-revising enhanced simple question answering over knowledge bases. In: ‘COLING’. ACL 3272–3282 Yih SW-T, Chang M-W, He X, Gao J (2015) Semantic parsing via staged query graph generation: question answering with knowledge base. In: ‘ACL’. The Association for Computer Linguistics 1321–1331 Chen Z-Y, Chang C-H, Chen Y-P, Nayak J, Ku L-W (2019) Uhop: An unrestricted-hop relation extraction framework for knowledge-based question answering. In: ‘NAACL’. Association for computational linguistics 345–356 Lukovnikov D, Fischer A, Lehmann J (2019) Pretrained transformers for simple question answering over knowledge graphs. In: ‘ISWC’, Vol. 11778, Springer, pp 470–486 Kim Y (2014) Convolutional neural networks for sentence classification. In: ‘EMNLP’. The Association for computer linguistics 1746–1751 Zhao W, Chung T, Goyal AK, Metallinou A (2019) Simple question answering with subgraph ranking and joint-scoring. In: ‘NAACL-HLT’. The Association for Computer Linguistics 324–334 Dubey M, Banerjee D, Abdelkawi A, Lehmann J (2019) Lc-quad 2.0: a large dataset for complex question answering over wikidata and dbpedia. In: ‘ISWC’, Vol. 11779, Springer, pp 69–78 He H, Singh AK (2008) Graphs-at-a-time: query language and access methods for graph databases. In: ‘SIGMOD’. ACM 405–418 WangMLiuJWeiBYaoSZengHShiLAnswering why-not questions on SPARQL queriesKnowl Inf Syst201958116920810.1007/s10115-018-1155-4 Wang Y, Zhang R, Xu C, Mao Y (2018) The APVA-TURBO approach to question answering in knowledge base. In: ‘COLING’. ACL 1998–2009 Han J, Cheng B, Wang X (2020) Two-phase hypergraph based reasoning with dynamic relations for multi-hop KBQA. In: ‘IJCAI’. IJCAI/AAAI Press 3615–3621 Bao J, Duan N, Yan Z, Zhou M, Zhao T (2016) Constraint-based question answering with knowledge graph. In: ‘COLING’, ACL 2503–2514 LehmannJIseleRJakobMJentzschAKontokostasDMendesPNHellmannSMorseyMVan KleefPAuerSDbpedia-a large-scale, multilingual knowledge base extracted from wikipediaSemantic web20156216719510.3233/SW-140134 1609_CR24 1609_CR22 S Hu (1609_CR18) 2018; 30 1609_CR28 1609_CR29 1609_CR26 1609_CR27 G Zhou (1609_CR44) 2021; 547 M Wang (1609_CR37) 2019; 58 Y Lan (1609_CR23) 2019; 27 1609_CR31 1609_CR10 1609_CR32 1609_CR30 1609_CR13 1609_CR35 1609_CR14 1609_CR36 1609_CR11 1609_CR33 1609_CR12 1609_CR34 1609_CR17 1609_CR39 1609_CR15 1609_CR16 1609_CR38 1609_CR19 J Lehmann (1609_CR25) 2015; 6 1609_CR2 1609_CR3 1609_CR1 1609_CR6 1609_CR4 1609_CR5 H Buzaaba (1609_CR7) 2021; 2 W Zheng (1609_CR43) 2018; 11 1609_CR8 1609_CR9 1609_CR20 1609_CR42 1609_CR21 1609_CR40 1609_CR41 |
| References_xml | – reference: Hao Y, Liu H, He S, Liu K, Zhao J (2018) Pattern-revising enhanced simple question answering over knowledge bases. In: ‘COLING’. ACL 3272–3282 – reference: Lan Y, Jiang J (2020) Query graph generation for answering multi-hop complex questions from knowledge bases. In: ‘ACL’. The Association for Computer Linguistics 969–974 – reference: Liu P, Qiu X, Huang X (2016) Recurrent neural network for text classification with multi-task learning. In: ‘IJCAI’. IJCAI/AAAI Press 2873–2879 – reference: Huang X, Zhang J, Li D, Li P (2019) Knowledge graph embedding based question answering. In: ‘WSDM’. ACM 105–113 – reference: Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. In: ‘WWW’. ACM 697–706 – reference: LehmannJIseleRJakobMJentzschAKontokostasDMendesPNHellmannSMorseyMVan KleefPAuerSDbpedia-a large-scale, multilingual knowledge base extracted from wikipediaSemantic web20156216719510.3233/SW-140134 – reference: Zhao W, Chung T, Goyal AK, Metallinou A (2019) Simple question answering with subgraph ranking and joint-scoring. In: ‘NAACL-HLT’. The Association for Computer Linguistics 324–334 – reference: Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: ‘SIGMOD’. ACM 1247–1250 – reference: Hao Y, Zhang Y, Liu K, He S, Liu Z, Wu H, Zhao J (2017) An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. In: ‘ACL’. The Association for computer linguistics 221–231 – reference: HuSZouLYuJXWangHZhaoDAnswering natural language questions by subgraph matching over knowledge graphsIEEE Trans Knowl Data Eng201830582483710.1109/TKDE.2017.2766634 – reference: Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka E, Mitchell T (2010) Toward an architecture for never-ending language learning. In: ‘AAAI’, vol 24. AAAI Press – reference: Yin W, Yu M, Xiang B, Zhou B, Schütze H (2016) Simple question answering by attentive convolutional neural network. In: ‘COLING’. ACL 1746–1756 – reference: Petrochuk M, Zettlemoyer L (2018) Simplequestions nearly solved: a new upperbound and baseline approach. In: ‘EMNLP’. The Association for Computer Linguistics 554–558 – reference: Bao J, Duan N, Yan Z, Zhou M, Zhao T (2016) Constraint-based question answering with knowledge graph. In: ‘COLING’, ACL 2503–2514 – reference: Yih SW-T, Chang M-W, He X, Gao J (2015) Semantic parsing via staged query graph generation: question answering with knowledge base. In: ‘ACL’. The Association for Computer Linguistics 1321–1331 – reference: Herzig J, Berant J (2018) Decoupling structure and lexicon for zero-shot semantic parsing. In: ‘EMNLP’. Association for Computational Linguistics 1619–1629 – reference: WangMLiuJWeiBYaoSZengHShiLAnswering why-not questions on SPARQL queriesKnowl Inf Syst201958116920810.1007/s10115-018-1155-4 – reference: LanYWangSJiangJKnowledge base question answering with a matching-aggregation model and question-specific contextual relationsIEEE/ACM Trans Audio Speech Lang Process201927101629163810.1109/TASLP.2019.2926125 – reference: ZhengWYuJXZouLChengHQuestion answering over knowledge graphs: question understanding via template decompositionProc VLDB Endow201811111373138610.14778/3236187.3236192 – reference: ZhouGXieZYuZHuangJXDFM: a parameter-shared deep fused model for knowledge base question answeringInf Sci202154710311810.1016/j.ins.2020.08.037 – reference: Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: ‘ICLR’, OpenReview.net – reference: Trivedi, P., Maheshwari, G., Dubey, M. and Lehmann, J. ( 2017) , Lc-quad: A corpus for complex question answering over knowledge graphs, in ‘ISWC’, Vol. 10588, Springer, pp. 210–218 – reference: Zhang Y, Dai H, Kozareva Z, Smola AJ, Song L (2018) Variational reasoning for question answering with knowledge graph. In: ‘AAAI’. AAAI Press 6069–6076 – reference: Dai Z, Li L, Xu W (2016) CFO: conditional focused neural question answering with large-scale knowledge bases. In: ‘ACL’. The Association for Computer Linguistics – reference: Mohammed S, Shi P, Lin J (2018) Strong baselines for simple question answering over knowledge graphs with and without neural networks. In: ‘NAACL’. The Association for Computer Linguistics 291–296 – reference: BuzaabaHAmagasaTQuestion answering over knowledge base: a scheme for integrating subject and the identified relation to answer simple questionsSN Comput Sci2021212510.1007/s42979-020-00421-7 – reference: Dubey M, Banerjee D, Abdelkawi A, Lehmann J (2019) Lc-quad 2.0: a large dataset for complex question answering over wikidata and dbpedia. In: ‘ISWC’, Vol. 11779, Springer, pp 69–78 – reference: Shen T, Geng X, Qin T, Guo D, Tang D, Duan N, Long G, Jiang D (2019) Multi-task learning for conversational question answering over a large-scale knowledge base. In: ‘EMNLP’. Association for Computational Linguistics 2442–2451 – reference: Buzaaba H, Amagasa T (2019) A modular approach for efficient simple question answering over knowledge base. In: ‘DEXA’. Springer 237–246 – reference: Su Y, Sun H, Sadler BM, Srivatsa M, Gur I, Yan Z, Yan X (2016) On generating characteristic-rich question sets for QA evaluation. In: ‘EMNLP’. The Association for Computer Linguistics 562–572 – reference: He X, Golub D (2016) Character-level question answering with attention. In: ‘EMNLP’. The Association for computer linguistics 1598–1607 – reference: Bhutani N, Zheng X, Qian K, Li Y, Jagadish H (2020) Answering complex questions by combining information from curated and extracted knowledge bases. In: ‘ACL’. The association for computer linguistics 1–10 – reference: Lukovnikov D, Fischer A, Lehmann J, Auer S (2017) Neural network-based question answering over knowledge graphs on word and character level In: ‘WWW’. ACM 1211–1220 – reference: Qu Y, Liu J, Kang L, Shi Q, Ye D (2018) ‘Question answering over freebase via attentive RNN with similarity matrix based CNN’. arXiv:1804.03317 – reference: Lai S, Xu L, Liu K, Zhao J (2015) Recurrent convolutional neural networks for text classification. In: ‘AAAI’. AAAI Press 2267–2273 – reference: Chen Z-Y, Chang C-H, Chen Y-P, Nayak J, Ku L-W (2019) Uhop: An unrestricted-hop relation extraction framework for knowledge-based question answering. In: ‘NAACL’. Association for computational linguistics 345–356 – reference: Han J, Cheng B, Wang X (2020) Two-phase hypergraph based reasoning with dynamic relations for multi-hop KBQA. In: ‘IJCAI’. IJCAI/AAAI Press 3615–3621 – reference: He H, Singh AK (2008) Graphs-at-a-time: query language and access methods for graph databases. In: ‘SIGMOD’. ACM 405–418 – reference: Lukovnikov D, Fischer A, Lehmann J (2019) Pretrained transformers for simple question answering over knowledge graphs. In: ‘ISWC’, Vol. 11778, Springer, pp 470–486 – reference: Bordes A, Usunier N, Chopra S, Weston J (2015) ‘Large-scale simple question answering with memory networks. arXiv:1506.02075 – reference: Lan Y, Wang S, Jiang J (2019b) Knowledge base question answering with topic units. In: ‘IJCAI’. IJCAI/AAAI Press 5046–5052 – reference: Wang Y, Zhang R, Xu C, Mao Y (2018) The APVA-TURBO approach to question answering in knowledge base. In: ‘COLING’. ACL 1998–2009 – reference: Kim Y (2014) Convolutional neural networks for sentence classification. In: ‘EMNLP’. The Association for computer linguistics 1746–1751 – reference: Sun Y, Zhang L, Cheng G, Qu Y (2020) SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases. In: ‘AAAI’. AAAI Press 8952–8959 – ident: 1609_CR16 doi: 10.18653/v1/D16-1166 – ident: 1609_CR4 doi: 10.1145/1376616.1376746 – volume: 27 start-page: 1629 issue: 10 year: 2019 ident: 1609_CR23 publication-title: IEEE/ACM Trans Audio Speech Lang Process doi: 10.1109/TASLP.2019.2926125 – ident: 1609_CR34 doi: 10.1145/1242572.1242667 – ident: 1609_CR12 doi: 10.24963/ijcai.2020/500 – ident: 1609_CR10 doi: 10.18653/v1/P16-1076 – ident: 1609_CR28 doi: 10.1145/3038912.3052675 – ident: 1609_CR33 doi: 10.18653/v1/D16-1054 – ident: 1609_CR22 doi: 10.18653/v1/2020.acl-main.91 – ident: 1609_CR26 – ident: 1609_CR29 doi: 10.18653/v1/N18-2047 – ident: 1609_CR24 doi: 10.24963/ijcai.2019/701 – ident: 1609_CR41 doi: 10.1609/aaai.v32i1.12057 – ident: 1609_CR14 doi: 10.18653/v1/P17-1021 – ident: 1609_CR15 doi: 10.1145/1376616.1376660 – volume: 2 start-page: 25 issue: 1 year: 2021 ident: 1609_CR7 publication-title: SN Comput Sci doi: 10.1007/s42979-020-00421-7 – ident: 1609_CR1 – ident: 1609_CR8 doi: 10.1609/aaai.v24i1.7519 – volume: 547 start-page: 103 year: 2021 ident: 1609_CR44 publication-title: Inf Sci doi: 10.1016/j.ins.2020.08.037 – ident: 1609_CR9 – ident: 1609_CR31 – ident: 1609_CR5 – ident: 1609_CR39 doi: 10.3115/v1/P15-1128 – ident: 1609_CR42 doi: 10.18653/v1/N19-1029 – volume: 11 start-page: 1373 issue: 11 year: 2018 ident: 1609_CR43 publication-title: Proc VLDB Endow doi: 10.14778/3236187.3236192 – volume: 6 start-page: 167 issue: 2 year: 2015 ident: 1609_CR25 publication-title: Semantic web doi: 10.3233/SW-140134 – ident: 1609_CR27 doi: 10.1007/978-3-030-30793-6_27 – ident: 1609_CR36 doi: 10.1007/978-3-319-68204-4_22 – ident: 1609_CR21 doi: 10.1609/aaai.v29i1.9513 – ident: 1609_CR40 – volume: 30 start-page: 824 issue: 5 year: 2018 ident: 1609_CR18 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2766634 – ident: 1609_CR17 doi: 10.18653/v1/D18-1190 – ident: 1609_CR6 doi: 10.1007/978-3-030-27618-8_18 – ident: 1609_CR30 doi: 10.18653/v1/D18-1051 – ident: 1609_CR3 doi: 10.18653/v1/2020.nli-1.1 – ident: 1609_CR32 doi: 10.18653/v1/D19-1248 – ident: 1609_CR35 doi: 10.1609/aaai.v34i05.6426 – ident: 1609_CR11 doi: 10.1007/978-3-030-30796-7_5 – volume: 58 start-page: 169 issue: 1 year: 2019 ident: 1609_CR37 publication-title: Knowl Inf Syst doi: 10.1007/s10115-018-1155-4 – ident: 1609_CR38 – ident: 1609_CR13 – ident: 1609_CR19 doi: 10.1145/3289600.3290956 – ident: 1609_CR2 – ident: 1609_CR20 doi: 10.3115/v1/D14-1181 |
| SSID | ssj0017611 |
| Score | 2.34931 |
| Snippet | Question answering over knowledge graph (KGQA), which automatically answers natural language questions by querying the facts in knowledge graph (KG), has drawn... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2741 |
| SubjectTerms | Candidates Classification Computer Science Data Mining and Knowledge Discovery Database Management Decomposition Deep learning Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business Knowledge Knowledge representation Methods Natural language Neural networks Pattern classification Questions Regular Paper Semantics |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50-uCL8ydOp-TBNw20W7qkj0M2BWUMpzJ8KUmW4ECqrNPhf28ua1cVFfSxNAnlLte75O6-D-CYK-xolIJqqTllKtJUSeTQaGmMl6Vl2jcKX_FeTwyHcT9vCsuKavciJen_1B-a3Vz0QrGkAFHRYjpbhhXn7gQSNlwP7ha5A3cw9zx5zhYp4unlrTLfr_HZHZUx5pe0qPc23er_vnMD1vPokrTn22ETlky6BdWCuYHkhrwN94MxogITf93pNEPaaTbzoIQESzrJZXHTRs4R0Jp00gdfKUDUWzmn76E5U-J5NbHiyCt5B267nZuzC5qzLFDtzG9KbShD1WCyqU1kreCjiBklZOSeGKKBNRuxljzWo0BoznloRy0rg9AybpxSg7i5C5X0KTV7QCLDVKCblrtDHItCoUxLGqGkcGGQ1SyqQVgIO9E5BDkyYTwmJXgyCi9xwku88JJZDU4Wc57nABy_jq4XOkxyY8wSPFO5QIm1ghqcFjorX_-82v7fhh_AWgPV7kv96lCZTl7MIazq1-k4mxz5TfoOBqfiDw priority: 102 providerName: Springer Nature |
| Title | Simple Question Answering over Knowledge Graph Enhanced by Question Pattern Classification |
| URI | https://link.springer.com/article/10.1007/s10115-021-01609-w https://www.proquest.com/docview/2576743460 |
| Volume | 63 |
| WOSCitedRecordID | wos000692297700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 0219-3116 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017611 issn: 0219-1377 databaseCode: RSV dateStart: 19990201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6s9eDFt1gfJQdvGtxts83uSVRaBbWU-vayJGmCBdlWWy3-ezNp1kVBL14CYTdh2S-PyWTm-wB2ucSMRhFTJRSnTEaKSoEaGg2F9rIwTLlE4Qvebsf390nHO9xGPqwyXxPdQt0bKPSRH6BhbHc71ggOhy8UVaPwdtVLaJSgjJYNhvRdBidftwj2iO4U8-yspMis55NmfOqcbUExQAE51hI6-b4xFdbmjwtSt--0Fv_7xUuw4C1OcjQdIsswo7MVWMzVHIif3KvweNVHpmDiXKAWLXKUjSaOqJBgmCc5z71v5BRJrkkze3LRA0R-FG06jq4zI05rE6OQHPBrcNNqXp-cUa-8QJWdkmNqQhHKGhN1pSNjYt6LmJaxiGyNIUNYvZYowRPVC2LFOQ9Nr2FEEBrGtQU6SOrrMJsNMr0BJNJMBqpuuD3YsSiMpW4IHUsRW9PIKBZVIMx_e6o8LTmqYzynBaEyQpVaqFIHVTqpwN5Xm-GUlOPPt7dzfFI_QUdpAU4F9nOEi8e_97b5d29bMF_DQeXC_bZhdvz6pndgTr2P-6PXKpT43UMVysfNdqdra-ecVt2QtWUnerRl9-r2E2tq8N8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5EBb24PnF95qAnDW67aZMeRMQ3uy6CCuKlJtkEF6Tq7urin_I3msm2FgW9efBY2gTSfJmZJDPfB7DBFVY0SkG11JwyFWmqJGpoxBrjZWmZ9oXCTd5qiZub5GIE3otaGEyrLGyiN9TtR41n5DsYGDtvx-La3tMzRdUovF0tJDSGsGiYt4HbsvV2zw7d_G6G4fHR1cEpzVUFqHZw61MbyECFTNa1iawVvB0xo4SM3BND9qt6mGjJE92uCc05D2w7trIWWMaNG4QnX3Imf4zVBcd11eD089aCx17v17nNhCKTX16kk5fqudiLYkIEcroldPDVEZbR7bcLWe_njiv_7Q9Nw1QeUZP94RKYgRGTzUKlUKsgufGag9vLDjIhE3_E69BI9rPewBMxEkxjJY3idJGcIIk3OcrufXYEUW9lmwtPR5oRryWKWVYe2PNw_ScjXIDR7DEzi0Aiw1RN1y13G1cWBUKZWBqhpHChn9UsqkJQTHOqc9p1VP94SEvCaIRG6qCRemikgypsfbZ5GpKO_Pr1SoGHNDdAvbQEQxW2C0SVr3_uben33tZh4vTqvJk2z1qNZZgMEdA-tXEFRvvdF7MK4_q13-l11_zSIHD310j7AAgYSQo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PS8MwFH6IinjxtzidmoOeNLh2adMeREQ3lckYqDB2qUmW4EDqj03H_jX_OvOy1qKgtx08ljaBNF_ee0ne-z6APS6xolFEVAnFKZOBolKghkaoMF4WhilXKHzNm82o3Y5bU_CR18JgWmVuE52h7j4pPCM_wsDYejsWVo5MlhbROq-fPL9QVJDCm9ZcTmMMkYYeDe32rX98dW7net_367Xbs0uaKQxQZaE3oMYTnvSZqCodGBPxbsC0jERgnxgyYVX9WAkeq24lUpxzz3RDIyqeYVzbATkiJmv-Z7jdY2I6YSvofN1g8NBp_1oXGlNk9csKdrKyPRuHUUyOQH63mA6_O8Ui0v1xOet8Xn3xP_-tJVjIIm1yOl4ayzCl0xVYzFUsSGbUVqFz00OGZOKOfi1KyWnaHzqCRoLpraSRnzqSCyT3JrX0wWVNEDkq2rQcTWlKnMYoZl85wK_B3URGuA7T6VOqN4AEmsmKqhpuN7Qs8CKpQ6EjKSIbEhrFghJ4-ZQnKqNjR1WQx6QgkkaYJBYmiYNJMizBwVeb5zEZyZ9fl3NsJJlh6icFMEpwmKOreP17b5t_97YLcxZgyfVVs7EF8z5i22U8lmF68Pqmt2FWvQ96_dcdt0oI3E8aaJ8LlVIu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple+Question+Answering+over+Knowledge+Graph+Enhanced+by+Question+Pattern+Classification&rft.jtitle=Knowledge+and+information+systems&rft.au=Cui%2C+Hai&rft.au=Peng%2C+Tao&rft.au=Feng%2C+Lizhou&rft.au=Bao%2C+Tie&rft.date=2021-10-01&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=63&rft.issue=10&rft.spage=2741&rft.epage=2761&rft_id=info:doi/10.1007%2Fs10115-021-01609-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10115_021_01609_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon |