SDHNet: a sampling-based dual-stream hybrid network for long-term time series forecasting
Recently, deep learning models have achieved notable success in long-term time series forecasting. However, real-world time series data typically exhibit complex temporal patterns, characterized by both short-term and long-term variations across multiple time scales. This complexity makes it difficu...
Uloženo v:
| Vydáno v: | The Journal of supercomputing Ročník 81; číslo 1; s. 68 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.01.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!