Prediction of NOx emissions from a simplified biodiesel surrogate by applying stochastic simulation algorithms (SSA)
A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO 2 ) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mech...
Uložené v:
| Vydané v: | Combustion theory and modelling Ročník 21; číslo 2; s. 346 - 357 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
04.03.2017
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1364-7830, 1741-3559 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO
2
) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H
2
/CO/C
1
formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling. |
|---|---|
| AbstractList | A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO2) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H2/CO/C1 formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling. A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO 2 ) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H 2 /CO/C 1 formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling. A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO sub(2)) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H sub(2)/CO/C sub(1) formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling. |
| Author | Omidvarborna, Hamid Kim, Dong-Shik Kumar, Ashok |
| Author_xml | – sequence: 1 givenname: Hamid orcidid: 0000-0003-2865-5319 surname: Omidvarborna fullname: Omidvarborna, Hamid organization: Department of Civil Engineering, The University of Toledo – sequence: 2 givenname: Ashok surname: Kumar fullname: Kumar, Ashok organization: Department of Civil Engineering, The University of Toledo – sequence: 3 givenname: Dong-Shik surname: Kim fullname: Kim, Dong-Shik email: dong.kim@utoledo.edu organization: Department of Chemical and Environmental Engineering, The University of Toledo |
| BookMark | eNp9kUtrFUEQhRuJYBL9CUKDm7iYaz_nsTMENUIwQnTd9PTjpkPP9NjVQ7z_3p7cuHHhqqrgO4eqOmfoZE6zQ-gtJTtKevKB8lZ0PSc7Rmi7o4zLjg0v0CntBG24lMNJ7SvTbNArdAbwQAhhHROnqHzPzgZTQppx8vjb7W_spgBQZ8A-pwlrDGFaYvDBWTyGZIMDFzGsOae9Lg6PB6yXJR7CvMdQkrnXUILZVGvUT8Y67lMO5X4CfHF3d_n-NXrpdQT35rmeo5-fP_24um5ubr98vbq8aQynQ2k8GXw9wQrjhHQDG4mXrSB9T8wofOuF4cxqM1hmRyNtT_042JYTRjrvubT8HF0cfZecfq0OiqqnGRejnl1aQdGBCMZpz2VF3_2DPqQ1z3W7SjG-fZF3lZJHyuQEkJ1XSw6TzgdFidqyUH-zUFsW6jmLqvt41IXZpzzpx5SjVUUfYso-69kEUPz_Fn8AFRuThg |
| Cites_doi | 10.1016/j.proci.2014.09.009 10.1021/jp077526r 10.1016/j.combustflame.2008.01.005 10.1063/1.1699114 10.1063/1.2919546 10.4271/2008-01-2413 10.1016/j.combustflame.2008.03.003 10.1080/13647830.2011.631034 10.1016/j.fuel.2012.07.033 10.1016/j.combustflame.2012.01.002 10.1016/j.biotechadv.2009.04.024 10.1016/j.fuel.2012.04.028 10.1016/j.combustflame.2013.02.017 10.1016/j.rser.2015.04.019 10.1016/j.proci.2012.05.090 10.1016/j.jece.2014.09.020 10.1016/j.combustflame.2010.10.020 10.1021/jp067582c 10.1016/S0082-0784(00)80555-X 10.1016/j.scitotenv.2015.11.076 10.1016/j.pecs.2007.07.001 10.1016/j.fuproc.2004.11.006 10.1007/s12209-013-1936-5 10.1016/j.proci.2010.05.066 10.1061/(ASCE)HZ.2153-5515.0000237 10.1016/j.proci.2006.08.051 10.1021/j100540a008 10.1016/j.pbiomolbio.2004.01.014 10.4271/2008-01-1378 10.1016/j.fuel.2012.10.015 10.1016/j.fuproc.2015.08.031 10.1016/0021-9991(76)90041-3 |
| ContentType | Journal Article |
| Copyright | 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 2016 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D L7M |
| DOI | 10.1080/13647830.2016.1235729 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1741-3559 |
| EndPage | 357 |
| ExternalDocumentID | 10_1080_13647830_2016_1235729 1235729 |
| Genre | Article |
| GrantInformation_xml | – fundername: US Department of Transportation grantid: DTRT12-G-UTC21 funderid: 10.13039/100000140 |
| GroupedDBID | .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADMLS ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P J9A KYCEM M4Z NA5 O9- P2P RIG RNANH RNS RO9 ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7TB 8FD FR3 H8D L7M |
| ID | FETCH-LOGICAL-c319t-f09f741d4ce45e92b0f5640880cb4f6f4c32dac9d2dbc5d81fb9d630207ff35d3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400067100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1364-7830 |
| IngestDate | Fri Sep 05 13:04:39 EDT 2025 Sun Sep 07 03:47:36 EDT 2025 Sat Nov 29 02:42:24 EST 2025 Mon Oct 20 23:39:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-f09f741d4ce45e92b0f5640880cb4f6f4c32dac9d2dbc5d81fb9d630207ff35d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2865-5319 |
| PQID | 1923355937 |
| PQPubID | 2045308 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_1923355937 proquest_miscellaneous_1904231835 crossref_primary_10_1080_13647830_2016_1235729 informaworld_taylorfrancis_310_1080_13647830_2016_1235729 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-04 |
| PublicationDateYYYYMMDD | 2017-03-04 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Combustion theory and modelling |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | cit0011 cit0033 Ahn T.H. (cit0016) cit0031 cit0010 cit0032 Omidvarborna H. (cit0006) cit0030 cit0019 cit0017 cit0018 cit0015 cit0037 cit0038 cit0013 cit0035 cit0014 cit0036 cit0022 cit0001 cit0023 Liberman M.A. (cit0034) 2010 cit0020 cit0021 cit0008 cit0009 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0024 cit0003 cit0025 |
| References_xml | – ident: cit0009 doi: 10.1016/j.proci.2014.09.009 – ident: cit0016 publication-title: BIOCOMP, Las Vegas, NV, 2008 – ident: cit0038 doi: 10.1021/jp077526r – ident: cit0022 doi: 10.1016/j.combustflame.2008.01.005 – ident: cit0030 doi: 10.1063/1.1699114 – ident: cit0015 doi: 10.1063/1.2919546 – ident: cit0033 doi: 10.4271/2008-01-2413 – ident: cit0010 doi: 10.1016/j.combustflame.2008.03.003 – ident: cit0025 doi: 10.1080/13647830.2011.631034 – ident: cit0021 doi: 10.1016/j.fuel.2012.07.033 – ident: cit0032 doi: 10.1016/j.combustflame.2012.01.002 – ident: cit0019 doi: 10.1016/j.biotechadv.2009.04.024 – ident: cit0024 doi: 10.1016/j.fuel.2012.04.028 – ident: cit0026 doi: 10.1016/j.combustflame.2013.02.017 – ident: cit0003 doi: 10.1016/j.rser.2015.04.019 – ident: cit0020 doi: 10.1016/j.proci.2012.05.090 – ident: cit0001 doi: 10.1016/j.jece.2014.09.020 – ident: cit0007 doi: 10.1016/j.combustflame.2010.10.020 – ident: cit0037 doi: 10.1021/jp067582c – ident: cit0008 doi: 10.1016/S0082-0784(00)80555-X – ident: cit0023 doi: 10.1016/j.scitotenv.2015.11.076 – ident: cit0031 doi: 10.1016/j.pecs.2007.07.001 – ident: cit0035 doi: 10.1016/j.fuproc.2004.11.006 – ident: cit0036 doi: 10.1007/s12209-013-1936-5 – volume-title: Introduction to Physics and Chemistry of Combustion: Explosion, Flame, Detonation year: 2010 ident: cit0034 – ident: cit0028 doi: 10.1016/j.proci.2010.05.066 – ident: cit0004 doi: 10.1061/(ASCE)HZ.2153-5515.0000237 – ident: cit0011 doi: 10.1016/j.proci.2006.08.051 – ident: cit0014 doi: 10.1021/j100540a008 – ident: cit0029 doi: 10.1016/j.pbiomolbio.2004.01.014 – ident: cit0006 publication-title: Environ. Prog. Sust. Energ. – ident: cit0018 doi: 10.4271/2008-01-1378 – ident: cit0017 doi: 10.1016/j.fuel.2012.10.015 – ident: cit0005 doi: 10.1016/j.fuproc.2015.08.031 – ident: cit0013 doi: 10.1016/0021-9991(76)90041-3 |
| SSID | ssj0002724 |
| Score | 2.1091962 |
| Snippet | A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO
2
) emission... A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO2) emission... A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO sub(2))... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 346 |
| SubjectTerms | Algorithms Biodiesel Biodiesel fuels biodiesel surrogate chemical kinetic reaction Combustion Combustion temperature Complexity Computer simulation Cooking Diesel fuels Emission Emissions Esters Heating low-temperature combustion (LTC) Mathematical models Mean square values Nitrogen dioxide Nitrogen oxides NOx emission Predictions Probability theory Randomness Root-mean-square errors Simplification stochastic simulation algorithm (SSA) Sulfur |
| Title | Prediction of NOx emissions from a simplified biodiesel surrogate by applying stochastic simulation algorithms (SSA) |
| URI | https://www.tandfonline.com/doi/abs/10.1080/13647830.2016.1235729 https://www.proquest.com/docview/1923355937 https://www.proquest.com/docview/1904231835 |
| Volume | 21 |
| WOSCitedRecordID | wos000400067100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1741-3559 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002724 issn: 1364-7830 databaseCode: TFW dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCDb7FaZQUPekhN8-rmWMTiQarQir2F7MsGaiJJKvrvnUk3pUXEg56T3YTZndlvd7_5hpALXzmuL1RgAfawLY-FscUlbFY4ci4kE0zxqmrJfXcwYONx-GjYhIWhVeIeWs-FIqpYjc4d86JmxF13UPOcuTYSs4I2JnsCQoQoDEs_uuao_7yIxU7XlLUNPAub1Dk8P_WysjqtaJd-i9XVAtTf_odf3yFbBn3S3ny67JI1le6RzSVNwn2Cok4yqbIdaKbp4OGDYkk4PFQrKCaj0JgWCfLQNaBXypMMeYhqSotZnmd4KEf5J8V7cUygooAtxSRGMWhsZWqF0Xj6kuVJOXkt6OVw2Ls6IE_929HNnWVKM1gCfLa0tB1qwCLSE8rzVehwW_uBBxHLFtzTgfaE68hYhNKRXPiSdTQPZeACNu1q7frSPSSNNEvVEaFawpZRMq67LETxNhZgCRRXSMCmcUcHTdKuhyR6mytwRB0jbFqbM0JzRsacTRIuD1xUVkcfel6nJHJ_aduqRzkyzlxECIIBlgGQa5LzxWMwPd6txKnKZvgOEowgPvrHf_j8CdlwEDYgx81rkUaZz9QpWRfvZVLkZ9XU_gJikPZt |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xScCBHVFWI3GAQ0qarc4RIaoiSjlQRG9WvNFIpUFJiuDv8aQJKkKIA5wTO9HYHj-P37wBOPGV4_pCBZbBHrbl0TCyuDSHFY6cC0kFVbyoWtJpdru03w-nc2GQVolnaD0Riih8NS5uDEZXlLjzBoqeU9dGZlZQx2xPAxFnYd43ey3q5_daj5_e2GmWhW0Dz8I2VRbPT9182Z--qJd-89bFFtRa_Y-fX4OVEoCSi8mMWYcZNdqA5SlZwk1AXScZFwkPJNGke_dGsCocxtUygvkoJCJZjFR0bQAs4XGCVEQ1JNk4TROMyxH-TvBqHHOoiIGXYhChHjS2KsuFkWj4lKRxPnjOyOn9_cXZFjy0rnqXbauszmAJs2xzS9uhNnBEekJ5vgodbms_8IzTsgX3dKA94ToyEqF0JBe-pA3NQxm4Bp42tXZ96W7D3CgZqR0gWppTo6RcN2mI-m00wCoorpAGnkYNHdSgXo0Je5mIcLBGqW1amZOhOVlpzhqE0yPH8iL6oSelSpj7S9v9aphZuZ4zhjjYIDMzv2pw_PnYmB6vV6KRSsb4DnKMjIv0d__w-SNYbPduO6xz3b3ZgyUHUQRS3rx9mMvTsTqABfGax1l6WMzzD_4P-pc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-wwFD74uIgufIujo0a4C--i2ukjky4HdVCUUdDLdRealxZ0Km1H9N-b00lFEbkLXbdpy0ly-iX5zvcB_I51EMZSU89iD9-LWJJ6QtnFikDOhWKSaVG7lpx3BwN2c5NcOjZh6WiVuIY2Y6GIOlfj5H5UpmHEHXRQ85yFPhKz6D4We1qEOAnTFjpTHOTX_X9vyTjoOl9bGnnYpini-eoxH35PH8RLPyXr-g_UX_iBb1-EeQc_SW88XpZgQg-XYe6dKOEKoKqTyupyB5IbMrh4JugJh7tqJcFqFJKSMkMiurHwlYgsRyKiviflqChy3JUj4oXgwThWUBELLuVdimrQ2MqZhZH0_jYvsuruoSR7V1e9P6vwt398fXjiOW8GT9pJW3nGT4wFIyqSOop1EgjfxDSyKcuXIjLURDIMVCoTFSghY8U6RiSKhhacdo0JYxWuwdQwH-p1IEbZNaNiwnRZguptjKIHSiiVBadpx9AW7Dddwh_HEhy845RNm3ByDCd34WxB8r7jeFXvfZixUQkP_9O23fQyd7O55IiCLS6zSK4Fu2-XbejxcCUd6nyE9yDDyCbIeOMbr9-BmcujPj8_HZxtwmyAEAL5blEbpqpipLfgl3yqsrLYrkf5Kw30-Uk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+NOx+emissions+from+a+simplified+biodiesel+surrogate+by+applying+stochastic+simulation+algorithms+%28SSA%29&rft.jtitle=Combustion+theory+and+modelling&rft.au=Omidvarborna%2C+Hamid&rft.au=Kumar%2C+Ashok&rft.au=Kim%2C+Dong-Shik&rft.date=2017-03-04&rft.issn=1364-7830&rft.eissn=1741-3559&rft.volume=21&rft.issue=2&rft.spage=346&rft.epage=357&rft_id=info:doi/10.1080%2F13647830.2016.1235729&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_13647830_2016_1235729 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-7830&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-7830&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-7830&client=summon |