Prediction of NOx emissions from a simplified biodiesel surrogate by applying stochastic simulation algorithms (SSA)

A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO 2 ) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mech...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Combustion theory and modelling Ročník 21; číslo 2; s. 346 - 357
Hlavní autori: Omidvarborna, Hamid, Kumar, Ashok, Kim, Dong-Shik
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 04.03.2017
Taylor & Francis Ltd
Predmet:
ISSN:1364-7830, 1741-3559
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO 2 ) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H 2 /CO/C 1 formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling.
AbstractList A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO2) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H2/CO/C1 formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling.
A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO 2 ) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H 2 /CO/C 1 formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling.
A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO sub(2)) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H sub(2)/CO/C sub(1) formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling.
Author Omidvarborna, Hamid
Kim, Dong-Shik
Kumar, Ashok
Author_xml – sequence: 1
  givenname: Hamid
  orcidid: 0000-0003-2865-5319
  surname: Omidvarborna
  fullname: Omidvarborna, Hamid
  organization: Department of Civil Engineering, The University of Toledo
– sequence: 2
  givenname: Ashok
  surname: Kumar
  fullname: Kumar, Ashok
  organization: Department of Civil Engineering, The University of Toledo
– sequence: 3
  givenname: Dong-Shik
  surname: Kim
  fullname: Kim, Dong-Shik
  email: dong.kim@utoledo.edu
  organization: Department of Chemical and Environmental Engineering, The University of Toledo
BookMark eNp9kUtrFUEQhRuJYBL9CUKDm7iYaz_nsTMENUIwQnTd9PTjpkPP9NjVQ7z_3p7cuHHhqqrgO4eqOmfoZE6zQ-gtJTtKevKB8lZ0PSc7Rmi7o4zLjg0v0CntBG24lMNJ7SvTbNArdAbwQAhhHROnqHzPzgZTQppx8vjb7W_spgBQZ8A-pwlrDGFaYvDBWTyGZIMDFzGsOae9Lg6PB6yXJR7CvMdQkrnXUILZVGvUT8Y67lMO5X4CfHF3d_n-NXrpdQT35rmeo5-fP_24um5ubr98vbq8aQynQ2k8GXw9wQrjhHQDG4mXrSB9T8wofOuF4cxqM1hmRyNtT_042JYTRjrvubT8HF0cfZecfq0OiqqnGRejnl1aQdGBCMZpz2VF3_2DPqQ1z3W7SjG-fZF3lZJHyuQEkJ1XSw6TzgdFidqyUH-zUFsW6jmLqvt41IXZpzzpx5SjVUUfYso-69kEUPz_Fn8AFRuThg
Cites_doi 10.1016/j.proci.2014.09.009
10.1021/jp077526r
10.1016/j.combustflame.2008.01.005
10.1063/1.1699114
10.1063/1.2919546
10.4271/2008-01-2413
10.1016/j.combustflame.2008.03.003
10.1080/13647830.2011.631034
10.1016/j.fuel.2012.07.033
10.1016/j.combustflame.2012.01.002
10.1016/j.biotechadv.2009.04.024
10.1016/j.fuel.2012.04.028
10.1016/j.combustflame.2013.02.017
10.1016/j.rser.2015.04.019
10.1016/j.proci.2012.05.090
10.1016/j.jece.2014.09.020
10.1016/j.combustflame.2010.10.020
10.1021/jp067582c
10.1016/S0082-0784(00)80555-X
10.1016/j.scitotenv.2015.11.076
10.1016/j.pecs.2007.07.001
10.1016/j.fuproc.2004.11.006
10.1007/s12209-013-1936-5
10.1016/j.proci.2010.05.066
10.1061/(ASCE)HZ.2153-5515.0000237
10.1016/j.proci.2006.08.051
10.1021/j100540a008
10.1016/j.pbiomolbio.2004.01.014
10.4271/2008-01-1378
10.1016/j.fuel.2012.10.015
10.1016/j.fuproc.2015.08.031
10.1016/0021-9991(76)90041-3
ContentType Journal Article
Copyright 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
2016 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
– notice: 2016 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1080/13647830.2016.1235729
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1741-3559
EndPage 357
ExternalDocumentID 10_1080_13647830_2016_1235729
1235729
Genre Article
GrantInformation_xml – fundername: US Department of Transportation
  grantid: DTRT12-G-UTC21
  funderid: 10.13039/100000140
GroupedDBID .7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADMLS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
J9A
KYCEM
M4Z
NA5
O9-
P2P
RIG
RNANH
RNS
RO9
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c319t-f09f741d4ce45e92b0f5640880cb4f6f4c32dac9d2dbc5d81fb9d630207ff35d3
IEDL.DBID TFW
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400067100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1364-7830
IngestDate Fri Sep 05 13:04:39 EDT 2025
Sun Sep 07 03:47:36 EDT 2025
Sat Nov 29 02:42:24 EST 2025
Mon Oct 20 23:39:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f09f741d4ce45e92b0f5640880cb4f6f4c32dac9d2dbc5d81fb9d630207ff35d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2865-5319
PQID 1923355937
PQPubID 2045308
PageCount 12
ParticipantIDs proquest_journals_1923355937
proquest_miscellaneous_1904231835
crossref_primary_10_1080_13647830_2016_1235729
informaworld_taylorfrancis_310_1080_13647830_2016_1235729
PublicationCentury 2000
PublicationDate 2017-03-04
PublicationDateYYYYMMDD 2017-03-04
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-04
  day: 04
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Combustion theory and modelling
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0033
Ahn T.H. (cit0016)
cit0031
cit0010
cit0032
Omidvarborna H. (cit0006)
cit0030
cit0019
cit0017
cit0018
cit0015
cit0037
cit0038
cit0013
cit0035
cit0014
cit0036
cit0022
cit0001
cit0023
Liberman M.A. (cit0034) 2010
cit0020
cit0021
cit0008
cit0009
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0024
cit0003
cit0025
References_xml – ident: cit0009
  doi: 10.1016/j.proci.2014.09.009
– ident: cit0016
  publication-title: BIOCOMP, Las Vegas, NV, 2008
– ident: cit0038
  doi: 10.1021/jp077526r
– ident: cit0022
  doi: 10.1016/j.combustflame.2008.01.005
– ident: cit0030
  doi: 10.1063/1.1699114
– ident: cit0015
  doi: 10.1063/1.2919546
– ident: cit0033
  doi: 10.4271/2008-01-2413
– ident: cit0010
  doi: 10.1016/j.combustflame.2008.03.003
– ident: cit0025
  doi: 10.1080/13647830.2011.631034
– ident: cit0021
  doi: 10.1016/j.fuel.2012.07.033
– ident: cit0032
  doi: 10.1016/j.combustflame.2012.01.002
– ident: cit0019
  doi: 10.1016/j.biotechadv.2009.04.024
– ident: cit0024
  doi: 10.1016/j.fuel.2012.04.028
– ident: cit0026
  doi: 10.1016/j.combustflame.2013.02.017
– ident: cit0003
  doi: 10.1016/j.rser.2015.04.019
– ident: cit0020
  doi: 10.1016/j.proci.2012.05.090
– ident: cit0001
  doi: 10.1016/j.jece.2014.09.020
– ident: cit0007
  doi: 10.1016/j.combustflame.2010.10.020
– ident: cit0037
  doi: 10.1021/jp067582c
– ident: cit0008
  doi: 10.1016/S0082-0784(00)80555-X
– ident: cit0023
  doi: 10.1016/j.scitotenv.2015.11.076
– ident: cit0031
  doi: 10.1016/j.pecs.2007.07.001
– ident: cit0035
  doi: 10.1016/j.fuproc.2004.11.006
– ident: cit0036
  doi: 10.1007/s12209-013-1936-5
– volume-title: Introduction to Physics and Chemistry of Combustion: Explosion, Flame, Detonation
  year: 2010
  ident: cit0034
– ident: cit0028
  doi: 10.1016/j.proci.2010.05.066
– ident: cit0004
  doi: 10.1061/(ASCE)HZ.2153-5515.0000237
– ident: cit0011
  doi: 10.1016/j.proci.2006.08.051
– ident: cit0014
  doi: 10.1021/j100540a008
– ident: cit0029
  doi: 10.1016/j.pbiomolbio.2004.01.014
– ident: cit0006
  publication-title: Environ. Prog. Sust. Energ.
– ident: cit0018
  doi: 10.4271/2008-01-1378
– ident: cit0017
  doi: 10.1016/j.fuel.2012.10.015
– ident: cit0005
  doi: 10.1016/j.fuproc.2015.08.031
– ident: cit0013
  doi: 10.1016/0021-9991(76)90041-3
SSID ssj0002724
Score 2.1091962
Snippet A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO 2 ) emission...
A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO2) emission...
A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO sub(2))...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 346
SubjectTerms Algorithms
Biodiesel
Biodiesel fuels
biodiesel surrogate
chemical kinetic reaction
Combustion
Combustion temperature
Complexity
Computer simulation
Cooking
Diesel fuels
Emission
Emissions
Esters
Heating
low-temperature combustion (LTC)
Mathematical models
Mean square values
Nitrogen dioxide
Nitrogen oxides
NOx emission
Predictions
Probability theory
Randomness
Root-mean-square errors
Simplification
stochastic simulation algorithm (SSA)
Sulfur
Title Prediction of NOx emissions from a simplified biodiesel surrogate by applying stochastic simulation algorithms (SSA)
URI https://www.tandfonline.com/doi/abs/10.1080/13647830.2016.1235729
https://www.proquest.com/docview/1923355937
https://www.proquest.com/docview/1904231835
Volume 21
WOSCitedRecordID wos000400067100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1741-3559
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002724
  issn: 1364-7830
  databaseCode: TFW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCDb7FaZQUPekhN8-rmWMTiQarQir2F7MsGaiJJKvrvnUk3pUXEg56T3YTZndlvd7_5hpALXzmuL1RgAfawLY-FscUlbFY4ci4kE0zxqmrJfXcwYONx-GjYhIWhVeIeWs-FIqpYjc4d86JmxF13UPOcuTYSs4I2JnsCQoQoDEs_uuao_7yIxU7XlLUNPAub1Dk8P_WysjqtaJd-i9XVAtTf_odf3yFbBn3S3ny67JI1le6RzSVNwn2Cok4yqbIdaKbp4OGDYkk4PFQrKCaj0JgWCfLQNaBXypMMeYhqSotZnmd4KEf5J8V7cUygooAtxSRGMWhsZWqF0Xj6kuVJOXkt6OVw2Ls6IE_929HNnWVKM1gCfLa0tB1qwCLSE8rzVehwW_uBBxHLFtzTgfaE68hYhNKRXPiSdTQPZeACNu1q7frSPSSNNEvVEaFawpZRMq67LETxNhZgCRRXSMCmcUcHTdKuhyR6mytwRB0jbFqbM0JzRsacTRIuD1xUVkcfel6nJHJ_aduqRzkyzlxECIIBlgGQa5LzxWMwPd6txKnKZvgOEowgPvrHf_j8CdlwEDYgx81rkUaZz9QpWRfvZVLkZ9XU_gJikPZt
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xScCBHVFWI3GAQ0qarc4RIaoiSjlQRG9WvNFIpUFJiuDv8aQJKkKIA5wTO9HYHj-P37wBOPGV4_pCBZbBHrbl0TCyuDSHFY6cC0kFVbyoWtJpdru03w-nc2GQVolnaD0Riih8NS5uDEZXlLjzBoqeU9dGZlZQx2xPAxFnYd43ey3q5_daj5_e2GmWhW0Dz8I2VRbPT9182Z--qJd-89bFFtRa_Y-fX4OVEoCSi8mMWYcZNdqA5SlZwk1AXScZFwkPJNGke_dGsCocxtUygvkoJCJZjFR0bQAs4XGCVEQ1JNk4TROMyxH-TvBqHHOoiIGXYhChHjS2KsuFkWj4lKRxPnjOyOn9_cXZFjy0rnqXbauszmAJs2xzS9uhNnBEekJ5vgodbms_8IzTsgX3dKA94ToyEqF0JBe-pA3NQxm4Bp42tXZ96W7D3CgZqR0gWppTo6RcN2mI-m00wCoorpAGnkYNHdSgXo0Je5mIcLBGqW1amZOhOVlpzhqE0yPH8iL6oSelSpj7S9v9aphZuZ4zhjjYIDMzv2pw_PnYmB6vV6KRSsb4DnKMjIv0d__w-SNYbPduO6xz3b3ZgyUHUQRS3rx9mMvTsTqABfGax1l6WMzzD_4P-pc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-wwFD74uIgufIujo0a4C--i2ukjky4HdVCUUdDLdRealxZ0Km1H9N-b00lFEbkLXbdpy0ly-iX5zvcB_I51EMZSU89iD9-LWJJ6QtnFikDOhWKSaVG7lpx3BwN2c5NcOjZh6WiVuIY2Y6GIOlfj5H5UpmHEHXRQ85yFPhKz6D4We1qEOAnTFjpTHOTX_X9vyTjoOl9bGnnYpini-eoxH35PH8RLPyXr-g_UX_iBb1-EeQc_SW88XpZgQg-XYe6dKOEKoKqTyupyB5IbMrh4JugJh7tqJcFqFJKSMkMiurHwlYgsRyKiviflqChy3JUj4oXgwThWUBELLuVdimrQ2MqZhZH0_jYvsuruoSR7V1e9P6vwt398fXjiOW8GT9pJW3nGT4wFIyqSOop1EgjfxDSyKcuXIjLURDIMVCoTFSghY8U6RiSKhhacdo0JYxWuwdQwH-p1IEbZNaNiwnRZguptjKIHSiiVBadpx9AW7Dddwh_HEhy845RNm3ByDCd34WxB8r7jeFXvfZixUQkP_9O23fQyd7O55IiCLS6zSK4Fu2-XbejxcCUd6nyE9yDDyCbIeOMbr9-BmcujPj8_HZxtwmyAEAL5blEbpqpipLfgl3yqsrLYrkf5Kw30-Uk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+NOx+emissions+from+a+simplified+biodiesel+surrogate+by+applying+stochastic+simulation+algorithms+%28SSA%29&rft.jtitle=Combustion+theory+and+modelling&rft.au=Omidvarborna%2C+Hamid&rft.au=Kumar%2C+Ashok&rft.au=Kim%2C+Dong-Shik&rft.date=2017-03-04&rft.issn=1364-7830&rft.eissn=1741-3559&rft.volume=21&rft.issue=2&rft.spage=346&rft.epage=357&rft_id=info:doi/10.1080%2F13647830.2016.1235729&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_13647830_2016_1235729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-7830&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-7830&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-7830&client=summon