AI-Based Mobile Edge Computing for IoT: Applications, Challenges, and Future Scope

New technology is needed to meet the latency and bandwidth issues present in cloud computing architecture specially to support the currency of 5G networks. Accordingly, mobile edge computing (MEC) came into picture as novel emerging solutions to overcome many cloud computing issues. In this contempo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) Jg. 47; H. 8; S. 9801 - 9831
Hauptverfasser: Singh, Ashish, Satapathy, Suresh Chandra, Roy, Arnab, Gutub, Adnan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2022
Springer Nature B.V
Schlagworte:
ISSN:2193-567X, 1319-8025, 2191-4281
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract New technology is needed to meet the latency and bandwidth issues present in cloud computing architecture specially to support the currency of 5G networks. Accordingly, mobile edge computing (MEC) came into picture as novel emerging solutions to overcome many cloud computing issues. In this contemporary technology, the computation server and processing units are nearby edge servers to reduce latency, increase the network bandwidth and reduce energy consumption in user devices. These features can integrate with several domains such as the internet of things, artificial intelligence (AI), federated learning (FL) and fog computing, etc., to make the system more robust, elastic, efficient, and accurate. Regardless of the advantages, MEC faces several challenges, including security and privacy, deployment protocols, and offloading management. Although, various studies have been found tuning MEC to solve such challenges, the literature provide more ideas for smart developments toward applications particularly using FL and AI. Most researches miss combining interesting aspects of MEC, such as machine learning and deep learning approaches limiting works to only single aspect. Thus, a literature work is needed to focus on all the aspects of MEC together. This study aims to present a comprehensive survey on MEC by providing all necessary information, including network architecture, advantages, objectives, access technologies, deployment templates, characteristics, and many more. The work is not limited to only MEC background but also covers the AI and FL approaches used within MEC, allowing mobile phones to learn a shared predictive model collaboratively. This survey also provides information regarding security and privacy challenges as well as attacks on MEC and their solutions. The applications of MEC illustrate different sectors where MEC is applicable further highlighting open issues and challenges to be investigated.
AbstractList New technology is needed to meet the latency and bandwidth issues present in cloud computing architecture specially to support the currency of 5G networks. Accordingly, mobile edge computing (MEC) came into picture as novel emerging solutions to overcome many cloud computing issues. In this contemporary technology, the computation server and processing units are nearby edge servers to reduce latency, increase the network bandwidth and reduce energy consumption in user devices. These features can integrate with several domains such as the internet of things, artificial intelligence (AI), federated learning (FL) and fog computing, etc., to make the system more robust, elastic, efficient, and accurate. Regardless of the advantages, MEC faces several challenges, including security and privacy, deployment protocols, and offloading management. Although, various studies have been found tuning MEC to solve such challenges, the literature provide more ideas for smart developments toward applications particularly using FL and AI. Most researches miss combining interesting aspects of MEC, such as machine learning and deep learning approaches limiting works to only single aspect. Thus, a literature work is needed to focus on all the aspects of MEC together. This study aims to present a comprehensive survey on MEC by providing all necessary information, including network architecture, advantages, objectives, access technologies, deployment templates, characteristics, and many more. The work is not limited to only MEC background but also covers the AI and FL approaches used within MEC, allowing mobile phones to learn a shared predictive model collaboratively. This survey also provides information regarding security and privacy challenges as well as attacks on MEC and their solutions. The applications of MEC illustrate different sectors where MEC is applicable further highlighting open issues and challenges to be investigated.
Author Satapathy, Suresh Chandra
Roy, Arnab
Singh, Ashish
Gutub, Adnan
Author_xml – sequence: 1
  givenname: Ashish
  surname: Singh
  fullname: Singh, Ashish
  organization: School of Computer Engineering, KIIT Deemed To Be University
– sequence: 2
  givenname: Suresh Chandra
  surname: Satapathy
  fullname: Satapathy, Suresh Chandra
  organization: School of Computer Engineering, KIIT Deemed To Be University
– sequence: 3
  givenname: Arnab
  surname: Roy
  fullname: Roy, Arnab
  organization: School of Computer Engineering, KIIT Deemed To Be University
– sequence: 4
  givenname: Adnan
  orcidid: 0000-0003-0923-202X
  surname: Gutub
  fullname: Gutub, Adnan
  email: aagutub@uqu.edu.sa
  organization: Computer Engineering Department, Umm Al-Qura University
BookMark eNp9kE9Lw0AQxRepYNV-AU8LXl3dv0nWWy2tFiqC9uBt2WwnNZJm425y8NubNoLgoacZhvebN_PO0aj2NSB0xegtozS9i0yIRBPKGaGJkBnhJ2jMmWZE8oyNDr0gKknfz9AkxjKnMhNaMSbG6HW6JA82wgY_-7ysAM83W8Azv2u6tqy3uPABL_36Hk-bpiqdbUtfxxs8-7BVBfUW-t7WG7zo2i4AfnO-gUt0WtgqwuS3XqD1Yr6ePZHVy-NyNl0RJ5huCRSFBciTHJTUUjkJDrRkWslCguQ5LRh3GaQy6R9zNs8SJWmWKd5PE52KC3Q9rG2C_-ogtubTd6HuHQ1PKRVKMLZX8UHlgo8xQGGaUO5s-DaMmn16ZkjP9CbmkJ7hPZT9g1zZHl5vgy2r46gY0Nj79PmEv6uOUD9UhYQG
CitedBy_id crossref_primary_10_1007_s11432_024_4424_3
crossref_primary_10_1016_j_prime_2024_100522
crossref_primary_10_1007_s11276_024_03731_3
crossref_primary_10_1155_2023_6441791
crossref_primary_10_1109_JIOT_2023_3278314
crossref_primary_10_32604_cmc_2024_046253
crossref_primary_10_1371_journal_pone_0324761
crossref_primary_10_1007_s11042_022_13015_7
crossref_primary_10_3390_network5010001
crossref_primary_10_1007_s44443_025_00146_8
crossref_primary_10_1016_j_compeleceng_2023_108661
crossref_primary_10_1007_s44443_025_00141_z
crossref_primary_10_1109_ACCESS_2023_3310242
crossref_primary_10_1007_s00500_023_09042_7
crossref_primary_10_1051_itmconf_20246801021
crossref_primary_10_1007_s13369_022_07250_1
crossref_primary_10_1007_s44443_025_00140_0
crossref_primary_10_3390_app15137485
crossref_primary_10_3390_s23177662
crossref_primary_10_1016_j_eij_2025_100684
crossref_primary_10_1007_s11042_022_12062_4
crossref_primary_10_1186_s13677_023_00461_3
crossref_primary_10_1007_s12559_024_10278_0
crossref_primary_10_3390_electronics12122708
crossref_primary_10_1007_s13369_023_08629_4
crossref_primary_10_32604_cmc_2023_041108
crossref_primary_10_1088_2631_8695_adfbbb
crossref_primary_10_1186_s13677_024_00602_2
crossref_primary_10_1007_s13369_022_07387_z
crossref_primary_10_1016_j_aej_2025_04_061
crossref_primary_10_1109_ACCESS_2023_3269294
crossref_primary_10_1016_j_phycom_2023_102228
crossref_primary_10_1007_s10639_023_12279_2
crossref_primary_10_1007_s00138_024_01518_2
crossref_primary_10_1016_j_future_2023_07_001
crossref_primary_10_1515_joc_2025_0158
crossref_primary_10_1080_1206212X_2023_2223795
crossref_primary_10_1016_j_jnca_2024_103949
crossref_primary_10_1109_TCE_2024_3471901
crossref_primary_10_1109_ACCESS_2023_3317692
crossref_primary_10_1109_JIOT_2023_3304318
crossref_primary_10_1016_j_future_2022_12_039
crossref_primary_10_1155_2022_2975033
crossref_primary_10_1080_2331186X_2025_2479401
crossref_primary_10_1145_3767740
crossref_primary_10_4018_IJISP_347878
crossref_primary_10_1002_cpe_7831
crossref_primary_10_3390_computers12010002
crossref_primary_10_1007_s00371_024_03347_w
crossref_primary_10_1007_s11042_023_15682_6
crossref_primary_10_1007_s11227_025_07437_x
crossref_primary_10_1007_s43995_023_00026_0
crossref_primary_10_1007_s44443_025_00153_9
crossref_primary_10_1016_j_heliyon_2024_e25012
crossref_primary_10_1007_s11276_024_03683_8
crossref_primary_10_1016_j_compeleceng_2024_109202
crossref_primary_10_1007_s11227_024_06270_y
crossref_primary_10_1007_s11042_023_15586_5
crossref_primary_10_1109_ACCESS_2023_3307808
crossref_primary_10_3390_fi17030118
Cites_doi 10.1016/j.future.2019.12.004
10.36909/jer.v9i3A.10111
10.1109/MNET.011.2000558
10.1145/3193111.3193118
10.1007/1-4020-7901-X_1
10.1016/j.procs.2013.09.310
10.1109/MNET.011.2000088
10.1109/ACCESS.2019.2936374
10.1109/WCNC.2017.7925848
10.1108/09576050210426715
10.1145/1071916.1071927
10.1109/MCE.2020.3048926
10.17485/ijst/2014/v7i2.5
10.1109/MNET.011.1900317
10.1016/j.future.2020.10.007
10.1007/s40747-021-00498-4
10.1016/j.compeleceng.2008.08.003
10.1145/3426745.3431337
10.1016/j.future.2015.01.004
10.1038/s42256-019-0109-1
10.1109/GLOCOM.2017.8253985
10.1109/IWQOS.1999.766475
10.1109/MNET.2019.1800286
10.1186/s13638-018-1318-8
10.1109/TWC.2019.2958091
10.1109/TCOMM.2019.2947921
10.1109/ACCESS.2019.2937177
10.1007/978-3-540-72738-5_12
10.1109/MWC.2013.6507390
10.1109/ICFN.2009.36
10.1201/1078/43193.17.4.20000901/31247.3
10.1109/COMST.2018.2863030
10.1109/ICSE.2013.6606610
10.1109/PADSW.2018.8644556
10.1109/JIOT.2019.2935189
10.1504/IJTEL.2020.106286
10.1109/TAP.2005.858853
10.1016/j.future.2012.05.023
10.1109/MIS.2020.2988525
10.1007/s12652-020-02789-z
10.1016/j.comcom.2021.02.014
10.1186/s13635-016-0053-0
10.26735/16587790.2019.001
10.1109/MCOM.2016.1600492CM
10.1109/FMEC.2019.8795315
10.1109/COMST.2015.2477041
10.1145/2248487.2151022
10.1109/COMST.2020.3037674
10.1109/MNET.011.2000295
10.1109/INFOCOM.2018.8486352
10.1109/HICSS.2011.103
10.1109/ICCSN.2011.6014716
10.1109/MNET.2018.1800097
10.1109/TMC.2021.3085979
10.1016/j.infoecopol.2008.10.003
10.1109/COMST.2017.2745201
10.1109/HOTICN.2018.8605952
10.1016/j.sysarc.2019.02.009
10.1109/COMST.2017.2682318
10.1016/j.procs.2021.07.041
10.15439/2014F503
10.1002/cpe.5825
10.1016/S0140-3664(99)00064-X
10.2139/ssrn.2378317
10.1016/j.simpat.2019.101957
10.3923/tasr.2013.55.72
10.1145/352600.353052
10.1109/MSP.2009.87
10.36909/jer.v8i3.8079
10.1016/j.procs.2014.05.545
10.1109/ICC40277.2020.9148776
10.1145/242896.242897
10.1109/DESEC.2017.8073810
10.1109/JIOT.2017.2683200
10.1109/IAdCC.2013.6514286
10.3390/s21010167
10.1145/1108473.1108496
10.1109/JIOT.2020.3015432
10.1109/DICTAP.2012.6215350
10.1109/ICC.2019.8761166
10.1109/TWC.2020.2971981
10.3390/s21103335
10.14738/tmlai.54.3215
10.1162/089976600300015187
10.1145/2534169.2486023
10.1145/585597.585616
10.1109/TII.2020.2964563
10.17487/rfc5849
10.1145/1982185.1982511
10.1109/ACCESS.2020.3013541
10.1109/NOMS.2016.7502887
10.1109/TCYB.2015.2415032
10.1109/MASCOTS.2013.58
10.1109/MNET.2014.6963800
10.1145/1455770.1455782
10.1109/ICNC47757.2020.9049708
10.1109/MWC.2018.1700291
10.1109/JIOT.2018.2885453
10.1109/ICSE.2009.5070521
10.1145/2307849.2307858
10.17487/rfc6749
10.1109/JIOT.2017.2750180
10.1007/s13369-021-06165-7
10.1109/TAC.2018.2791471
10.1145/2627585.2627592
10.1016/j.biosystems.2011.02.002
10.1016/j.jnca.2013.10.004
10.1109/JIOT.2021.3072611
10.1109/SURV.2012.060912.00100
10.1109/JIOT.2020.2999025
10.1002/kpm.149
10.1145/1526709.1526822
10.5505/pajes.2021.54837
10.1109/MIS.2021.3082561
10.1109/COMST.2017.2705720
10.1007/978-81-322-2755-7_22
10.1049/cit2.12053
10.1109/TII.2019.2949348
10.23919/ICACT.2017.7890132
10.1109/TENCON.2019.8929433
10.1109/ACCESS.2017.2685434
10.1109/MCOM.2015.7081093
10.1109/JIOT.2020.2991401
10.22937/IJCSNS.2020.20.08.1
10.1109/COMST.2020.2986024
10.1109/MCOM.2017.1600938
10.1109/MC.2005.163
10.1109/TBC.2019.2901406
10.22937/IJCSNS.2020.20.09.3
10.1016/j.future.2018.05.057
10.1109/ICCW.2018.8403712
10.1109/JIOT.2019.2904303
10.1145/3286490.3286559
10.1016/j.future.2019.03.011
10.1109/ICOMET.2018.8346428
10.1109/TSG.2012.2206060
10.1145/3338501.3357370
10.1016/j.comcom.2021.05.013
10.1109/CNSM.2015.7367340
10.1109/FMEC.2018.8364045
10.1109/WCCAIS.2014.6916624
10.23919/APNOMS.2019.8892848
10.1109/MobileCloud.2016.16
10.1109/MSP.2013.132
10.4018/IJEHMC.2019100101
10.1109/TCOMM.2021.3087125
10.1109/TII.2021.3064351
10.1109/HotWeb.2015.22
10.1109/ACCESS.2020.3001277
10.1109/COMPSAC.2012.34
10.1109/JIOT.2018.2875046
10.1109/COMST.2018.2849509
10.1109/ACCESS.2020.3011477
10.1142/9789812776730_0008
10.1145/3229556.3229557
10.1007/s11042-021-11051-3
10.1007/s00607-021-00970-6
10.1109/MSP.2018.2825478
10.1007/s10723-021-09559-x
10.1109/CloudCom.2015.40
10.1016/j.future.2019.05.037
10.1109/TSC.2018.2825986
10.1109/SP.2013.30
10.1007/978-3-319-12229-8_2
10.36909/jer.13199
10.1007/978-3-642-23822-2_6
10.1109/MCOM.2017.1600510CM
10.1109/TSMCB.2005.843274
10.1109/MPRV.2009.82
10.1109/CSCN.2019.8931357
10.1007/s11042-018-6801-z
10.1002/9781119471509.w5GRef168
10.3389/fnins.2017.00309
10.1109/90.413212
10.1007/11663812_7
10.1109/MCOMSTD.2018.1700063
10.1109/SP.2019.00065
10.1016/j.comnet.2021.108122
10.1109/ICC.2017.7996332
10.1109/ICDM.2003.1250990
10.1103/PhysRevA.69.042324
10.1109/MNET.011.2000215
10.1162/105474603322955950
10.1109/ACCESS.2019.2953172
10.2307/2214186
10.1007/11506157_4
10.1109/ACCESS.2017.2774837
10.1109/MCOM.2016.7452271
10.1016/j.jksuci.2021.09.009
10.1109/WCNCW.2019.8902527
10.1038/s41746-020-00323-1
10.1007/978-3-642-40994-3_25
10.1007/s11036-020-01586-4
10.22937/IJCSNS.2020.20.12.26
10.1109/MCOM.2018.1701132
10.5281/zenodo.3543455
10.23919/IFIPNetworking52078.2021.9472790
10.1109/GLOBECOM42002.2020.9322270
10.1109/MNET.2015.7018201
10.1007/978-3-319-58808-7_5
10.1145/1879141.1879173
10.1007/BF01200845
10.1016/j.ins.2020.09.064
10.1186/s13677-020-00201-x
10.1145/2342509.2342513
10.1109/JIOT.2016.2584538
10.1109/MCOM.2003.1244926
10.1145/2491224.2491237
10.1145/2382196.2382284
10.1145/2660267.2660323
10.1109/JSYST.2019.2896064
10.1145/3134600.3134648
10.1007/s41666-020-00082-4
10.1109/NETAPPS.2010.50
10.1109/INM.2011.5990505
10.1109/ICCPCT.2015.7159276
10.1109/JIOT.2019.2957835
10.1109/ENABL.1997.630822
10.1016/j.knosys.2021.106775
10.1109/ICAEE.2015.7506822
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2021
King Fahd University of Petroleum & Minerals 2021.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2021
– notice: King Fahd University of Petroleum & Minerals 2021.
DBID AAYXX
CITATION
DOI 10.1007/s13369-021-06348-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 9831
ExternalDocumentID 10_1007_s13369_021_06348_2
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-effaeeb6be54945c4ece941954f4e42b0f12c8e746021cab8654088522c86973
IEDL.DBID RSV
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000737098300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 08:56:55 EDT 2025
Sat Nov 29 02:51:42 EST 2025
Tue Nov 18 22:23:28 EST 2025
Fri Feb 21 02:46:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Mobile edge computing (MEC)
Mobile communications
AI and FL technology
Security and privacy challenges
Edge technology
Internet of things (IoT)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-effaeeb6be54945c4ece941954f4e42b0f12c8e746021cab8654088522c86973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0923-202X
PQID 2700353117
PQPubID 2044268
PageCount 31
ParticipantIDs proquest_journals_2700353117
crossref_primary_10_1007_s13369_021_06348_2
crossref_citationtrail_10_1007_s13369_021_06348_2
springer_journals_10_1007_s13369_021_06348_2
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References HuiHZhouCAnXLinFA new resource allocation mechanism for security of mobile edge computing systemIEEE Access20197116886116899
SaadRMAAlmomaniAAltaherAGuptaBBManickamSICMPv6 flood attack detection using DENFIS algorithmsIndian J. Sci. Technol201472168
BogdanoskiMSuminoskiTRisteskiAAnalysis of the SYN flood DoS attackInt. J. Comput. Netw. Inf. Secur. (IJCNIS)201358111
DewireDTApplication service providersInf. Syst. Manag.20001741419
SokolPMisekJHusakMHoneypots and honeynets: issues of privacyEURASIP J. Inf. Secur.20172017119
Xianjia, Y.; Queralta, J.P.; Heikkonen, J.; Westerlund, T.: An overview of federated learning at the edge and distributed ledger technologies for robotic and autonomous systems. arXiv–2104 (2021)
ChandramouliRSecurity recommendations for hypervisor deployment on serversNIST Spec. Publ.2018800125A
Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Srndi´c, N.; Laskov, P.; Giacinto, G.; Roli, F.: Evasion attacks against machine learning at test time. Joint European conference on machine learning and knowledge discovery in databases, pp. 387–402. Springer (2013)
ChengKFanTJinYLiuYChenTDimitriosPQiangYSecureBoost: a lossless federated learning frameworkIEEE Intell. Syst.202110.1109/MIS.2021.3082561
QianLPFengAHuangYWuYJiBShiZOptimal SIC ordering and computation resource allocation in MEC-aware NOMA NB-IoT networksIEEE Internet Things J20186228062816
LiuGWangCMaXYangYKeep your data locally: Federated-learning-based data privacy preservation in edge computingIEEE Netw.20213526066
XiaolongXuZhangXGaoHXueYQiLDouWBeCome: blockchain-enabled computation offloading for IoT in mobile edge computingIEEE Trans. Industr. Inf.201916641874195
BallJDraganABanaszekKExploiting entanglement in communication channels with correlated noisePhys. Rev. A20046940423242067892
Eric WangY-PLinXAdhikaryAGrovlenASuiYBlankenshipYBergmanJRazaghiHSA primer on 3GPP narrowband Internet of ThingsIEEE Commun Mag2017553117123
GutubAAl-QurashiASecure shares generation via M-blocks partitioning for counting-based secret sharingJ. Eng. Res. (JER)20208391117
MothukuriVPariziRMPouriyehSHuangYDehghantanhaASrivastavaGA survey on security and privacy of federated learningFut. Gener. Comput. Syst.2021115619640
Smith, V.; Chiang, C.-K.; Sanjabi, M.; Talwalkar, A.: Federated multi-task learning (2018). arXiv:1705.10467
Yi, S.; Hao, Z.; Qin, Z.; Li, Q.: Fog computing: platform and applications. In 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 73–78. IEEE (2015)
FloydSJacobsonVLink-sharing and resource management models for packet networksIEEE/ACM Trans. Netw.199534365386
MaLLiuXPeiQXiangYPrivacy-preserving reputation management for edge computing enhanced mobile crowdsensingIEEE Trans. Serv. Comput.2018125786799
Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning. IEEE symposium on security and privacy (SP), pages 739–753, 2019.
ChiangMZhangTFog and IoT: an overview of research opportunitiesIEEE Internet Things J.201636854864
TaddeoMMcCutcheonTFloridiLTrusting artificial intelligence in cybersecurity is a double-edged swordNat. Mach. Intell.2019112557560
UhligRNeigerGRodgersDSantoniALMartinsFCMAndersonAVBennettSMKagiALeungFHSmithLIntel virtualization technologyComputer20053854856
Zhang, X.; Li, C.; Zheng, W.: Intrusion prevention system design. In: IEEE International Conference on Computer and Information Technology, pp. 386–390 (2004)
Lindner, M.; McDonald, F.; McLarnon, B.; Robinson, P.: Towards automated business-driven indication and mitigation of VM sprawl in Cloud supply chains. In: 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops, pp. 1062–1065 (2011)
Verma, K.; Hasbullah, H.; Kumar, K.: An efficient defense method against UDP spoofed flooding traffic of denial of service (DoS) attacks in VANET. In: IEEE International Advance Computing Conference (IACC), pp. 550–555 (2013)
Gyamfi, E.; Ansere, J.A.; Xu, L.: ECC based lightweight cybersecurity solution for IoT networks utilising multi-access mobile edge computing. In: IEEE International Conference on Fog and Mobile Edge Computing (FMEC), pp. 149–154 (2019)
Albright, J.G.: The basics of an IT security policy. GSEC practical requirement V. 1.3 SANS Institute of Technology, 1 (2002)
Gelberger, A.; Yemini, N.; Giladi, R.: Performance analysis of software-defined networking (SDN). In: IEEE International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, pp: 389–393 (2013)
HarmanGIntrinsic qualities of experiencePhilos. Perspect.199043152
Truex, S.; Baracaldo, N.; Anwar, A.; Steinke, T.; Ludwig, H.; Zhang, R.; Zhou, Y.: A hybrid approach to privacy-preserving federated learning. ACM Workshop on Artificial Intelligence and Security, pp. 1–11 (2019)
AhmadIKumarTLiyanageMOkwuibeJYlianttilaMGurtovAOverview of 5G security challenges and solutionsIEEE Commun. Stand. Mag.2018213643
DahlmanEParkvallSSkoldJ4G: LTE/LTE-advanced for mobile broadband2013CambridgeAcademic Press
JoyiaGJLiaqatRMFarooqARehmanSInternet of medical things (IOMT): applications, benefits and future challenges in healthcare domainJ. Commun.2017124240247
Zhang, X.; Zhu, X.; Lessard, L.: Online data poisoning attack. PMLR learning for dynamics and control, pp. 201–210 (2020)
Kourtellis, N.; Katevas, K.; FLaaS, D.P.: Federated learning as a service. In: Proceedings of the 1st workshop on distributed machine learning, pp. 7–13 (2020)
LiuYKangYXingCChenTYangQA secure federated transfer learning frameworkIEEE Intell. Syst.20203547082
LyytinenKYooYUbiquitous computingCommun. ACM200245126396
HuangBLiZTangPWangSZhaoJHaiyangHuLiWChangVSecurity modeling and efficient computation offloading for service workflow in mobile edge computingFutur. Gener. Comput. Syst.201997755774
Beck, M.T.; Werner, M.; Feld, S.; Schimper, S.: Mobile edge computing: a taxonomy. In: Citeseer International Conference on Advances in Future Internet, pp. 48–55 (2014)
GuoYZhaoZHeKLaiSXiaJFanLEfficient and flexible management for industrial internet of things: a federated learning approachComput. Netw.2021192108122
KakabadseAKakabadseNApplication service providers (ASPs): new impetus for transformational changeKnowl. Process Manag.200294205218
GuptaPGuptaSMobile cloud computing: the future of cloudInt. J. Adv. Res. Electr. Electron. Instrum. Eng.201213134145
AlassafNGutubASimulating light-weight-cryptography implementation for IoT healthcare data security applicationsInt. J. E-Health Med. Commun. (IJEHMC)201910411510.4018/IJEHMC.2019100101
ZhangDMaYHuXSWangDToward privacy-aware task allocation in social sensing-based edge computing systemsIEEE Internet Things J.20207121138411400
FerngH-WHuangY-YHandover scheme with enode-B pre-selection and parameter self-optimization for LTE-A heterogeneous networksIEEE Int. Conf. Mach. Learn. Cybern. (ICMLC)20162594599
Pappas, C.; Chatzopoulos, D.; Lalis, S.; Vavalis, M.: IPLS: a framework for decentralized federated learning (2021). arXiv:2101.01901
AlmutairiSGutubAAl-JuaidNMotivating teachers to use information technology in educational process within Saudi ArabiaInt. J. Technol. Enhanc. Learn. (IJTEL)2020122200217
Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D.: Continuous control with deep reinforcement learning (2019). arXiv:1509.02971
AlwarafyAAl-ThelayaKAAbdallahMSchneiderJHamdiMA survey on security and privacy issues in edge-computing-assisted internet of thingsIEEE Internet Things J.20208640044022
QadirSQuadriSMKInformation availability: an insight into the most important attribute of information securityJ. Inf. Secur.201673185194
MatiasJGarayJToledoNUnzillaJJacobEToward an SDN-enabled NFV architectureIEEE Commun. Mag.2015534187193
HeDChanSGuizaniMSecurity in the internet of things supported by mobile edge computingIEEE Commun. Mag.20185685661
SzeferJLeeRBArchitectural support for hypervisor-secure virtualizationACM SIGPLAN Notices2012474437450
AhmavaaraKHaverinenHPichnaRInterworking architecture between 3GPP and WLAN systemsIEEE Commun. Mag.200341117481
LongDDEMontagueBRCabreraL-FSwift/RAID: a distributed RAID systemComput Syst199473333359
Haleplidis, E.; Pentikousis, K.; Denazis, S.; Salim, J.H.; Meyer, D.; Koufopavlou, O.: Software-defined networking (SDN): layers and architecture terminology. RFC 7426 (2015)
Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; Jirstrand, M.: A performance evaluation of federated learning algorithms. Second Workshop on Distributed Infrastructures for Deep Learning, pp. 1–8 (2018)
XiaoLWanXDaiCXiaojiangDuChenXGuizaniMSecurity in mobile edge caching with reinforcement learningIEEE Wirel. Commun.2018253116122
SiamiMMoteeNNetwork abstraction with guaranteed performance boundsIEEE Trans. Autom. Control201863103301331638662361423.93048
Zhang, X.D.; Li, R.; Cui, B.: A security architecture of VANET based on blockchain and mobile edge computing. In: IEEE International Conference on Hot Information-Centric Networking (HotICN), pp. 258–259 (2018)
Mohri, M.; Sivek, G.; Suresh, A.T.: Agnostic federated learning. In: PMLR International Conference on Machine Learning, pp. 4615–4625 (2019)
Bin-HureibEGutubAEnhancing medical data security via combining elliptic curve cryptography with 1-LSB and 2-LSB image steganographyInt. J. Comput. Sci. Netw. Secur. (IJCSNS)2020201223224110.22937/IJCSNS.2020.20.12.26
AlotaibiMAl-hendiDAlroithyBAlGhamdiMGutubASecure mobile computing authentication utilizing hash, cryptography and steganography combinationJ. Inf. Secur. Cybercrim. Res. (JISCR)20192192010.26735/16587790.2019.001
Jablon, D.P.: Extended password key exchange protocols immune to dictionary attack. In: IEEE Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 248–255 (1997)
XuJGlicksbergBSSuCWalkerPBianJWangFFederated learning for healthcare informaticsJ. Healthc. Inf. Res.202151119
AonoTHiguchiKOhiraTKomiyamaBSasaokaHWireless secret key generation
S Aly (6348_CR142) 2014; 32
M Chauhan (6348_CR203) 2012; 2
M Alotaibi (6348_CR212) 2019; 2
6348_CR204
Xu Zhanyang (6348_CR75) 2019; 2019
6348_CR205
6348_CR206
6348_CR200
6348_CR202
D Belli (6348_CR119) 2019; 7
DT Dewire (6348_CR165) 2000; 17
G Liu (6348_CR131) 2021; 35
F Hassan (6348_CR272) 2021
H Li (6348_CR128) 2017; 11
J Wu (6348_CR144) 2015; 29
M Shambour (6348_CR253) 2021; 1
S Almutairi (6348_CR86) 2020; 12
M Nguyen (6348_CR25) 2021
M Gheisari (6348_CR96) 2019; 7
X He (6348_CR90) 2019; 19
MAP Chamikara (6348_CR47) 2021; 171
N Kheshaifaty (6348_CR256) 2020; 20
R Sanchez-Iborra (6348_CR18) 2018; 88
M Gerla (6348_CR135) 1995; 1
R Ravindran (6348_CR31) 2017; 55
6348_CR229
6348_CR104
6348_CR225
L Xiao (6348_CR12) 2018; 35
6348_CR105
P Porambage (6348_CR38) 2018; 20
6348_CR221
6348_CR222
Yu Rong (6348_CR83) 2021; 35
6348_CR223
M Kolšek (6348_CR287) 2002; 1
F Capozzi (6348_CR153) 2012; 15
N Ierace (6348_CR214) 2005; 6
N Alassaf (6348_CR238) 2019; 10
G Yubin (6348_CR240) 2013; 8
J Matias (6348_CR28) 2015; 53
A Gutub (6348_CR271) 2021; 9
L Ntagwabira (6348_CR246) 2010; 2
IA Elgendy (6348_CR122) 2019; 100
M Satyanarayanan (6348_CR7) 2009; 8
6348_CR218
6348_CR219
L Ma (6348_CR66) 2018; 12
6348_CR215
6348_CR216
K Ahmavaara (6348_CR140) 2003; 41
6348_CR211
6348_CR213
R Mijumbi (6348_CR159) 2015; 18
Lu Yunlong (6348_CR81) 2020; 34
GC Burdea (6348_CR24) 2003
M Bogdanoski (6348_CR262) 2013; 5
M Pang (6348_CR74) 2020; 9
F Zhang (6348_CR270) 2015; 46
Y Guo (6348_CR49) 2021; 192
N Alharthi (6348_CR145) 2017; 2
S Floyd (6348_CR13) 1995; 3
F Spinelli (6348_CR46) 2021; 23
6348_CR126
6348_CR247
6348_CR127
6348_CR248
Y Liu (6348_CR84) 2021; 21
6348_CR249
LP Qian (6348_CR17) 2018; 6
6348_CR129
6348_CR123
6348_CR244
6348_CR124
6348_CR245
X Sun (6348_CR2) 2016; 54
6348_CR120
J Xu (6348_CR177) 2021; 5
6348_CR241
J Szefer (6348_CR207) 2012; 47
Y Mao (6348_CR34) 2017; 19
A Alwarafy (6348_CR98) 2020; 8
X Li (6348_CR50) 2021; 35
M Portnoy (6348_CR138) 2012
N Rieke (6348_CR175) 2020; 3
F Al-Shaarani (6348_CR172) 2021
A Kakabadse (6348_CR166) 2002; 9
6348_CR115
6348_CR236
J Lin (6348_CR94) 2017; 4
6348_CR117
6348_CR233
6348_CR113
6348_CR234
6348_CR235
6348_CR230
T Aono (6348_CR273) 2005; 53
6348_CR97
6348_CR99
6348_CR91
6348_CR92
S Rathore (6348_CR106) 2017; 6
DDE Long (6348_CR254) 1994; 7
H Yang (6348_CR89) 2020; 16
F Giust (6348_CR137) 2018; 24
6348_CR148
6348_CR269
6348_CR149
Y-P Eric Wang (6348_CR141) 2017; 55
6348_CR265
6348_CR266
6348_CR267
6348_CR147
B Al-Roithy (6348_CR186) 2021; 80
6348_CR268
6348_CR263
6348_CR143
P Ahokangas (6348_CR163) 2013; 20
J Moura (6348_CR39) 2018; 21
6348_CR150
6348_CR88
A Yousefpour (6348_CR40) 2019; 98
ST Sarasamma (6348_CR220) 2005; 35
Q Wang (6348_CR133) 2021; 103
6348_CR80
J Zhang (6348_CR87) 2020; 25
6348_CR82
A Shahidinejad (6348_CR85) 2021; 19
M Ogburn (6348_CR210) 2013; 20
C Benzaid (6348_CR93) 2020; 34
P Zhang (6348_CR55) 2021; 17
M Malawski (6348_CR170) 2015; 48
J Ryoo (6348_CR226) 2013; 12
6348_CR259
6348_CR134
LM Kaufman (6348_CR228) 2009; 7
6348_CR255
I Kholod (6348_CR174) 2021; 21
6348_CR257
6348_CR250
M-P Jorge (6348_CR107) 2019; 65
6348_CR130
6348_CR251
T Takebayashi (6348_CR227) 2010; 46
S Aly (6348_CR146) 2013; 8
P Mach (6348_CR35) 2017; 19
Y Hou (6348_CR118) 2020; 8
6348_CR260
6348_CR77
F Al-Shaarani (6348_CR116) 2021; 1
S Klamt (6348_CR152) 2011; 105
B Sadiq (6348_CR154) 2009; 1–18
6348_CR79
S Bhardwaj (6348_CR169) 2010; 2
SK Peddoju (6348_CR242) 2020; 32
6348_CR70
RMA Saad (6348_CR261) 2014; 7
6348_CR69
6348_CR288
6348_CR168
6348_CR289
6348_CR162
6348_CR283
M Aledhari (6348_CR43) 2020; 8
M Siami (6348_CR208) 2018; 63
6348_CR284
E Bin-Hureib (6348_CR183) 2020; 20
6348_CR285
6348_CR286
6348_CR62
6348_CR291
6348_CR64
K Gai (6348_CR72) 2019; 6
I Abdulmohsin (6348_CR224) 2009; 35
6348_CR63
6348_CR65
6348_CR68
6348_CR67
C Feng (6348_CR48) 2021; 69
SS Manvi (6348_CR171) 2014; 41
N Abbas (6348_CR33) 2017; 5
A Gutub (6348_CR108) 2007; 34
6348_CR60
S Altalhi (6348_CR32) 2021
A Banerjee (6348_CR164) 2009; 21
C Gentry (6348_CR209) 2009
K Lyytinen (6348_CR9) 2002; 45
6348_CR59
6348_CR155
6348_CR276
GJ Joyia (6348_CR290) 2017; 12
6348_CR58
6348_CR277
6348_CR278
6348_CR279
M Chiang (6348_CR23) 2016; 3
Xu Xiaolong (6348_CR73) 2019; 7
6348_CR151
6348_CR275
6348_CR51
6348_CR8
6348_CR280
6348_CR5
6348_CR160
6348_CR281
6348_CR161
6348_CR282
Y Zhang (6348_CR16) 2018; 6
6348_CR56
R Uhlig (6348_CR139) 2005; 38
H Samkari (6348_CR292) 2019; 2
S Wang (6348_CR100) 2017; 5
6348_CR1
Y Bengio (6348_CR217) 2000; 12
Q-V Pham (6348_CR44) 2020; 8
S Samonas (6348_CR197) 2014; 10
6348_CR188
N Fernando (6348_CR3) 2013; 29
6348_CR189
D Zhang (6348_CR95) 2020; 7
A Gutub (6348_CR103) 2021
6348_CR184
J Laiho (6348_CR136) 2002
6348_CR187
6348_CR191
6348_CR42
6348_CR193
6348_CR194
K Kent (6348_CR243) 2006; 92
T Taleb (6348_CR37) 2017; 19
N Farooqi (6348_CR101) 2019; 16
I Atzeni (6348_CR231) 2012; 4
B Huang (6348_CR78) 2019; 97
6348_CR173
K Cheng (6348_CR190) 2021
6348_CR176
6348_CR182
6348_CR30
F Meneghello (6348_CR11) 2019; 6
Y Liu (6348_CR192) 2020; 7
P Sokol (6348_CR252) 2017; 2017
P Gupta (6348_CR4) 2012; 1
En Wang (6348_CR121) 2020; 105
A Gutub (6348_CR22) 2020; 8
A Bijalwan (6348_CR258) 2015; 10
M Taddeo (6348_CR201) 2019; 1
6348_CR26
6348_CR29
E Dahlman (6348_CR158) 2013
6348_CR20
M Mehrabi (6348_CR41) 2019; 7
6348_CR21
H Yan (6348_CR54) 2021; 548
D He (6348_CR111) 2018; 56
V Mothukuri (6348_CR178) 2021; 115
C Zhang (6348_CR179) 2021; 216
6348_CR15
6348_CR199
6348_CR14
6348_CR195
6348_CR198
SR Pandey (6348_CR181) 2020; 19
X Huang (6348_CR61) 2018; 32
X Wang (6348_CR125) 2019; 33
N Alassaf (6348_CR239) 2019; 78
B Harris (6348_CR264) 1999; 22
6348_CR10
S Abdelwahab (6348_CR57) 2016; 54
DP Jablon (6348_CR237) 1996; 26
B Hibat Allah (6348_CR36) 2017
H-W Ferng (6348_CR156) 2016; 2
J Ball (6348_CR274) 2004; 69
DC Nguyen (6348_CR53) 2021; 8
SK Sharma (6348_CR167) 2002; 15
E Bin-Hureib (6348_CR180) 2020; 20
M Al-Zinati (6348_CR112) 2020; 101
H Hawilo (6348_CR27) 2014; 28
WYB Lim (6348_CR45) 2020; 22
X Jia (6348_CR109) 2019; 14
A Makkar (6348_CR52) 2021
G Harman (6348_CR6) 1990; 4
H Hui (6348_CR76) 2019; 7
Y Zhou (6348_CR110) 2019; 68
Z Zhao (6348_CR19) 2019; 16
R Chandramouli (6348_CR232) 2018; 800
I Ahmad (6348_CR114) 2018; 2
Xu Xiaolong (6348_CR71) 2019; 16
E Dahlman (6348_CR157) 2010
L Xiao (6348_CR102) 2018; 25
Y Liu (6348_CR185) 2020; 35
S Qadir (6348_CR196) 2016; 7
N Chen (6348_CR132) 2021; 176
References_xml – reference: Al-RoithyBGutubARemodeling randomness prioritization to boost-up security of RGB image encryptionMultimed. Tools Appl. (MTAP)20218018285212858110.1007/s11042-021-11051-3
– reference: GerlaMTsaiJT-CMulticluster, mobile, multimedia radio networkWirel. Netw.199513255265
– reference: Shar, L.K.; Tan, H.B.K.; Briand, L.C.: Mining SQL injection and cross site scripting vulnerabilities using hybrid program analysis. In: IEEE International Conference on Software Engineering (ICSE), pp. 642–651 (2013)
– reference: Reddy, T.A.; Saman, N.F.; Claridge, D.E.; Haberl, J.S.; Dan Turner, W.; Chalifoux, A.T.: Baselining methodology for facility-level monthly energy use-part 1: theoretical aspects. In: ASHRAE Transactions, pp. 336–347. ASHRAE (1997)
– reference: SunXAnsariNEdgeIoT: mobile edge computing for the Internet of ThingsIEEE Commun. Mag.201654122229
– reference: FengCZhaoZWangYQuekTQSPengMOn the design of federated learning in the mobile edge computing systemsIEEE Trans. Commun.202169959025916
– reference: Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V.: How to backdoor federated learning. In: PMLR International Conference on Artificial Intelligence and Statistics, pp. 2938–2948 (2020)
– reference: YubinGLiankuanZFengrenLXimingLiA solution for privacy-preserving data manipulation and query on NoSQL databaseJ. Comput.20138614271432
– reference: Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Srndi´c, N.; Laskov, P.; Giacinto, G.; Roli, F.: Evasion attacks against machine learning at test time. Joint European conference on machine learning and knowledge discovery in databases, pp. 387–402. Springer (2013)
– reference: AbbasNZhangYTaherkordiASkeieTMobile edge computing: a surveyIEEE Internet Things J.201751450465
– reference: Fayazbakhsh, S.K.; Lin, Y.; Tootoonchian, A.; Ghodsi, A.; Koponen, T.; Maggs, B.; Ng, K.C.; Sekar, V.; Shenker, S.: Less pain, most of the gain: incrementally deployable ICN. In: ACM SIGCOMM Computer Communication Review, 43(4):147–158 (2013)
– reference: Singh, A.; Chandra, U.; Kumar, S.; Chatterjee, K.: A secure access control model for e-health cloud. In: IEEE Region 10 Conference (TENCON), pp. 2329–2334 (2019)
– reference: XuJGlicksbergBSSuCWalkerPBianJWangFFederated learning for healthcare informaticsJ. Healthc. Inf. Res.202151119
– reference: ElgendyIAZhangWTianY-CLiKResource allocation and computation offloading with data security for mobile edge computingFut. Gener. Comput. Syst.2019100531541
– reference: He, X.; Jin, R.; Dai, H.: Physical-layer assisted privacy-preserving offloading in mobile-edge computing. In: ICC IEEE International Conference on Communications (ICC), pp. 1–6, 2019
– reference: Basta, A.; Kellerer, W.; Hoffmann, M.; Morper, H.J.; Hoffmann, K.: Applying NFV and SDN to LTE mobile core gateways, the functions placement problem. In: AllThingsCellular’14—workshop on All things cellular: operations, applications, & challenges, pp. 33–38 (2014)
– reference: Ghosh, D.; Vogt, A.: Outliers: an evaluation of methodologies. In: Joint statistical meetings, volume 2012 (2012)
– reference: QianLPFengAHuangYWuYJiBShiZOptimal SIC ordering and computation resource allocation in MEC-aware NOMA NB-IoT networksIEEE Internet Things J20186228062816
– reference: Guo, K.; Yang, C.; Liu, T.: Caching in base station with recommendation via Q-learning. In: IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2017)
– reference: Al-ZinatiMAlmasriTAlsmiratMJararwehYEnabling multiple health security threats detection using mobile edge computingSimul. Modell. Pract. Theory2020101101957
– reference: AtzeniILuisGScutariGPalomarDPFonollosaJRDemand-side management via distributed energy generation and storage optimizationIEEE Trans. Smart Grid2012428668761393.90017
– reference: Ion, M.; Zhang, J.; Schooler, E.M.: Toward content-centric privacy in ICN: attribute-based encryption and routing. In: ACM SIGCOMM workshop on Information-centric networking, pp. 39–40 (2013)
– reference: Ogasawara, J.; Kono, K.: Nioh: hardening the hypervisor by filtering illegal I/O requests to virtual devices. In: Proceedings of the 33rd annual computer security applications conference, pp. 542–552 (2017)
– reference: Kourtellis, N.; Katevas, K.; FLaaS, D.P.: Federated learning as a service. In: Proceedings of the 1st workshop on distributed machine learning, pp. 7–13 (2020)
– reference: SatyanarayananMBahlPCaceresRDaviesNThe case for VM-based cloudlets in mobile computingIEEE Pervasive Comput.2009841423
– reference: XiaoLWanXXiaozhenLuZhangYDiWuIoT security techniques based on machine learning: how do IoT devices use AI to enhance security?IEEE Signal Process. Mag.20183554149
– reference: MaLLiuXPeiQXiangYPrivacy-preserving reputation management for edge computing enhanced mobile crowdsensingIEEE Trans. Serv. Comput.2018125786799
– reference: Verbelen, T.; Simoens, P.; De Turck, F.; Dhoedt, B.: Cloudlets: bringing the cloud to the mobile user. ACM Workshop on Mobile Cloud Computing and Services, pp. 29–36 (2012)
– reference: LaihoJWackerANovosadTRadio network planning and optimisation for UMTS2002HobokenWiley
– reference: JiaXHeDKumarNChooK-KRA provably secure and efficient identity-based anonymous authentication scheme for mobile edge computingIEEE Syst. J.2019141560571
– reference: Deri, L.; Martinelli, M.; Cardigliano, A.: Realtime high-speed network traffic monitoring using ntopng. In: 28th large installation system administration conference (LISA14), pp. 78–88 (2014)
– reference: BanerjeeADipponCMVoluntary relationships among mobile network operators and mobile virtual network operators: an economic explanationInf. Econ. Policy20092117284
– reference: ZhangCXieYBaiHYuBLiWGaoYA survey on federated learningKnowl. Based Syst.2021216106775
– reference: IeraceNUrrutiaCBassettRIntrusion prevention systemsUbiquity200561922
– reference: PeddojuSKUpadhyayHLagosLFile integrity monitoring tools: Issues, challenges, and solutionsConcurr. Comput. Pract. Exp.20203222e5825
– reference: Sabahi, F.: Virtualization-level security in cloud computing. In: IEEE International Conference on Communication Software and Networks, pp. 250–254 (2011)
– reference: Gelberger, A.; Yemini, N.; Giladi, R.: Performance analysis of software-defined networking (SDN). In: IEEE International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, pp: 389–393 (2013)
– reference: KholodIYanakiEFomichevDShaluginENovikovaEFilippovENordlundMOpen-source federated learning frameworks for IoT: a comparative review and analysisSensors2021211167
– reference: Haris, S.H.C.; Ahmad, R.B.; Ghani, M.A.H.A.: Detecting TCP SYN flood attack based on anomaly detection. In: IEEE International Conference on Network Applications, Protocols and Services, pp. 240–244 (2010)
– reference: TaddeoMMcCutcheonTFloridiLTrusting artificial intelligence in cybersecurity is a double-edged swordNat. Mach. Intell.2019112557560
– reference: Eric WangY-PLinXAdhikaryAGrovlenASuiYBlankenshipYBergmanJRazaghiHSA primer on 3GPP narrowband Internet of ThingsIEEE Commun Mag2017553117123
– reference: DewireDTApplication service providersInf. Syst. Manag.20001741419
– reference: Zhang, X.D.; Li, R.; Cui, B.: A security architecture of VANET based on blockchain and mobile edge computing. In: IEEE International Conference on Hot Information-Centric Networking (HotICN), pp. 258–259 (2018)
– reference: MijumbiRSerratJGorrichoJ-LBoutenNDe TurckFBoutabaRNetwork function virtualization: State-of-the-art and research challengesIEEE Commun. Surv. Tutor.2015181236262
– reference: Barth, A.; Jackson, C.; Mitchell, J.C.: Robust defenses for cross-site request forgery. In: ACM Conference on Computer and Communications Security, pp. 75–88 (2008)
– reference: WangEnLiDDongBZhouHZhuMFlat and hierarchical system deployment for edge computing systemsFutur. Gener. Comput. Syst.2020105308317
– reference: YanHLiHuXiangXLiuZYuanXuPpcl: Privacy-preserving collaborative learning for mitigating indirect information leakageInf. Sci.20215484234374168300
– reference: ZhangPWangCJiangCHanZDeep reinforcement learning assisted federated learning algorithm for data management of iiotIEEE Trans. Industr. Inf.2021171284758484
– reference: SaadRMAAlmomaniAAltaherAGuptaBBManickamSICMPv6 flood attack detection using DENFIS algorithmsIndian J. Sci. Technol201472168
– reference: LimWYBLuongNCHoangDTJiaoYLiangY-CYangQNiyatoDMiaoCFederated learning in mobile edge networks: a comprehensive surveyIEEE Commun. Surv. Tutor.202022320312063
– reference: BurdeaGCCoiffetPVirtual Reality Technology2003HobokenWiley
– reference: DahlmanEParkvallSSkoldJBemingP3G evolution: HSPA and LTE for mobile broadband2010CambridgeAcademic Press
– reference: TakebayashiTTsudaHHasebeTMasuokaRData loss prevention technologiesFujitsu Sci. Tech. J.20104614755
– reference: Buehrer, G.; Weide, B.W.; Sivilotti, P.A.G.: Using parse tree validation to prevent SQL injection attacks. In: Proceedings of the 5th International Workshop on Software Engineering and Middleware, pp. 106–113 (2005)
– reference: Stojmenovic, I.; Wen, S.: The fog computing paradigm: scenarios and security issues. In: IEEE Federated Conference on Computer Science and Information Systems, pp. 1–8 (2014)
– reference: Deswarte, Y.; Quisquater, J.-J.; Sa¨ıdane, A.: Remote integrity checking. In: Working Conference on Integrity and Internal Control in Information Systems, pp. 1–11. Springer (2003)
– reference: Jablon, D.P.: Extended password key exchange protocols immune to dictionary attack. In: IEEE Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 248–255 (1997)
– reference: Hassan Adnan, A.; Abdirazak, M.; Shamsuzzaman Sadi, A.B.M.; Anam, T.; Zaman Khan, S.; Rahman, M.M.; Omar, M.M.: A comparative study of WLAN security protocols: WPA, WPA2. In: IEEE international conference on advances in electrical engineering (ICAEE), pp. 165–169 (2015)
– reference: AlharthiNGutubAData visualization to explore improving decision-making within Hajj servicesSci. Modell. Res.201721918
– reference: HassanFGutubAImproving data hiding within colour images using hue component of HSV colour spaceCAAI Trans. Intell. Technol. IET (IEE)202110.1049/cit2.12053in press
– reference: JoyiaGJLiaqatRMFarooqARehmanSInternet of medical things (IOMT): applications, benefits and future challenges in healthcare domainJ. Commun.2017124240247
– reference: Nikolaenko, V.; Weinsberg, U.; Ioannidis, S.; Joye, M.; Boneh, D.; Taft, N.: Privacy-preserving ridge regression on hundreds of millions of records. In: IEEE Symposium on Security and Privacy, pp. 334–348 (2013)
– reference: KlamtSvon KampAAn application programming interface for Cell NetAnalyzerBiosystems20111052162168
– reference: Kreibich, C.; Weaver, N.; Nechaev, B.; Paxson, V.: Netalyzr: illuminating the edge network. In: ACM SIGCOMM Conference on Internet Measurement, pp. 246–259 (2010)
– reference: MouraJHutchisonDGame theory for multi-access edge computing: survey, use cases, and future trendsIEEE Commun. Surv. Tutor.2018211260288
– reference: Vance, N.; Zhang, D.; Zhang, Y.; Wang, D.: Privacy-aware edge computing in social sensing applications using ring signatures. In: IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), pp. 755–762 (2018).
– reference: SamkariHGutubAProtecting medical records against cybercrimes within hajj period by 3-layer securityRecent Trends Inf. Technol. Appl.20192312110.5281/zenodo.3543455
– reference: Li, H.; Shou, G.; Hu, Y.; Guo, Z.: Mobile edge computing: progress and challenges. In: IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), pp. 83–84 (2016)
– reference: XiaolongXuZhangXGaoHXueYQiLDouWBeCome: blockchain-enabled computation offloading for IoT in mobile edge computingIEEE Trans. Industr. Inf.201916641874195
– reference: ZhanyangXuLiuXJiangGTangBA time-efficient data offloading method with privacy preservation for intelligent sensors in edge computingEURASIP J. Wirel. Commun. Netw.201920191112
– reference: GiustFVerinGAntevskiKChouJFangYFeatherstoneWFontesFFrydmanDLiAManzaliniAMEC deployments in 4G and evolution towards 5GETSI White paper2018242018124
– reference: Kieyzun, A.; Guo, P.J.; Jayaraman, K.; Ernst, M.D.: Automatic creation of SQL injection and cross-site scripting attacks. In: IEEE International Conference on Software Engineering, pp. 199–209 (2009)
– reference: Rumale, A.S.; Chaudhari, D.: IEEE 802. 11 x , and WEP , EAP , WPA / WPA 2. Tech. Appl, 2(6):1945–1950, 2011
– reference: Tian, Z.; Zhang, R.; Hou, X.; Liu, J.; Ren, K.: FederBoost: private federated learning for GBDT (2020). arXiv:2011.02796
– reference: Zhang, N.; Zheng, K.; Tao, M.: Using grouped linear prediction and accelerated reinforcement learning for online content caching. In: IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6 (2018)
– reference: ZhangDMaYHuXSWangDToward privacy-aware task allocation in social sensing-based edge computing systemsIEEE Internet Things J.20207121138411400
– reference: AlySAlGhamdiTSalimMAminHGutubAInformation gathering schemes for collaborative sensor devicesProcedia Comput. Sci.20143211411146
– reference: BallJDraganABanaszekKExploiting entanglement in communication channels with correlated noisePhys. Rev. A20046940423242067892
– reference: Ha, K.; Satyanarayanan, M.: Openstack++ for cloudlet deployment. School of Computer Science Carnegie Mellon University, Pittsburgh, CMU-CS-15-123 (2015)
– reference: Dasgupta, D.; Roy, A.; Nag, A.: Multi-factor authentication. pp. 185–233 (2017)
– reference: LongDDEMontagueBRCabreraL-FSwift/RAID: a distributed RAID systemComput Syst199473333359
– reference: FernandoNLokeSWRahayuWMobile cloud computing: a surveyFut Gener Comput Syst201329184106
– reference: Altay, C.; Bozdemir, N.Z.; Camcıo˘glu, E.: Standalone eNode-B design with integrated virtual EPC in public safety networks. In: NOMS IEEE/IFIP Network Operations and Management Symposium, pp. 731–734 (2016)
– reference: Bilge, L.; Dumitras, T.: Before we knew it: an empirical study of zero-day attacks in the real world. In: Proceedings of the 2012 ACM conference on Computer and communications security, pp. 833–844 (2012)
– reference: He, X.; Liu, J.; Jin, R.; Dai, H.: Privacy-aware offloading in mobile-edge computing. In: GLOBECOM IEEE Global Communications Conference, pp. 1–6, 2017.
– reference: Majeed, U.; Hong, C.S.; FLchain: federated learning via MEC-enabled blockchain network. In: IEEE Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1–4 (2019)
– reference: Syamkumar, M.; Barford, P.; Durairajan, R.: Deployment characteristics of “the edge” in mobile edge computing. In: Proceedings of the 2018 workshop on mobile edge communications, pp. 43–49 (2018)
– reference: AledhariMRazzakRPariziRMSaeedFFederated learning: a survey on enabling technologies, protocols, and applicationsIEEE Access20208140699140725
– reference: Rengaraju, P.; Raja Ramanan, V.; Lung, C.-H.: Detection and prevention of DoS attacks in software-defined cloud networks. In: IEEE Conference on Dependable and Secure Computing, pp. 217–223 (2017)
– reference: OgburnMTurnerCDahalPHomomorphic encryptionProcedia Comput. Sci.201320502509
– reference: Recht, B.; Roelofs, R.; Schmidt, L.; Shankar, V.: Do CIFAR-10 classifiers generalize to CIFAR-10? (2018). arXiv:1806.00451
– reference: LiuYKangYXingCChenTYangQA secure federated transfer learning frameworkIEEE Intell. Syst.20203547082
– reference: SamonasSCossDThe CIA strikes back: redefining confidentiality, integrity and availability in securityJ. Inf. Syst. Secur.20141032145
– reference: Venema, W.: TCP wrapper: network monitoring, access control, and booby traps. In: UNIX Security Symposium III: proceedings: Baltimore, MD, September 14–16, p. 85 (1992)
– reference: Ranaweera, P.; Jurcut, A.D.; Liyanage, M.: Realizing multi-access edge computing feasibility: security perspective. In: IEEE Conference on Standards for Communications and Networking (CSCN), pp. 1–7 (2019)
– reference: PhamQ-VFangFHaVNPiranMJLeMLeLBHwangW-JDingZA survey of multi-access edge computing in 5G and beyond: fundamentals, technology integration, and state-of-the-artIEEE Access20208116974117017
– reference: MatiasJGarayJToledoNUnzillaJJacobEToward an SDN-enabled NFV architectureIEEE Commun. Mag.2015534187193
– reference: ShahidinejadAFarahbakhshFGhobaei-AraniMMalikMHAnwarTContext-aware multi-user offloading in mobile edge computing: a federated learning-based approachJ. Grid Comput.2021192123
– reference: Porambage, P.; Kumar, Y.; Liyanage, M.; Partala, J.; Lov´en, L.; Ylianttila, M.; Sepp¨anen, T.: Sec-EdgeAI: AI for edge security vs security for edge AI. The 1st 6G Wireless Summit,(Levi, Finland) (2019)
– reference: NguyenDCDingMPhamQ-VPathiranaPNLe BaoLSeneviratneALiJNiyatoDPoorHVFederated learning meets blockchain in edge computing: opportunities and challengesIEEE Internet Things J.20218161280612825
– reference: NtagwabiraLKangSLUse of query tokenization to detect and prevent SQL injection attacksIEEE Int. Conf. Comput. Sci. Inf. Technol.20102438440
– reference: Pietraszek, T.; Berghe, C.V.: Defending against injection attacks through context-sensitive string evaluation. In: International Workshop on Recent Advances in Intrusion Detection, pp. 124–145. Springer (2005)
– reference: Smith, V.; Chiang, C.-K.; Sanjabi, M.; Talwalkar, A.: Federated multi-task learning (2018). arXiv:1705.10467
– reference: Halfond, W.G.; Viegas, J.; Orso, A.; et al.: A classification of SQL injection attacks and countermeasures s. In: IEEE international Symposium on Secure Software Engineering, vol. 1, pp. 13–15 (2006)
– reference: Gu, T.; Dolan-Gavitt, B.; Garg, S.: BadNets: identifying vulnerabilities in the machine learning model supply chain (2019). arXiv:1708.06733
– reference: SarasammaSTZhuQAHuffJHierarchical Kohonenen net for anomaly detection in network securityIEEE Trans. Syst. Man Cybern. Part B (Cybern.)2005352302312
– reference: LiuYYouyangQuChenhaoXuHaoZBruceGuBlockchain-enabled asynchronous federated learning in edge computingSensors202121103335
– reference: AlwarafyAAl-ThelayaKAAbdallahMSchneiderJHamdiMA survey on security and privacy issues in edge-computing-assisted internet of thingsIEEE Internet Things J.20208640044022
– reference: LiuYJamesJQKangJNiyatoDZhangSPrivacy-preserving traffic flow prediction: a federated learning approachIEEE Internet Things J.20207877517763
– reference: HuiHZhouCAnXLinFA new resource allocation mechanism for security of mobile edge computing systemIEEE Access20197116886116899
– reference: WangSZhangXZhangYWangLYangJWangWA survey on mobile edge networks: convergence of computingCaching Commun. IEEE Access2017567576779
– reference: HuangBLiZTangPWangSZhaoJHaiyangHuLiWChangVSecurity modeling and efficient computation offloading for service workflow in mobile edge computingFutur. Gener. Comput. Syst.201997755774
– reference: Chen, E.Y.; Pei, Y.; Chen, S.; Tian, Y.; Kotcher, R.; Tague, P.; OAuth demystified for mobile application developers. In: CCS’14: ACM SIGSAC Conference on Computer and Communications Security, pp. 892–903 (2014)
– reference: Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D.: Continuous control with deep reinforcement learning (2019). arXiv:1509.02971
– reference: Wenliang, D.; Han, Y.S.; Chen, S.: Privacy-preserving multivariate statistical analysis: linear regression and classification. In: SIAM International Conference on Data Mining (SDM), pp. 222–233. SIAM (2004)
– reference: ChamikaraMAPBertokPKhalilILiuDCamtepeSPrivacy preserving distributed machine learning with federated learningComput. Commun.2021171112125
– reference: Chen, D.; Xie, L.J.; Kim, B.G.; Wang, L.; Hong, C.S.; Wang, L.-C.; Han, Z.: Federated learning based mobile edge computing for augmented reality applications. In: IEEE International Conference on Computing, Networking and Communications (ICNC), pp. 767–773 (2020)
– reference: FerngH-WHuangY-YHandover scheme with enode-B pre-selection and parameter self-optimization for LTE-A heterogeneous networksIEEE Int. Conf. Mach. Learn. Cybern. (ICMLC)20162594599
– reference: BijalwanAWazidMPilliESJoshiRCForensics of random-UDP flooding attacksJ. Netw.2015105287
– reference: MECISG ETSI. Mobile Edge Computing (MEC); Framework and Reference Architecture. ETSI, DGS MEC, 3 (2016)
– reference: Lindner, M.; McDonald, F.; McLarnon, B.; Robinson, P.: Towards automated business-driven indication and mitigation of VM sprawl in Cloud supply chains. In: 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops, pp. 1062–1065 (2011)
– reference: RiekeNHancoxJLiWMilletariFRothHRAlbarqouniSBakasSGaltierMNLandmanBAMaier-HeinKThe future of digital health with federated learningNPJ Digit. Med.20203117
– reference: Yi Ding, A.: MEC and cloud security. Wiley 5G Ref: the essential 5G reference online, pp. 1–16 (2019)
– reference: Gyamfi, E.; Ansere, J.A.; Xu, L.: ECC based lightweight cybersecurity solution for IoT networks utilising multi-access mobile edge computing. In: IEEE International Conference on Fog and Mobile Edge Computing (FMEC), pp. 149–154 (2019)
– reference: Hardy, S.; Henecka, W.; Ivey-Law, H.; Nock, R.; Patrini, G.; Smith, G.; Thorne, B.: Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption. pp. 1–60 (2017)
– reference: Gossweiler, R.; Kamvar, M.; Baluja, S.; What’s up CAPTCHA? A CAPTCHA based on image orientation. In: Proceedings of the 18th International Conference on World Wide Web, pp. 841–850 (2009)
– reference: AbdelwahabSHamdaouiBGuizaniMZnatiTNetwork function virtualization in 5GIEEE Commun. Mag.20165448491
– reference: JorgeM-PCominardiLBernardosCJde la OlivaAAzcorraAModeling mobile edge computing deployments for low latency multimedia servicesIEEE Trans. Broadcast.2019652464474
– reference: HeDChanSGuizaniMSecurity in the internet of things supported by mobile edge computingIEEE Commun. Mag.20185685661
– reference: MothukuriVPariziRMPouriyehSHuangYDehghantanhaASrivastavaGA survey on security and privacy of federated learningFut. Gener. Comput. Syst.2021115619640
– reference: Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B.: Mobile edge computing: survey and research outlook (2017). arXiv:1701.01090v3
– reference: ChenNLiYLiuXZhangZA mutual information based federated learning framework for edge computing networksComput. Commun.20211762330
– reference: CapozziFPiroGGriecoLABoggiaGCamardaPDownlink packet scheduling in LTE cellular networks: key design issues and a surveyIEEE Commun. Surv. Tutor.2012152678700
– reference: FarooqiNGutubAKhoziumMSmart community challenges: enabling IoT/M2M technology case studyLife Sci. J.20191671117
– reference: Goyal, V.; Tripathy, R.: An efficient solution to the ARP cache poisoning problem. In: Australasian Conference on Information Security and Privacy, pp. 40–51. Springer (2005)
– reference: GutubAAl-QurashiASecure shares generation via M-blocks partitioning for counting-based secret sharingJ. Eng. Res. (JER)20208391117
– reference: Lu, R.; Zhang, W.; Li, Q.; Zhong, X.; Vasilakos, A.V: Auction based clustered federated learning in mobile edge computing system (2021). arXiv:2103.07150
– reference: SiamiMMoteeNNetwork abstraction with guaranteed performance boundsIEEE Trans. Autom. Control201863103301331638662361423.93048
– reference: Xu, X.; Wang, L.; Youssef, A.; Zhu, B.: Preventing collusion attacks on the one-way function tree (OFT) scheme. In: International Conference on Applied Cryptography and Network Security, pp. 177–193. Springer (2007)
– reference: SzeferJLeeRBArchitectural support for hypervisor-secure virtualizationACM SIGPLAN Notices2012474437450
– reference: ZhangJZhaoYWangJChenBFedMEC: improving efficiency of differentially private federated learning via mobile edge computingMobile Netw. Appl.202025624212433
– reference: LiHLiuHJiXLiGShiLCIFAR10-DVS: an event-stream dataset for object classificationFront. Neurosci.201711309
– reference: XiaolongXuHeCZhanyangXuQiLWanSBhuiyanMZAJoint optimization of offloading utility and privacy for edge computing enabled IoTIEEE Internet Things J.20197426222629
– reference: GutubAAl-RoithyBVarying PRNG to improve image cryptography implementationJ. Eng. Res.202193A15318310.36909/jer.v9i3A.10111
– reference: RongYuLiPToward resource-efficient federated learning in mobile edge computingIEEE Netw.2021351148155
– reference: ZhangYLanXLiYCaiLPanJEfficient computation resource management in mobile edge-cloud computingIEEE Internet Things J.20186234553466
– reference: Verma, K.; Hasbullah, H.; Kumar, K.: An efficient defense method against UDP spoofed flooding traffic of denial of service (DoS) attacks in VANET. In: IEEE International Advance Computing Conference (IACC), pp. 550–555 (2013)
– reference: GuptaPGuptaSMobile cloud computing: the future of cloudInt. J. Adv. Res. Electr. Electron. Instrum. Eng.201213134145
– reference: KakabadseAKakabadseNApplication service providers (ASPs): new impetus for transformational changeKnowl. Process Manag.200294205218
– reference: PortnoyMVirtualization Essentials2012HobokenWiley
– reference: Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; Jirstrand, M.: A performance evaluation of federated learning algorithms. Second Workshop on Distributed Infrastructures for Deep Learning, pp. 1–8 (2018)
– reference: Kewei, C.; Tao, F.; Yilun, J.; Yang, L.; Tianjian, C.; Qiang, Y.: SecureBoost: a lossless federated learning framework (2021). arXiv:1901.08755
– reference: MalawskiMJuveGDeelmanENabrzyskiJAlgorithms for cost-and deadline-constrained provisioning for scientific workflow ensembles in IaaS cloudsFutur. Gener. Comput. Syst.201548118
– reference: MehrabiMYouDLatzkoVSalahHReissleinMFitzekFHPDevice-enhanced MEC: multi-access edge computing (MEC) aided by end device computation and caching: a surveyIEEE Access20197166079166108
– reference: Yi, S.; Hao, Z.; Qin, Z.; Li, Q.: Fog computing: platform and applications. In 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 73–78. IEEE (2015)
– reference: Oliveira, R.M.S.; Zaiane, O.R.: Protecting sensitive knowledge by data sanitization. In: IEEE International Conference on Data Mining, pp. 613–616 (2003)
– reference: ZhaoZZhaoRXiaJLeiXLiDYuenCFanLA novel framework of three-hierarchical offloading optimization for MEC in industrial IoT networksIEEE Trans. Ind. Inf.201916854245434
– reference: De Ryck, P.; Desmet, L.; Joosen, W.; Piessens, F.: Automatic and precise client-side protection against CSRF attacks. In: European Symposium on Research in Computer Security, pp. 100–116. Springer (2011)
– reference: Li, Q.; Wen, Z.; Wu, Z.; Hu, S.; Wang, N.; He, B.: A survey on federated learning systems: vision, hype and reality for data privacy and protection (2019). arXiv:1907.09693
– reference: Singh, A.; Chatterjee, K.; Satapathy, S. C.: An edge based hybrid intrusion detection framework for mobile edge computing. Complex Intell. Syst., pp. 1–28, 2021.
– reference: AbdulmohsinITechniques and algorithms for access control list optimizationComput. Electr. Eng.20093545565661192.68015
– reference: SadiqBMadanRSampathADownlink scheduling for multiclass traffic in LTEEURASIP J. Wirel. Commun. Netw.20091–182009
– reference: Yu, T.; Bagdasaryan, E.; Shmatikov, V.: Salvaging federated learning by local adaptation (2020). arXiv:2002.04758
– reference: Zhang, X.; Zhu, X.; Lessard, L.: Online data poisoning attack. PMLR learning for dynamics and control, pp. 201–210 (2020)
– reference: MakkarAGhoshURawatDBAbawajyJFedLearnSP: preserving privacy and security using federated learning and edge computingIEEE Consum. Electron. Mag.202110.1109/MCE.2020.3048926
– reference: ShambourMGutubAPersonal privacy evaluation of smart devices applications serving Hajj and Umrah ritualsJ. Eng. Res.20211210.36909/jer.13199
– reference: Hadzialic, M.; Dosenovic, B.; Dzaferagic, M.; Musovic, J.: Cloud-RAN: innovative radio access network architecture. In: IEEE Proceedings ELMAR, pp. 115–120 (2013)
– reference: Hardt, D.; et al.: The OAuth 2.0 authorization framework (2012)
– reference: MeneghelloFCaloreMZucchettoDPoleseMZanellaAIoT: internet of threats? A survey of practical security vulnerabilities in real IoT devicesIEEE Internet Things J.20196581828201
– reference: Johns, M.; Braun, B.; Schrank, M.; Posegga, J.: Reliable protection against session fixation attacks. ACM Symposium on Applied Computing, pp. 1531–1537 (2011)
– reference: ChiangMZhangTFog and IoT: an overview of research opportunitiesIEEE Internet Things J.201636854864
– reference: AonoTHiguchiKOhiraTKomiyamaBSasaokaHWireless secret key generation exploiting reactance-domain scalar response of multipath fading channelsIEEE Trans. Antennas Propag.2005531137763784
– reference: Al-ShaaraniFGutubASecuring matrix counting-based secret-sharing involving crypto steganographyJ. King. Saud Univ. Comput. Inf. Sci.202110.1016/j.jksuci.2021.09.009in press
– reference: Ishiguro, K.; Kono, K.: Hardening hypervisors against vulnerabilities in instruction emulators. In: Proceedings of the 11th European workshop on systems security, pp. 1–6 (2018)
– reference: Mohri, M.; Sivek, G.; Suresh, A.T.: Agnostic federated learning. In: PMLR International Conference on Machine Learning, pp. 4615–4625 (2019)
– reference: GuoYZhaoZHeKLaiSXiaJFanLEfficient and flexible management for industrial internet of things: a federated learning approachComput. Netw.2021192108122
– reference: Trimble, M.: Geoblocking, technical standards and the law (2016)
– reference: YunlongLuHuangXDaiYMaharjanSZhangYFederated learning for data privacy preservation in vehicular cyber-physical systemsIEEE Netw.20203435056
– reference: Truex, S.; Baracaldo, N.; Anwar, A.; Steinke, T.; Ludwig, H.; Zhang, R.; Zhou, Y.: A hybrid approach to privacy-preserving federated learning. ACM Workshop on Artificial Intelligence and Security, pp. 1–11 (2019)
– reference: UhligRNeigerGRodgersDSantoniALMartinsFCMAndersonAVBennettSMKagiALeungFHSmithLIntel virtualization technologyComputer20053854856
– reference: Foster, I.; Kesselman, C.; Lee, C.; Lindell, B.; Nahrstedt, K.; Roy, A.: A distributed resource management architecture that supports advance reservations and co-allocation. In: IEEE International Workshop on Quality of Service. IWQoS’99. (Cat. No. 98EX354), pp. 27–36 (1999)
– reference: YangHLiangYYuanJYaoQAoYuZhangJDistributed blockchain-based trusted multidomain collaboration for mobile edge computing in 5G and beyondIEEE Trans. Industr. Inf.2020161170947104
– reference: BengioYGradient based optimization of hyper-parametersNeural Comput.2000128188919002674553
– reference: Yi, X.; Paulet, R.; Bertino, E.; Homomorphic encryption. In: Homomorphic encryption and applications, pp. 27–46. Springer (2014)
– reference: RavindranRChakrabortiAAminSOAzginAWangG5G-ICN: delivering ICN services over 5G using network slicingIEEE Commun. Mag.2017555101107
– reference: DahlmanEParkvallSSkoldJ4G: LTE/LTE-advanced for mobile broadband2013CambridgeAcademic Press
– reference: Vykopal, J.; Plesnik, T.; Minarik, P.: Network-based dictionary attack detection. In: IEEE International Conference on Future Networks, pp. 23–27 (2009)
– reference: SokolPMisekJHusakMHoneypots and honeynets: issues of privacyEURASIP J. Inf. Secur.20172017119
– reference: Biggio, B.; Nelson, B.; Laskov, P.: Poisoning attacks against support vector machines (2013). arXiv:1206.6389
– reference: Wang, L.; Schwing, A.G.; Lazebnik, S.: Diverse and accurate image description using a variational auto-encoder with an additive Gaussian encoding space (2017). arXiv:1711.07068
– reference: BogdanoskiMSuminoskiTRisteskiAAnalysis of the SYN flood DoS attackInt. J. Comput. Netw. Inf. Secur. (IJCNIS)201358111
– reference: Bhowmick, A.; Duchi, J.; Freudiger, J.; Kapoor, G.; Rogers, R.: Protection against reconstruction and its applications in private federated learning (2018). arXiv:1812.00984
– reference: Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp. 13–16 (2012)
– reference: Hibat AllahBAbdellahIMEC towards 5G: A survey of concepts, use cases, location tradeoffsTrans. Mach. Learn. Artif. Intell.201710.14738/tmlai.54.3215
– reference: Jakub, K.; McMahan, H.B.; Ramage, D.; Richtárik, P.: Federated optimization: distributed machine learning for on-device intelligence (2016). arXiv:1610.02527
– reference: BelliDChessaSFoschiniLGirolamiMA probabilistic model for the deployment of human-enabled edge computing in massive sensing scenariosIEEE Internet Things J.20197324212431
– reference: Fung, C.J.; McCormick, B.: Vguard: a distributed denial of service attack mitigation method using network function virtualization. In: IEEE International Conference on Network and Service Management (CNSM), pp. 64–70 (2015)
– reference: Sanchez-IborraRSanchez-GomezJSkarmetaAEvolving IoT networks by the confluence of MEC and LP-WAN paradigmsFutur. Gener. Comput. Syst.201888199208
– reference: AlassafNGutubAParahSAAl GhamdiMEnhancing speed of SIMON: a light-weight-cryptographic algorithm for IoT applicationsMultimed. Tools Appl.20197823326333265710.1007/s11042-018-6801-z
– reference: Jere, S.; Fan, Q.; Shang, B.; Li, L.; Liu, L.: Federated learning in mobile edge computing: an edge-learning perspective for beyond 5G (2020). arXiv:2007.08030
– reference: AlySAlghamdiTSalimMGutubAData Dissemination and Collection Algorithms for Collaborative Sensor Devices Using Dynamic Cluster HeadsTrends in Applied Sciences Research201382557210.3923/tasr.2013.55.72
– reference: KaufmanLMData security in the world of cloud computingIEEE Secur. Privacy2009746164
– reference: ChauhanMMalhotraRPathakMSinghUPDifferent aspects of cloud securityInt. J. Eng. Res. Appl.20122864869
– reference: HarmanGIntrinsic qualities of experiencePhilos. Perspect.199043152
– reference: PandeySRTranNHBennisMTunYKManzoorAHongCSA crowdsourcing framework for on-device federated learningIEEE Trans. Wirel. Commun.202019532413256
– reference: GheisariMPhamQ-VAlazabMZhangXFernandez-CampusanoCSrivastavaGECA: an edge computing architecture for privacy-preserving in IoT-based smart cityIEEE Access20197155779155786
– reference: SharmaSKGuptaJNDApplication service providers: issues and challengesLogist. Inf. Manag.2002153160169
– reference: Gupta, N.; Jain, A.; Saini, P.; Gupta, V.: DDoS attack algorithm using ICMP flood. In: IEEE International Conference on Computing for Sustainable Global Development (INDIACom), pp. 4082–4084 (2016)
– reference: PorambagePOkwuibeJLiyanageMYlianttilaMTalebTSurvey on multi-access edge computing for internet of things realizationIEEE Commun. Surv. Tutor.201820429612991
– reference: Clement, F.; Chris, J.M.Y.; Ivan, B.: Mitigating sybils in federated learning poisoning (2018). arXiv:1808.04866
– reference: HuangXYuanTQiaoGRenYDeep reinforcement learning for multimedia traffic control in software defined networkingIEEE Netw.20183263541
– reference: Patel, M.; Naughton, B.; Chan, C.; Sprecher, N.; Abeta, S.; Neal, A.; et al.: Mobile edge computing a key technology towards 5G. White paper, mobile-edge computing (MEC) industry initiative 29:854–864, 2014.
– reference: SpinelliFMancusoVToward enabled industrial verticals in 5G: a survey on MEC-based approaches to provisioning and flexibilityIEEE Commun. Surv. Tutor.2021231596630
– reference: ZhangFChanPPKBiggioBYeungDSRoliFAdversarial feature selection against evasion attacksIEEE Trans. Cybernet.2015463766777
– reference: Pappas, C.; Chatzopoulos, D.; Lalis, S.; Vavalis, M.: IPLS: a framework for decentralized federated learning (2021). arXiv:2101.01901
– reference: AhmavaaraKHaverinenHPichnaRInterworking architecture between 3GPP and WLAN systemsIEEE Commun. Mag.200341117481
– reference: Bin-HureibEGutubAEnhancing medical data security via combining elliptic curve cryptography and image steganographyInt. J. Comput. Sci. Netw. Secur. (IJCSNS)202020818
– reference: Zeng, T.; Semiari, O.; Mozaffari, M.; Chen, M.; Saad, W.; Bennis, M.: Federated learning in the sky: joint power allocation and scheduling with UAV swarms. IEEE International Conference on Communications (ICC), pp. 1–6 (2020)
– reference: Jansen, W.A.: Cloud hooks: security and privacy issues in cloud computing. In: IEEE Hawaii International Conference on System Sciences, pp. 1–10 (2011)
– reference: KentKSouppayaMGuide to computer security log managementNIST Spec. Publ.200692172
– reference: MaoYYouCZhangJHuangKLetaiefKBA survey on mobile edge computing: the communication perspectiveIEEE Commun. Surv. Tutor.201719423222358
– reference: TensorFlow Federated. Machine Learning on Decentralized Data. TensorFlow. URL: https://www.tensorflow.org/federated Accessed 13 Oct 2020 (2019)
– reference: AlassafNGutubASimulating light-weight-cryptography implementation for IoT healthcare data security applicationsInt. J. E-Health Med. Commun. (IJEHMC)201910411510.4018/IJEHMC.2019100101
– reference: NguyenMTranNTunYHanZHongCToward multiple federated learning services resource sharing in mobile edge networksIEEE Trans. Mob. Comput.202110.1109/TMC.2021.3085979
– reference: LiuGWangCMaXYangYKeep your data locally: Federated-learning-based data privacy preservation in edge computingIEEE Netw.20213526066
– reference: GaiKYuluWuZhuLLeiXuZhangYPermissioned blockchain and edge computing empowered privacy-preserving smart grid networksIEEE Internet Things J.20196579928004
– reference: Al-ShaaraniFGutubAIncreasing participants using counting-based secret sharing via involving matrices and practical steganographyArab. J. Sci. Eng. (AJSE)20211210.1007/s13369-021-06165-7in press
– reference: LyytinenKYooYUbiquitous computingCommun. ACM200245126396
– reference: AlotaibiMAl-hendiDAlroithyBAlGhamdiMGutubASecure mobile computing authentication utilizing hash, cryptography and steganography combinationJ. Inf. Secur. Cybercrim. Res. (JISCR)20192192010.26735/16587790.2019.001
– reference: RyooJRizviSAikenWKissellJCloud security auditing: challenges and emerging approachesIEEE Secur. Priv.20131266874
– reference: Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning. IEEE symposium on security and privacy (SP), pages 739–753, 2019.
– reference: Mohammad, U.; Sorour, S.: Adaptive task allocation for mobile edge learning. In: IEEE Wireless Communications and Networking Conference Workshop (WCNCW), pp. 1–6 (2019)
– reference: TalebTSamdanisKMadaBFlinckHDuttaSSabellaDOn multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestrationIEEE Commun. Surv. Tutor.201719316571681
– reference: Hammer-Lahav, E.; Recordon, D.; Hardt, D.: The OAuth 1.0 Protocol. Technical report, RFC 5849, April, 2010
– reference: HawiloHShamiAMirahmadiMAsalRNFV: state of the art, challenges, and implementation in next generation mobile networks (vEPC)IEEE Network20142861826
– reference: Almajali, S.; Salameh, H.B.; Ayyash, M.; Elgala, H.: A framework for efficient and secured mobility of IoT devices in mobile edge computing. In: IEEE International Conference on Fog and Mobile Edge Computing (FMEC 2018), pp. 58–62 (2018)
– reference: GentryCA fully homomorphic encryption scheme2009StanfordStanford University1304.94059
– reference: HeXJinRDaiHPeace: privacy-preserving and cost-efficient task offloading for mobile-edge computingIEEE Trans. Wirel. Commun.201919318141824
– reference: He, Y.; Liang, C.; Yu, F.R.; Zhao, N.; Yin, H.: Optimization of cache-enabled opportunistic interference alignment wireless networks: a big data deep reinforcement learning approach. In: IEEE International Conference on Communications (ICC), pp. 1–6 (2017)
– reference: AhmadIKumarTLiyanageMOkwuibeJYlianttilaMGurtovAOverview of 5G security challenges and solutionsIEEE Commun. Stand. Mag.2018213643
– reference: YousefpourAFungCNguyenTKadiyalaKJalaliFNiakanlahijiAKongJJueJPAll one needs to know about fog computing and related edge computing paradigms: a complete surveyJ. Syst. Archit.201998289330
– reference: FloydSJacobsonVLink-sharing and resource management models for packet networksIEEE/ACM Trans. Netw.199534365386
– reference: WangXHanYWangCZhaoQChenXChenMIn-edge AI: intelligentizing mobile edge computing, caching and communication by federated learningIEEE Netw.2019335156165
– reference: Mtibaa, A.; Harras, K.; Alnuweiri, H.: Friend or foe? Detecting and isolating malicious nodes in mobile edge computing platforms. In: IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pp. 42–49 (2015)
– reference: Bin-HureibEGutubAEnhancing medical data security via combining elliptic curve cryptography with 1-LSB and 2-LSB image steganographyInt. J. Comput. Sci. Netw. Secur. (IJCSNS)2020201223224110.22937/IJCSNS.2020.20.12.26
– reference: Ioannidis, S.; Keromytis, A.D.; Bellovin, S.M.; Smith, J.M.: Implementing a distributed firewall. In: ACM Conference on Computer and Communications Security, pp. 190–199 (2000)
– reference: WuJZhangZHongYWenYCloud radio access network (C-RAN): a primerIEEE Netw.20152913541
– reference: MachPBecvarZMobile edge computing: a survey on architecture and computation offloadingIEEE Commun. Surv. Tutor.201719316281656
– reference: Li, C.-Y.; Liu, H.-Y.; Huang, P.-H.; Chien, H.-T.; Tu, G.-H.; Hong, P.-Y.; Lin, Y.-D.: Mobile edge computing platform deployment in 4G LTE networks: a middlebox approach. In: fUSENIXg Workshop on Hot Topics in Edge Computing (HotEdge 18) (2018)
– reference: RathoreSSharmaPKSangaiahAKParkJJA hesitant fuzzy based security approach for fog and mobile-edge computingIEEE Access20176688701
– reference: GutubAEfficient utilization of scalable multipliers in parallel to compute GF(p) elliptic curve cryptographic operationsKuwait J. Sci. Eng. (KJSE)2007342165182
– reference: LinJWeiYuZhangNYangXZhangHZhaoWA survey on internet of things: architecture, enabling technologies, security and privacy, and applicationsIEEE Internet Things J.20174511251142
– reference: Tahboub, R.; Saleh, Y.: Data leakage/loss prevention systems (DLP). In: IEEE World Congress on Computer Applications and Information Systems (WCCAIS), pp. 1–6 (2014)
– reference: Bissmeyer, N.; van Dam, J.-F.; Zimmermann, C.; Eckert, K.; Security in hybrid vehicular communication based on ITS-G5, LTE-V, and mobile edge computing. In: AmE 2018-automotive meets electronics; 9th GMM-Symposium, pp. 1–6. VDE (2018)
– reference: Albright, J.G.: The basics of an IT security policy. GSEC practical requirement V. 1.3 SANS Institute of Technology, 1 (2002)
– reference: HouYGargSHuiLNalinDJayakodyKRJin, M S Hossain,A data security enhanced access control mechanism in mobile edge computingIEEE Access20208136119136130
– reference: WangQLiQWangKWangHZengPEfficient federated learning for fault diagnosis in industrial cloud-edge computingComputing202110311231923374316110
– reference: Glasmann, J.; M¨uller, H.: Resource management architecture for realtime traffic in intranets. In: Networks, pp. 89–101. World Scientific (2002)
– reference: PangMWangLiFangNA collaborative scheduling strategy for IoV computing resources considering location privacy protection in mobile edge computing environmentJ. Cloud Comput.202091117
– reference: Haleplidis, E.; Pentikousis, K.; Denazis, S.; Salim, J.H.; Meyer, D.; Koufopavlou, O.: Software-defined networking (SDN): layers and architecture terminology. RFC 7426 (2015)
– reference: BenzaidCTalebTAI for beyond 5G networks: a cyber-security defense or offense enabler?IEEE Netw.2020346140147
– reference: Ho-Phuoc, T.: CIFAR10 to compare visual recognition performance between deep neural networks and humans (2018). arXiv:1811.07270
– reference: Ma, X.; Sun, H.; Hu, R.Q.: Scheduling policy and power allocation for federated learning in NOMA based MEC (2020). arXiv:2006.13044
– reference: AltalhiSGutubAA survey on predictions of cyber-attacks utilizing real-time twitter tracing recognitionJ. Ambient Intell. Hum. Comput.202110.1007/s12652-020-02789-zin press
– reference: LiXChengLSunCLamK-YWangXLiFFederated-learning-empowered collaborative data sharing for vehicular edge networksIEEE Netw.2021353116124
– reference: Beck, M.T.; Werner, M.; Feld, S.; Schimper, S.: Mobile edge computing: a taxonomy. In: Citeseer International Conference on Advances in Future Internet, pp. 48–55 (2014)
– reference: GutubARegulating watermarking semi-authentication of multimedia audio via counting-based secret sharingPamukkale Univ J. Eng. Sci202110.5505/pajes.2021.54837in press
– reference: KolšekMSession fixation vulnerability in web-based applicationsAcros Secur.20021115
– reference: JablonDPStrong password-only authenticated key exchangeACM SIGCOMM Comput. Commun. Rev.1996265526
– reference: Qi, H.; Gani, A.: Research on mobile cloud computing: review, trend and perspectives. In: IEEE international conference on digital information and communication technology and its applications (DICTAP), pp. 195–202 (2012)
– reference: Scholte, T.; Robertson, W.; Balzarotti, D.; Kirda, E.: Preventing input validation vulnerabilities in web applications through automated type analysis. IEEE Annual Computer Software and Applications Conference, pp. 233–243 (2012)
– reference: Xianjia, Y.; Queralta, J.P.; Heikkonen, J.; Westerlund, T.: An overview of federated learning at the edge and distributed ledger technologies for robotic and autonomous systems. arXiv–2104 (2021)
– reference: AlmutairiSGutubAAl-JuaidNMotivating teachers to use information technology in educational process within Saudi ArabiaInt. J. Technol. Enhanc. Learn. (IJTEL)2020122200217
– reference: ChandramouliRSecurity recommendations for hypervisor deployment on serversNIST Spec. Publ.2018800125A
– reference: Feibo, J.; Kezhi, W.; Li, D.; Cunhua, P.; Wei, X.; Kun, Y.: AI driven heterogeneous MEC system with UAV assistance for dynamic environment: challenges and solutions. IEEE Network (2020)
– reference: BhardwajSJainLJainSCloud computing: a study of infrastructure as a service (IAAS)Int. J. Eng. Inf. Technol.2010216063
– reference: KheshaifatyNGutubAPreventing multiple accessing attacks via efficient integration of captcha crypto hash functionsInt. J. Comput. Sci. Netw. Secur. (IJCSNS)2020209162810.22937/IJCSNS.2020.20.09.3
– reference: Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S.: Analyzing federated learning through an adversarial lens. In: PMLR International Conference on Machine Learning, pp. 634–643 (2019)
– reference: Zhang, X.; Li, C.; Zheng, W.: Intrusion prevention system design. In: IEEE International Conference on Computer and Information Technology, pp. 386–390 (2004)
– reference: HarrisBHuntRTCP/IP security threats and attack methodsComput. Commun.19992210885897
– reference: Huh, S.; Cho, S.; Kim, S.; Managing IoT devices using blockchain platform. In: IEEE International Conference on Advanced Communication Technology (ICACT), pp. 464–467 (2017)
– reference: XiaoLWanXDaiCXiaojiangDuChenXGuizaniMSecurity in mobile edge caching with reinforcement learningIEEE Wirel. Commun.2018253116122
– reference: Singh, A.; Chatterjee, K.: A secure multi-tier authentication scheme in cloud computing environment. In: IEEE Conference on Circuits, Power and Computing Technologies (ICCPCT), pp. 1–7 (2015)
– reference: ManviSSShyamGKResource management for Infrastructure as a Service (IaaS) in cloud computing: a surveyJ. Netw. Comput. Appl.201441424440
– reference: QadirSQuadriSMKInformation availability: an insight into the most important attribute of information securityJ. Inf. Secur.201673185194
– reference: Pawar, D.; Geethakumari, G.: Digital forensic architecture for cloud computing systems: methods of evidence identification, segregation, collection and partial analysis. In: Information Systems Design and Intelligent Applications, pp. 213–225. Springer (2016). https://doi.org/10.1007/978-81-322-2755-7_22
– reference: Zhao, L.; Ni, L.; Hu, S.; Chen, Y.; Zhou, P.; Xiao, F.; Wu, L.: InPrivate digging: enabling tree-based distributed data mining with differential privacy. In: IEEE Conference on Computer Communications (INFOCOM), pp. 2087–2095 (2018)
– reference: ChengKFanTJinYLiuYChenTDimitriosPQiangYSecureBoost: a lossless federated learning frameworkIEEE Intell. Syst.202110.1109/MIS.2021.3082561
– reference: Magsi, H.; Sodhro, A.H.; Chachar, F.A.; Abro, S.A.K.; Sodhro, G.H.; Sandeep, P.: Evolution of 5G in internet of medical things. In: IEEE International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1–7 (2018)
– reference: Kumar, A.: Zero day exploit. Available at SSRN 2378317 (2014)
– reference: ZhouYPanCYeohPLWangKElkashlanMVuceticBLiYSecure communications for UAV-enabled mobile edge computing systemsIEEE Trans. Commun.2019681376388
– reference: AhokangasPMatinmikkoMYrjolaSOkkonenHCaseyTSimple rules” for mobile network operators’ strategic choices in future cognitive spectrum sharing networksIEEE Wirel. Commun.20132022026
– volume: 105
  start-page: 308
  year: 2020
  ident: 6348_CR121
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.12.004
– volume: 2
  start-page: 438
  year: 2010
  ident: 6348_CR246
  publication-title: IEEE Int. Conf. Comput. Sci. Inf. Technol.
– volume: 9
  start-page: 153
  issue: 3A
  year: 2021
  ident: 6348_CR271
  publication-title: J. Eng. Res.
  doi: 10.36909/jer.v9i3A.10111
– volume: 35
  start-page: 116
  issue: 3
  year: 2021
  ident: 6348_CR50
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.2000558
– ident: 6348_CR205
  doi: 10.1145/3193111.3193118
– ident: 6348_CR241
  doi: 10.1007/1-4020-7901-X_1
– volume: 20
  start-page: 502
  year: 2013
  ident: 6348_CR210
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.09.310
– volume: 34
  start-page: 140
  issue: 6
  year: 2020
  ident: 6348_CR93
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.2000088
– volume: 7
  start-page: 116886
  year: 2019
  ident: 6348_CR76
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936374
– volume: 7
  start-page: 2622
  issue: 4
  year: 2019
  ident: 6348_CR73
  publication-title: IEEE Internet Things J.
– ident: 6348_CR59
  doi: 10.1109/WCNC.2017.7925848
– volume: 92
  start-page: 1
  year: 2006
  ident: 6348_CR243
  publication-title: NIST Spec. Publ.
– volume: 15
  start-page: 160
  issue: 3
  year: 2002
  ident: 6348_CR167
  publication-title: Logist. Inf. Manag.
  doi: 10.1108/09576050210426715
– volume: 6
  start-page: 2
  issue: 19
  year: 2005
  ident: 6348_CR214
  publication-title: Ubiquity
  doi: 10.1145/1071916.1071927
– ident: 6348_CR168
– year: 2021
  ident: 6348_CR52
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2020.3048926
– volume: 7
  start-page: 168
  issue: 2
  year: 2014
  ident: 6348_CR261
  publication-title: Indian J. Sci. Technol
  doi: 10.17485/ijst/2014/v7i2.5
– volume: 34
  start-page: 50
  issue: 3
  year: 2020
  ident: 6348_CR81
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.1900317
– ident: 6348_CR283
– volume: 5
  start-page: 1
  issue: 8
  year: 2013
  ident: 6348_CR262
  publication-title: Int. J. Comput. Netw. Inf. Secur. (IJCNIS)
– volume: 115
  start-page: 619
  year: 2021
  ident: 6348_CR178
  publication-title: Fut. Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.10.007
– ident: 6348_CR213
  doi: 10.1007/s40747-021-00498-4
– volume: 35
  start-page: 556
  issue: 4
  year: 2009
  ident: 6348_CR224
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2008.08.003
– ident: 6348_CR130
  doi: 10.1145/3426745.3431337
– volume-title: A fully homomorphic encryption scheme
  year: 2009
  ident: 6348_CR209
– volume: 48
  start-page: 1
  year: 2015
  ident: 6348_CR170
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2015.01.004
– volume: 1
  start-page: 557
  issue: 12
  year: 2019
  ident: 6348_CR201
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0109-1
– ident: 6348_CR60
  doi: 10.1109/GLOCOM.2017.8253985
– ident: 6348_CR14
  doi: 10.1109/IWQOS.1999.766475
– ident: 6348_CR117
– ident: 6348_CR65
– volume: 33
  start-page: 156
  issue: 5
  year: 2019
  ident: 6348_CR125
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2019.1800286
– volume: 2019
  start-page: 1
  issue: 1
  year: 2019
  ident: 6348_CR75
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-018-1318-8
– volume: 19
  start-page: 1814
  issue: 3
  year: 2019
  ident: 6348_CR90
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2019.2958091
– volume: 68
  start-page: 376
  issue: 1
  year: 2019
  ident: 6348_CR110
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2019.2947921
– volume-title: Radio network planning and optimisation for UMTS
  year: 2002
  ident: 6348_CR136
– volume: 7
  start-page: 155779
  year: 2019
  ident: 6348_CR96
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937177
– ident: 6348_CR289
  doi: 10.1007/978-3-540-72738-5_12
– volume: 20
  start-page: 20
  issue: 2
  year: 2013
  ident: 6348_CR163
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2013.6507390
– ident: 6348_CR281
  doi: 10.1109/ICFN.2009.36
– volume-title: 4G: LTE/LTE-advanced for mobile broadband
  year: 2013
  ident: 6348_CR158
– volume: 17
  start-page: 14
  issue: 4
  year: 2000
  ident: 6348_CR165
  publication-title: Inf. Syst. Manag.
  doi: 10.1201/1078/43193.17.4.20000901/31247.3
– ident: 6348_CR123
– volume: 21
  start-page: 260
  issue: 1
  year: 2018
  ident: 6348_CR39
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2863030
– ident: 6348_CR277
  doi: 10.1109/ICSE.2013.6606610
– ident: 6348_CR97
  doi: 10.1109/PADSW.2018.8644556
– volume: 6
  start-page: 8182
  issue: 5
  year: 2019
  ident: 6348_CR11
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2935189
– volume: 12
  start-page: 200
  issue: 2
  year: 2020
  ident: 6348_CR86
  publication-title: Int. J. Technol. Enhanc. Learn. (IJTEL)
  doi: 10.1504/IJTEL.2020.106286
– ident: 6348_CR187
– ident: 6348_CR99
– volume: 53
  start-page: 3776
  issue: 11
  year: 2005
  ident: 6348_CR273
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2005.858853
– volume: 29
  start-page: 84
  issue: 1
  year: 2013
  ident: 6348_CR3
  publication-title: Fut Gener Comput Syst
  doi: 10.1016/j.future.2012.05.023
– ident: 6348_CR162
– volume: 35
  start-page: 70
  issue: 4
  year: 2020
  ident: 6348_CR185
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2020.2988525
– year: 2021
  ident: 6348_CR32
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-020-02789-z
– volume: 171
  start-page: 112
  year: 2021
  ident: 6348_CR47
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.02.014
– volume: 2017
  start-page: 1
  issue: 1
  year: 2017
  ident: 6348_CR252
  publication-title: EURASIP J. Inf. Secur.
  doi: 10.1186/s13635-016-0053-0
– volume: 2
  start-page: 9
  issue: 1
  year: 2019
  ident: 6348_CR212
  publication-title: J. Inf. Secur. Cybercrim. Res. (JISCR)
  doi: 10.26735/16587790.2019.001
– volume: 54
  start-page: 22
  issue: 12
  year: 2016
  ident: 6348_CR2
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2016.1600492CM
– ident: 6348_CR77
  doi: 10.1109/FMEC.2019.8795315
– volume: 18
  start-page: 236
  issue: 1
  year: 2015
  ident: 6348_CR159
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2477041
– volume: 47
  start-page: 437
  issue: 4
  year: 2012
  ident: 6348_CR207
  publication-title: ACM SIGPLAN Notices
  doi: 10.1145/2248487.2151022
– volume: 23
  start-page: 596
  issue: 1
  year: 2021
  ident: 6348_CR46
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2020.3037674
– volume: 35
  start-page: 148
  issue: 1
  year: 2021
  ident: 6348_CR83
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.2000295
– volume: 7
  start-page: 185
  issue: 3
  year: 2016
  ident: 6348_CR196
  publication-title: J. Inf. Secur.
– volume: 2
  start-page: 9
  issue: 1
  year: 2017
  ident: 6348_CR145
  publication-title: Sci. Modell. Res.
– ident: 6348_CR189
  doi: 10.1109/INFOCOM.2018.8486352
– ident: 6348_CR234
  doi: 10.1109/HICSS.2011.103
– ident: 6348_CR204
  doi: 10.1109/ICCSN.2011.6014716
– volume: 32
  start-page: 35
  issue: 6
  year: 2018
  ident: 6348_CR61
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1800097
– year: 2021
  ident: 6348_CR25
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2021.3085979
– volume: 21
  start-page: 72
  issue: 1
  year: 2009
  ident: 6348_CR164
  publication-title: Inf. Econ. Policy
  doi: 10.1016/j.infoecopol.2008.10.003
– volume: 19
  start-page: 2322
  issue: 4
  year: 2017
  ident: 6348_CR34
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2745201
– ident: 6348_CR129
– ident: 6348_CR67
  doi: 10.1109/HOTICN.2018.8605952
– volume: 98
  start-page: 289
  year: 2019
  ident: 6348_CR40
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2019.02.009
– volume: 19
  start-page: 1628
  issue: 3
  year: 2017
  ident: 6348_CR35
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2682318
– ident: 6348_CR198
  doi: 10.1016/j.procs.2021.07.041
– ident: 6348_CR150
  doi: 10.15439/2014F503
– volume: 32
  start-page: e5825
  issue: 22
  year: 2020
  ident: 6348_CR242
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.5825
– ident: 6348_CR267
– volume: 22
  start-page: 885
  issue: 10
  year: 1999
  ident: 6348_CR264
  publication-title: Comput. Commun.
  doi: 10.1016/S0140-3664(99)00064-X
– ident: 6348_CR266
  doi: 10.2139/ssrn.2378317
– ident: 6348_CR229
– volume: 101
  start-page: 101957
  year: 2020
  ident: 6348_CR112
  publication-title: Simul. Modell. Pract. Theory
  doi: 10.1016/j.simpat.2019.101957
– volume: 8
  start-page: 55
  issue: 2
  year: 2013
  ident: 6348_CR146
  publication-title: Trends in Applied Sciences Research
  doi: 10.3923/tasr.2013.55.72
– volume-title: Virtualization Essentials
  year: 2012
  ident: 6348_CR138
– ident: 6348_CR147
– ident: 6348_CR250
  doi: 10.1145/352600.353052
– volume: 1
  start-page: 1
  year: 2002
  ident: 6348_CR287
  publication-title: Acros Secur.
– volume: 16
  start-page: 11
  issue: 7
  year: 2019
  ident: 6348_CR101
  publication-title: Life Sci. J.
– volume: 7
  start-page: 61
  issue: 4
  year: 2009
  ident: 6348_CR228
  publication-title: IEEE Secur. Privacy
  doi: 10.1109/MSP.2009.87
– volume: 8
  start-page: 91
  issue: 3
  year: 2020
  ident: 6348_CR22
  publication-title: J. Eng. Res. (JER)
  doi: 10.36909/jer.v8i3.8079
– volume: 32
  start-page: 1141
  year: 2014
  ident: 6348_CR142
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2014.05.545
– ident: 6348_CR191
  doi: 10.1109/ICC40277.2020.9148776
– volume: 26
  start-page: 5
  issue: 5
  year: 1996
  ident: 6348_CR237
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/242896.242897
– ident: 6348_CR215
  doi: 10.1109/DESEC.2017.8073810
– volume: 1
  start-page: 134
  issue: 3
  year: 2012
  ident: 6348_CR4
  publication-title: Int. J. Adv. Res. Electr. Electron. Instrum. Eng.
– ident: 6348_CR268
– volume: 4
  start-page: 1125
  issue: 5
  year: 2017
  ident: 6348_CR94
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2683200
– ident: 6348_CR259
  doi: 10.1109/IAdCC.2013.6514286
– volume: 21
  start-page: 167
  issue: 1
  year: 2021
  ident: 6348_CR174
  publication-title: Sensors
  doi: 10.3390/s21010167
– ident: 6348_CR245
  doi: 10.1145/1108473.1108496
– volume: 8
  start-page: 4004
  issue: 6
  year: 2020
  ident: 6348_CR98
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3015432
– ident: 6348_CR5
  doi: 10.1109/DICTAP.2012.6215350
– ident: 6348_CR88
  doi: 10.1109/ICC.2019.8761166
– volume: 19
  start-page: 3241
  issue: 5
  year: 2020
  ident: 6348_CR181
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.2971981
– volume: 21
  start-page: 3335
  issue: 10
  year: 2021
  ident: 6348_CR84
  publication-title: Sensors
  doi: 10.3390/s21103335
– year: 2017
  ident: 6348_CR36
  publication-title: Trans. Mach. Learn. Artif. Intell.
  doi: 10.14738/tmlai.54.3215
– volume: 12
  start-page: 1889
  issue: 8
  year: 2000
  ident: 6348_CR217
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015187
– ident: 6348_CR29
  doi: 10.1145/2534169.2486023
– ident: 6348_CR56
– volume: 45
  start-page: 63
  issue: 12
  year: 2002
  ident: 6348_CR9
  publication-title: Commun. ACM
  doi: 10.1145/585597.585616
– volume: 2
  start-page: 594
  year: 2016
  ident: 6348_CR156
  publication-title: IEEE Int. Conf. Mach. Learn. Cybern. (ICMLC)
– volume: 16
  start-page: 7094
  issue: 11
  year: 2020
  ident: 6348_CR89
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2020.2964563
– ident: 6348_CR251
– ident: 6348_CR284
  doi: 10.17487/rfc5849
– ident: 6348_CR286
  doi: 10.1145/1982185.1982511
– volume: 8
  start-page: 140699
  year: 2020
  ident: 6348_CR43
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013541
– ident: 6348_CR155
  doi: 10.1109/NOMS.2016.7502887
– ident: 6348_CR223
– volume: 46
  start-page: 766
  issue: 3
  year: 2015
  ident: 6348_CR270
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TCYB.2015.2415032
– ident: 6348_CR160
  doi: 10.1109/MASCOTS.2013.58
– volume: 28
  start-page: 18
  issue: 6
  year: 2014
  ident: 6348_CR27
  publication-title: IEEE Network
  doi: 10.1109/MNET.2014.6963800
– volume: 24
  start-page: 1
  issue: 2018
  year: 2018
  ident: 6348_CR137
  publication-title: ETSI White paper
– ident: 6348_CR279
  doi: 10.1145/1455770.1455782
– ident: 6348_CR126
  doi: 10.1109/ICNC47757.2020.9049708
– volume: 25
  start-page: 116
  issue: 3
  year: 2018
  ident: 6348_CR102
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2018.1700291
– volume: 6
  start-page: 3455
  issue: 2
  year: 2018
  ident: 6348_CR16
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2885453
– ident: 6348_CR276
  doi: 10.1109/ICSE.2009.5070521
– ident: 6348_CR148
  doi: 10.1145/2307849.2307858
– ident: 6348_CR285
  doi: 10.17487/rfc6749
– volume: 2
  start-page: 60
  issue: 1
  year: 2010
  ident: 6348_CR169
  publication-title: Int. J. Eng. Inf. Technol.
– volume: 5
  start-page: 450
  issue: 1
  year: 2017
  ident: 6348_CR33
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2750180
– volume: 1
  start-page: 2
  year: 2021
  ident: 6348_CR116
  publication-title: Arab. J. Sci. Eng. (AJSE)
  doi: 10.1007/s13369-021-06165-7
– volume: 63
  start-page: 3301
  issue: 10
  year: 2018
  ident: 6348_CR208
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2018.2791471
– ident: 6348_CR26
  doi: 10.1145/2627585.2627592
– volume: 105
  start-page: 162
  issue: 2
  year: 2011
  ident: 6348_CR152
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2011.02.002
– volume: 41
  start-page: 424
  year: 2014
  ident: 6348_CR171
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2013.10.004
– volume: 8
  start-page: 12806
  issue: 16
  year: 2021
  ident: 6348_CR53
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3072611
– volume: 15
  start-page: 678
  issue: 2
  year: 2012
  ident: 6348_CR153
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2012.060912.00100
– volume: 7
  start-page: 11384
  issue: 12
  year: 2020
  ident: 6348_CR95
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2999025
– ident: 6348_CR92
– volume: 9
  start-page: 205
  issue: 4
  year: 2002
  ident: 6348_CR166
  publication-title: Knowl. Process Manag.
  doi: 10.1002/kpm.149
– ident: 6348_CR248
  doi: 10.1145/1526709.1526822
– ident: 6348_CR63
– year: 2021
  ident: 6348_CR103
  publication-title: Pamukkale Univ J. Eng. Sci
  doi: 10.5505/pajes.2021.54837
– volume: 34
  start-page: 165
  issue: 2
  year: 2007
  ident: 6348_CR108
  publication-title: Kuwait J. Sci. Eng. (KJSE)
– year: 2021
  ident: 6348_CR190
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2021.3082561
– volume: 19
  start-page: 1657
  issue: 3
  year: 2017
  ident: 6348_CR37
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2705720
– ident: 6348_CR235
  doi: 10.1007/978-81-322-2755-7_22
– year: 2021
  ident: 6348_CR272
  publication-title: CAAI Trans. Intell. Technol. IET (IEE)
  doi: 10.1049/cit2.12053
– volume: 16
  start-page: 5424
  issue: 8
  year: 2019
  ident: 6348_CR19
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2949348
– ident: 6348_CR10
  doi: 10.23919/ICACT.2017.7890132
– ident: 6348_CR257
  doi: 10.1109/TENCON.2019.8929433
– volume: 5
  start-page: 6757
  year: 2017
  ident: 6348_CR100
  publication-title: Caching Commun. IEEE Access
  doi: 10.1109/ACCESS.2017.2685434
– volume-title: 3G evolution: HSPA and LTE for mobile broadband
  year: 2010
  ident: 6348_CR157
– ident: 6348_CR200
– volume: 53
  start-page: 187
  issue: 4
  year: 2015
  ident: 6348_CR28
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2015.7081093
– volume: 7
  start-page: 7751
  issue: 8
  year: 2020
  ident: 6348_CR192
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2991401
– volume: 8
  start-page: 1427
  issue: 6
  year: 2013
  ident: 6348_CR240
  publication-title: J. Comput.
– ident: 6348_CR143
– volume: 20
  start-page: 1
  issue: 8
  year: 2020
  ident: 6348_CR183
  publication-title: Int. J. Comput. Sci. Netw. Secur. (IJCSNS)
  doi: 10.22937/IJCSNS.2020.20.08.1
– volume: 22
  start-page: 2031
  issue: 3
  year: 2020
  ident: 6348_CR45
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2020.2986024
– volume: 55
  start-page: 101
  issue: 5
  year: 2017
  ident: 6348_CR31
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1600938
– volume: 38
  start-page: 48
  issue: 5
  year: 2005
  ident: 6348_CR139
  publication-title: Computer
  doi: 10.1109/MC.2005.163
– volume: 65
  start-page: 464
  issue: 2
  year: 2019
  ident: 6348_CR107
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2019.2901406
– volume: 20
  start-page: 16
  issue: 9
  year: 2020
  ident: 6348_CR256
  publication-title: Int. J. Comput. Sci. Netw. Secur. (IJCSNS)
  doi: 10.22937/IJCSNS.2020.20.09.3
– volume: 88
  start-page: 199
  year: 2018
  ident: 6348_CR18
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.05.057
– ident: 6348_CR62
  doi: 10.1109/ICCW.2018.8403712
– ident: 6348_CR195
– ident: 6348_CR51
– volume: 6
  start-page: 7992
  issue: 5
  year: 2019
  ident: 6348_CR72
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2904303
– ident: 6348_CR113
  doi: 10.1145/3286490.3286559
– volume: 97
  start-page: 755
  year: 2019
  ident: 6348_CR78
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.03.011
– ident: 6348_CR291
  doi: 10.1109/ICOMET.2018.8346428
– ident: 6348_CR184
– volume: 4
  start-page: 866
  issue: 2
  year: 2012
  ident: 6348_CR231
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2012.2206060
– ident: 6348_CR80
  doi: 10.1145/3338501.3357370
– ident: 6348_CR222
– volume: 176
  start-page: 23
  year: 2021
  ident: 6348_CR132
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.05.013
– ident: 6348_CR225
  doi: 10.1109/CNSM.2015.7367340
– ident: 6348_CR105
  doi: 10.1109/FMEC.2018.8364045
– ident: 6348_CR255
  doi: 10.1109/WCCAIS.2014.6916624
– ident: 6348_CR21
  doi: 10.23919/APNOMS.2019.8892848
– ident: 6348_CR134
  doi: 10.1109/MobileCloud.2016.16
– volume: 12
  start-page: 68
  issue: 6
  year: 2013
  ident: 6348_CR226
  publication-title: IEEE Secur. Priv.
  doi: 10.1109/MSP.2013.132
– volume: 10
  start-page: 1
  issue: 4
  year: 2019
  ident: 6348_CR238
  publication-title: Int. J. E-Health Med. Commun. (IJEHMC)
  doi: 10.4018/IJEHMC.2019100101
– ident: 6348_CR275
– volume: 69
  start-page: 5902
  issue: 9
  year: 2021
  ident: 6348_CR48
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2021.3087125
– volume: 17
  start-page: 8475
  issue: 12
  year: 2021
  ident: 6348_CR55
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2021.3064351
– ident: 6348_CR151
  doi: 10.1109/HotWeb.2015.22
– volume: 8
  start-page: 116974
  year: 2020
  ident: 6348_CR44
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001277
– ident: 6348_CR244
  doi: 10.1109/COMPSAC.2012.34
– volume: 6
  start-page: 2806
  issue: 2
  year: 2018
  ident: 6348_CR17
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2875046
– ident: 6348_CR176
– volume: 20
  start-page: 2961
  issue: 4
  year: 2018
  ident: 6348_CR38
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2849509
– ident: 6348_CR91
– ident: 6348_CR216
– ident: 6348_CR120
– ident: 6348_CR233
– volume: 8
  start-page: 136119
  year: 2020
  ident: 6348_CR118
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011477
– ident: 6348_CR115
– ident: 6348_CR15
  doi: 10.1142/9789812776730_0008
– ident: 6348_CR68
  doi: 10.1145/3229556.3229557
– volume: 80
  start-page: 28521
  issue: 18
  year: 2021
  ident: 6348_CR186
  publication-title: Multimed. Tools Appl. (MTAP)
  doi: 10.1007/s11042-021-11051-3
– volume: 103
  start-page: 2319
  issue: 11
  year: 2021
  ident: 6348_CR133
  publication-title: Computing
  doi: 10.1007/s00607-021-00970-6
– volume: 35
  start-page: 41
  issue: 5
  year: 2018
  ident: 6348_CR12
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2825478
– volume: 19
  start-page: 1
  issue: 2
  year: 2021
  ident: 6348_CR85
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-021-09559-x
– ident: 6348_CR104
  doi: 10.1109/CloudCom.2015.40
– ident: 6348_CR182
– volume: 100
  start-page: 531
  year: 2019
  ident: 6348_CR122
  publication-title: Fut. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.05.037
– volume: 12
  start-page: 786
  issue: 5
  year: 2018
  ident: 6348_CR66
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2018.2825986
– ident: 6348_CR188
  doi: 10.1109/SP.2013.30
– ident: 6348_CR211
  doi: 10.1007/978-3-319-12229-8_2
– ident: 6348_CR173
– volume: 1
  start-page: 2
  year: 2021
  ident: 6348_CR253
  publication-title: J. Eng. Res.
  doi: 10.36909/jer.13199
– ident: 6348_CR278
  doi: 10.1007/978-3-642-23822-2_6
– volume: 55
  start-page: 117
  issue: 3
  year: 2017
  ident: 6348_CR141
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.2017.1600510CM
– volume: 35
  start-page: 302
  issue: 2
  year: 2005
  ident: 6348_CR220
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
  doi: 10.1109/TSMCB.2005.843274
– volume: 8
  start-page: 14
  issue: 4
  year: 2009
  ident: 6348_CR7
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2009.82
– ident: 6348_CR79
  doi: 10.1109/CSCN.2019.8931357
– volume: 78
  start-page: 32633
  issue: 23
  year: 2019
  ident: 6348_CR239
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6801-z
– ident: 6348_CR202
  doi: 10.1002/9781119471509.w5GRef168
– volume: 12
  start-page: 240
  issue: 4
  year: 2017
  ident: 6348_CR290
  publication-title: J. Commun.
– volume: 11
  start-page: 309
  year: 2017
  ident: 6348_CR128
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00309
– volume: 3
  start-page: 365
  issue: 4
  year: 1995
  ident: 6348_CR13
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/90.413212
– ident: 6348_CR247
  doi: 10.1007/11663812_7
– volume: 2
  start-page: 36
  issue: 1
  year: 2018
  ident: 6348_CR114
  publication-title: IEEE Commun. Stand. Mag.
  doi: 10.1109/MCOMSTD.2018.1700063
– ident: 6348_CR221
– ident: 6348_CR70
  doi: 10.1109/SP.2019.00065
– ident: 6348_CR199
– volume: 192
  start-page: 108122
  year: 2021
  ident: 6348_CR49
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.108122
– ident: 6348_CR58
  doi: 10.1109/ICC.2017.7996332
– ident: 6348_CR82
– volume: 1–18
  start-page: 2009
  year: 2009
  ident: 6348_CR154
  publication-title: EURASIP J. Wirel. Commun. Netw.
– ident: 6348_CR219
  doi: 10.1109/ICDM.2003.1250990
– volume: 800
  start-page: 125A
  year: 2018
  ident: 6348_CR232
  publication-title: NIST Spec. Publ.
– volume: 69
  start-page: 042324
  issue: 4
  year: 2004
  ident: 6348_CR274
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.69.042324
– volume: 16
  start-page: 4187
  issue: 6
  year: 2019
  ident: 6348_CR71
  publication-title: IEEE Trans. Industr. Inf.
– volume: 35
  start-page: 60
  issue: 2
  year: 2021
  ident: 6348_CR131
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.2000215
– volume-title: Virtual Reality Technology
  year: 2003
  ident: 6348_CR24
  doi: 10.1162/105474603322955950
– volume: 7
  start-page: 166079
  year: 2019
  ident: 6348_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953172
– volume: 4
  start-page: 31
  year: 1990
  ident: 6348_CR6
  publication-title: Philos. Perspect.
  doi: 10.2307/2214186
– ident: 6348_CR218
  doi: 10.1007/11506157_4
– ident: 6348_CR161
– volume: 6
  start-page: 688
  year: 2017
  ident: 6348_CR106
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2774837
– ident: 6348_CR69
– volume: 54
  start-page: 84
  issue: 4
  year: 2016
  ident: 6348_CR57
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2016.7452271
– ident: 6348_CR42
– year: 2021
  ident: 6348_CR172
  publication-title: J. King. Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2021.09.009
– ident: 6348_CR124
  doi: 10.1109/WCNCW.2019.8902527
– volume: 3
  start-page: 1
  issue: 1
  year: 2020
  ident: 6348_CR175
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-00323-1
– ident: 6348_CR269
  doi: 10.1007/978-3-642-40994-3_25
– volume: 25
  start-page: 2421
  issue: 6
  year: 2020
  ident: 6348_CR87
  publication-title: Mobile Netw. Appl.
  doi: 10.1007/s11036-020-01586-4
– ident: 6348_CR127
– volume: 46
  start-page: 47
  issue: 1
  year: 2010
  ident: 6348_CR227
  publication-title: Fujitsu Sci. Tech. J.
– volume: 20
  start-page: 232
  issue: 12
  year: 2020
  ident: 6348_CR180
  publication-title: Int. J. Comput. Sci. Netw. Secur. (IJCSNS)
  doi: 10.22937/IJCSNS.2020.20.12.26
– volume: 56
  start-page: 56
  issue: 8
  year: 2018
  ident: 6348_CR111
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2018.1701132
– volume: 2
  start-page: 1
  issue: 3
  year: 2019
  ident: 6348_CR292
  publication-title: Recent Trends Inf. Technol. Appl.
  doi: 10.5281/zenodo.3543455
– ident: 6348_CR193
  doi: 10.23919/IFIPNetworking52078.2021.9472790
– ident: 6348_CR8
– ident: 6348_CR20
  doi: 10.1109/GLOBECOM42002.2020.9322270
– volume: 29
  start-page: 35
  issue: 1
  year: 2015
  ident: 6348_CR144
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2015.7018201
– ident: 6348_CR236
  doi: 10.1007/978-3-319-58808-7_5
– ident: 6348_CR1
  doi: 10.1145/1879141.1879173
– volume: 1
  start-page: 255
  issue: 3
  year: 1995
  ident: 6348_CR135
  publication-title: Wirel. Netw.
  doi: 10.1007/BF01200845
– ident: 6348_CR194
– volume: 10
  start-page: 21
  issue: 3
  year: 2014
  ident: 6348_CR197
  publication-title: J. Inf. Syst. Secur.
– volume: 548
  start-page: 423
  year: 2021
  ident: 6348_CR54
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.09.064
– volume: 9
  start-page: 1
  issue: 1
  year: 2020
  ident: 6348_CR74
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-020-00201-x
– ident: 6348_CR149
  doi: 10.1145/2342509.2342513
– volume: 3
  start-page: 854
  issue: 6
  year: 2016
  ident: 6348_CR23
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2016.2584538
– volume: 41
  start-page: 74
  issue: 11
  year: 2003
  ident: 6348_CR140
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2003.1244926
– ident: 6348_CR30
  doi: 10.1145/2491224.2491237
– volume: 10
  start-page: 287
  issue: 5
  year: 2015
  ident: 6348_CR258
  publication-title: J. Netw.
– ident: 6348_CR265
  doi: 10.1145/2382196.2382284
– ident: 6348_CR288
  doi: 10.1145/2660267.2660323
– volume: 14
  start-page: 560
  issue: 1
  year: 2019
  ident: 6348_CR109
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2019.2896064
– ident: 6348_CR206
  doi: 10.1145/3134600.3134648
– ident: 6348_CR64
– volume: 7
  start-page: 333
  issue: 3
  year: 1994
  ident: 6348_CR254
  publication-title: Comput Syst
– volume: 2
  start-page: 864
  year: 2012
  ident: 6348_CR203
  publication-title: Int. J. Eng. Res. Appl.
– volume: 5
  start-page: 1
  issue: 1
  year: 2021
  ident: 6348_CR177
  publication-title: J. Healthc. Inf. Res.
  doi: 10.1007/s41666-020-00082-4
– ident: 6348_CR260
– ident: 6348_CR263
  doi: 10.1109/NETAPPS.2010.50
– ident: 6348_CR230
  doi: 10.1109/INM.2011.5990505
– ident: 6348_CR249
  doi: 10.1109/ICCPCT.2015.7159276
– volume: 7
  start-page: 2421
  issue: 3
  year: 2019
  ident: 6348_CR119
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2957835
– ident: 6348_CR280
  doi: 10.1109/ENABL.1997.630822
– volume: 216
  start-page: 106775
  year: 2021
  ident: 6348_CR179
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.106775
– ident: 6348_CR282
  doi: 10.1109/ICAEE.2015.7506822
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.5673265
Snippet New technology is needed to meet the latency and bandwidth issues present in cloud computing architecture specially to support the currency of 5G networks....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9801
SubjectTerms Artificial intelligence
Bandwidths
Cell phones
Cloud computing
Computer architecture
Cybersecurity
Deep learning
Edge computing
Energy consumption
Engineering
Humanities and Social Sciences
Internet of Things
Machine learning
Mobile computing
multidisciplinary
Network latency
New technology
Prediction models
Privacy
Research Article-Computer Engineering and Computer Science
Science
Title AI-Based Mobile Edge Computing for IoT: Applications, Challenges, and Future Scope
URI https://link.springer.com/article/10.1007/s13369-021-06348-2
https://www.proquest.com/docview/2700353117
Volume 47
WOSCitedRecordID wos000737098300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 2193-567X
  databaseCode: RSV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50-qAP_hanU_Lgmwus7TVNfZtjw4EOcWPsraxpIoJssk3_fi9Za1VU0LdCr2maS-6-9HLfAZyjCtBgargnVMwxNA0uJRoeY5SRxQyzwNUGHN5EvZ4cjeK7PClsXpx2L0KSzlKXyW5BIGJujxSQW0XS7yqshZZtxu7R-8NiFiG5fEIRQfmnhRCQ70rJ0uoMeCiiUZ49832znz1UCTu_REqdA-ps_6_rO7CVA07WXM6QXVjRkz3Y_EBDuA_3zS6_Im-WsdtpSlaCtbMHzZb1HkiAEa5l3engkjU_RLvrrFXUYaHr8SRjHUdPwvo2z-UABp32oHXN81oLXNEiXHBtzFjrVKSaNowYKtRKx2jp4Axq9NOG8XwldYSCvkKNUykI6klJ6E1JQTo4hMpkOtFHwEjA15kg2KAFNrSfeplHVsG2HWIUR1XwiuFNVM5DbsthPCUlg7IdroRelLjhSvwqXLw_87xk4fhVulZoLclX5DyxAfaADI5HHagXWipv_9za8d_ET2DDtxkS7oxgDSqL2Ys-hXX1unicz87cTH0DEVzcCA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzidmgffNLC2p2nq2xwbG25D3Bh7K2uaiCCdbNPf70nW2ikq6Fuhp2mayzlfei4fIZcgPdAQa-ZwGTLwdZUJAZqFECSoMf3Es9yAw07Q64nRKLzPksJmebR77pK0mrpIdvM8HjITUoBmFXB-V8kaGJodc0bvD_NVBGjyEUV4xZ8WRECupZLF3ekxnwejLHvm-2Y_W6gCdn7xlFoD1Nz5X9d3yXYGOGltsUL2yIpK98nWUhnCA_JQa7NbtGYJ7U5i1BK0kTwquuB7QAGKuJa2J4MbWlvydl_Tes7DgtfjNKFNW56E9k2eyyEZNBuDeotlXAtM4iacM6X1WKmYxwoPjOBLUFKFYMrBaVDgxlXtuFKoADh-hRzHgiPUEwLRmxQ8DLwjUkonqTomFAVclXCEDYpDVbmxkzioFUzbPgRhUCZOPryRzOqQGzqM56iooGyGK8IXRXa4IrdMrj6eeVlU4fhVupLPWpTtyFlkHOweKhwHO3Cdz1Jx--fWTv4mfkE2WoNuJ-q0e3enZNM12RI2XrBCSvPpqzoj6_Jt_jSbnttV-w5qF97s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oGqMH30YUdQ_eZCNtp9vWGyJEIhIChHBr6HbXmJhCoPr7ne3DolET461Jp9vua-bbzsw3hFyCsEBBoJjBhcfAVjXmuqCYB06IGtMOraQ24KjjdLvueOz1lrL4k2j33CWZ5jRolqYovp6F6rpIfLMs7jEdXoAmFnCuV8ka4ElGB3X1B6N8RQGaf0QUVvHXBdGQmZSVxZ1qMZs74yyT5vtmP1urAoJ-8Zomxqi18_9u7JLtDIjSerpy9siKjPbJ1hI94QHp19vsFq1cSB-nAWoP2gyfJE3rQKAARbxL29PhDa0vecGrtJHXZ8HrSRTSVkJbQgc6_-WQDFvNYeOeZTUYmMDNGTOp1ETKgAcSD5JgC5BCeqBp4hRIMIOaMkzhSgc49kJMApcjBHRdRHXC5Z5jHZFSNI3kMaEoYMqQI5yQHGrSDIzQQG2h27bB8ZwyMfKh9kXGT67LZLz4BbOyHi4fX-Qnw-WbZXL18cwsZef4VbqSz6Cf7dSFrx3vFioiAz-gms9Ycfvn1k7-Jn5BNnp3Lb_T7j6ckk1TJ1EkYYQVUornr_KMrIu3-HkxP08W8Dswk-fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Based+Mobile+Edge+Computing+for+IoT%3A+Applications%2C+Challenges%2C+and+Future+Scope&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Singh%2C+Ashish&rft.au=Satapathy%2C+Suresh+Chandra&rft.au=Roy%2C+Arnab&rft.au=Gutub+Adnan&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=47&rft.issue=8&rft.spage=9801&rft.epage=9831&rft_id=info:doi/10.1007%2Fs13369-021-06348-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon