Deep contrastive multi-view clustering with doubly enhanced commonality
Recently, deep multi-view clustering leveraging autoencoders has garnered significant attention due to its ability to simultaneously enhance feature learning capabilities and optimize clustering outcomes. However, existing autoencoder-based deep multi-view clustering methods often exhibit a tendency...
Saved in:
| Published in: | Multimedia systems Vol. 30; no. 4; p. 196 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0942-4962, 1432-1882 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recently, deep multi-view clustering leveraging autoencoders has garnered significant attention due to its ability to simultaneously enhance feature learning capabilities and optimize clustering outcomes. However, existing autoencoder-based deep multi-view clustering methods often exhibit a tendency to either overly emphasize view-specific information, thus neglecting shared information across views, or alternatively, to place undue focus on shared information, resulting in the dilution of complementary information from individual views. Given the principle that commonality resides within individuality, this paper proposes a staged training approach that comprises two phases: pre-training and fine-tuning. The pre-training phase primarily focuses on learning view-specific information, while the fine-tuning phase aims to doubly enhance commonality across views while maintaining these specific details. Specifically, we learn and extract the specific information of each view through the autoencoder in the pre-training stage. After entering the fine-tuning stage, we first initially enhance the commonality between independent specific views through the transformer layer, and then further strengthen these commonalities through contrastive learning on the semantic labels of each view, so as to obtain more accurate clustering results. |
|---|---|
| AbstractList | Recently, deep multi-view clustering leveraging autoencoders has garnered significant attention due to its ability to simultaneously enhance feature learning capabilities and optimize clustering outcomes. However, existing autoencoder-based deep multi-view clustering methods often exhibit a tendency to either overly emphasize view-specific information, thus neglecting shared information across views, or alternatively, to place undue focus on shared information, resulting in the dilution of complementary information from individual views. Given the principle that commonality resides within individuality, this paper proposes a staged training approach that comprises two phases: pre-training and fine-tuning. The pre-training phase primarily focuses on learning view-specific information, while the fine-tuning phase aims to doubly enhance commonality across views while maintaining these specific details. Specifically, we learn and extract the specific information of each view through the autoencoder in the pre-training stage. After entering the fine-tuning stage, we first initially enhance the commonality between independent specific views through the transformer layer, and then further strengthen these commonalities through contrastive learning on the semantic labels of each view, so as to obtain more accurate clustering results. |
| ArticleNumber | 196 |
| Author | Zhu, Changming Li, Zishi Yang, Zhiyuan |
| Author_xml | – sequence: 1 givenname: Zhiyuan surname: Yang fullname: Yang, Zhiyuan organization: College of Information Engineering, Shanghai Maritime University – sequence: 2 givenname: Changming surname: Zhu fullname: Zhu, Changming email: cmzhu@shmtu.edu.cn organization: College of Information Engineering, Shanghai Maritime University – sequence: 3 givenname: Zishi surname: Li fullname: Li, Zishi organization: College of Information Engineering, Shanghai Maritime University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqOTZD-PUrUKBS-9h2x21qbsl0m2pf_e3a4geOhpYHif4Z1nQWZN2yAh9wweGUDy5AAiARR4SIGFAJRdkTkLBacsTfmMzCELOQ2zmN-QhXN7AJbEAuZk_YLYBbptvFXOmwMGdV95Qw8Gj4GueufRmuYrOBq_C4q2z6tTgM1ONRqLAavrtlGV8adbcl2qyuHd71yS7dvrdvVON5_rj9XzhmrBMk8RRZhiErEoivOyAExKjOIizYuCl1wXKi6SrFR5DgkTEWbDFhgmIs1CnedMLMnDdLaz7XePzst929uhgpOCR3GYRQzGVDqltG2ds1hKbbzy5vylqSQDOVqTkzU5WJNna3JE-T-0s6ZW9nQZEhPkulEW2r9WF6gfm0eCfg |
| CitedBy_id | crossref_primary_10_3390_electronics13244866 crossref_primary_10_1007_s40747_025_01982_x |
| Cites_doi | 10.1016/j.ins.2020.07.059 10.1016/j.knosys.2023.111271 10.1109/ACCESS.2020.3031549 10.1016/j.ins.2019.04.034 10.1007/s10489-021-03129-0 10.1016/j.inffus.2024.102393 10.1016/j.neucom.2021.01.011 10.1109/TKDE.2020.2973981 10.1109/TNNLS.2023.3341807 10.1109/TKDE.2018.2872063 10.1109/TIP.2017.2754939 10.1109/TMM.2020.3025666 10.1007/s13042-021-01307-7 10.1016/j.ipm.2023.103284 10.1016/j.inffus.2022.08.014 10.1109/TMM.2021.3094296 10.1109/TNNLS.2022.3201699 10.1016/j.patcog.2023.109764 10.1109/TCSVT.2022.3143848 10.1109/TMM.2021.3136098 10.1109/TKDE.2022.3193569 10.1109/TKDE.2023.3270311 10.1093/bioinformatics/bts220 10.1016/j.inffus.2023.01.001 10.1109/TKDE.2019.2903810 10.1109/TKDE.2021.3068461 10.1109/TNNLS.2020.2979532 10.1109/TMM.2022.3212270 10.1109/TCYB.2021.3087114 10.1007/s11222-007-9033-z 10.1109/TIP.2019.2913555 10.1609/aaai.v33i01.33014392 10.1109/ICCV.2005.148 10.1109/CVPR52688.2022.00030 10.1109/ICCV51070.2023.01536 10.24963/ijcai.2019/509 10.1109/CVPR52688.2022.01558 10.1109/CVPR.2005.16 10.1109/ICCV.2015.482 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00530-024-01400-1 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest MSED ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-1882 |
| ExternalDocumentID | 10_1007_s00530_024_01400_1 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (CN) grantid: 62276164; 61602296 – fundername: Natural Science Foundation of Shanghai grantid: 22ZR1427000 |
| GroupedDBID | --Z -4Z -59 -5G -BR -EM -ET -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 85S 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YIN YLTOR Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AETEA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-ee348e751556bfd0e7fe56d8bdd2f2cda6d79fabb07135e9d2f01e73894cbb13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001262302200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0942-4962 |
| IngestDate | Fri Oct 03 06:01:27 EDT 2025 Sat Nov 29 03:46:01 EST 2025 Tue Nov 18 21:27:16 EST 2025 Fri Feb 21 02:38:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Autoencoder Unsupervised learning Deep multi-view clustering Contrastive learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ee348e751556bfd0e7fe56d8bdd2f2cda6d79fabb07135e9d2f01e73894cbb13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256495101 |
| PQPubID | 2043725 |
| ParticipantIDs | proquest_journals_3256495101 crossref_citationtrail_10_1007_s00530_024_01400_1 crossref_primary_10_1007_s00530_024_01400_1 springer_journals_10_1007_s00530_024_01400_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20240800 2024-08-00 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Multimedia systems |
| PublicationTitleAbbrev | Multimedia Systems |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Lu, Liu, Zuo (CR33) 2021; 435 Nie, Cai, Li, Li (CR9) 2017; 27 Lin, Gou, Liu, Bai, Lv, Peng (CR46) 2022; 45 Du, Zhou, Li, Wang, Lü (CR5) 2023; 93 CR39 CR38 Bian, Xie, Lai, Nie (CR49) 2024; 108 Li, Yang, Zhang (CR3) 2018; 31 CR35 Rong, Zhuo, Peng, Chen, Wang, Han, Cai (CR16) 2021; 547 Xu, Ren, Tang, Yang, Pan, Yang, Pu, Philip, He (CR2) 2022; 35 Xue, Li, Wang, Huang, Zhang, Huang (CR8) 2019; 493 Tao, Liu, Fu, Fu (CR7) 2019; 28 Wang, Yao, Jiang, Mi, Fu (CR20) 2023; 13 Diallo, Hu, Li, Khan, Liang, Wang (CR31) 2023; 143 Khan, Hu, Li, Diallo, Wang (CR12) 2022; 13 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (CR37) 2017; 30 Hu, Zou, Zhang, Lou, Geng, Ye (CR24) 2023; 60 Le-Khac, Healy, Smeaton (CR34) 2020; 8 CR4 Ke, Hong, Yu, Zhang, Liu (CR32) 2022; 52 Xia, Wang, Gao, Zhang, Gao (CR30) 2021; 24 Von Luxburg (CR23) 2007; 17 Zhao, Xu, Guan, Liu (CR11) 2020; 32 CR47 CR45 CR43 Xie, Lin, Qu, Li, Zhang, Ma, Wen, Tao (CR6) 2020; 33 Huang, Tsang, Xu, Lv (CR18) 2021; 34 CR41 CR40 Maaten, Hinton (CR50) 2008; 9 Wang, Chang, Fu, Zhao (CR19) 2021; 25 Wang, Cheng, Gao, Zhao, Jiao (CR27) 2020; 23 Yang, Guan, Zhao, Lu, Zong (CR28) 2022; 35 Cai, Wang, Huang, Ding (CR42) 2012; 28 Lan, Zheng, Yu (CR14) 2024; 284 CR15 Chen, Yang, Peng, Peng, Wang (CR1) 2022; 35 Chen, Yang, Mao, Fahy (CR13) 2021; 52 Fang, Li, Li, Gao, Jia, Zhang (CR10) 2023; 35 Wang, Yang, Liu (CR17) 2019; 32 CR26 CR25 Yang, Guan, Li, Zhao, Cui, Wang (CR29) 2021; 35 Chen, Yang, Peng, Peng, Wang (CR44) 2022; 35 Zheng, Zhu, Li, Tian, Li (CR48) 2023; 89 Wang, Jiang, Peng, Deng, Fu (CR22) 2022; 25 Tian, Sun, Poole, Krishnan, Schmid, Isola (CR36) 2020; 33 Jiang, Peng, Wang, Mi, Fu (CR21) 2022; 32 R-K Lu (1400_CR33) 2021; 435 H Wang (1400_CR20) 2023; 13 1400_CR25 1400_CR26 S Hu (1400_CR24) 2023; 60 S Lan (1400_CR14) 2024; 284 Y Tian (1400_CR36) 2020; 33 S Huang (1400_CR18) 2021; 34 U Von Luxburg (1400_CR23) 2007; 17 U Fang (1400_CR10) 2023; 35 G Jiang (1400_CR21) 2022; 32 Z Xue (1400_CR8) 2019; 493 J Xu (1400_CR2) 2022; 35 Y Yang (1400_CR29) 2021; 35 H Wang (1400_CR22) 2022; 25 1400_CR35 GA Khan (1400_CR12) 2022; 13 1400_CR38 Y Li (1400_CR3) 2018; 31 1400_CR39 A Vaswani (1400_CR37) 2017; 30 F Nie (1400_CR9) 2017; 27 W Rong (1400_CR16) 2021; 547 X Cai (1400_CR42) 2012; 28 Y Wang (1400_CR19) 2021; 25 Y Yang (1400_CR28) 2022; 35 1400_CR40 1400_CR45 1400_CR47 1400_CR41 1400_CR43 J Chen (1400_CR13) 2021; 52 G Du (1400_CR5) 2023; 93 B Diallo (1400_CR31) 2023; 143 J Chen (1400_CR1) 2022; 35 Q Wang (1400_CR27) 2020; 23 L Maaten (1400_CR50) 2008; 9 J Chen (1400_CR44) 2022; 35 1400_CR4 W Zhao (1400_CR11) 2020; 32 J Bian (1400_CR49) 2024; 108 Q Zheng (1400_CR48) 2023; 89 G Ke (1400_CR32) 2022; 52 Y Lin (1400_CR46) 2022; 45 1400_CR15 W Xia (1400_CR30) 2021; 24 Z Tao (1400_CR7) 2019; 28 H Wang (1400_CR17) 2019; 32 PH Le-Khac (1400_CR34) 2020; 8 Y Xie (1400_CR6) 2020; 33 |
| References_xml | – ident: CR45 – ident: CR4 – ident: CR39 – volume: 547 start-page: 68 year: 2021 end-page: 87 ident: CR16 article-title: Learning a consensus affinity matrix for multi-view clustering via subspaces merging on Grassmann manifold publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.07.059 – volume: 30 start-page: 5998 year: 2017 end-page: 6008 ident: CR37 article-title: Attention is all you need publication-title: Adv. Neural. Inf. Process. Syst. – volume: 284 start-page: 111271 year: 2024 ident: CR14 article-title: Double-level view-correlation multi-view subspace clustering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.111271 – volume: 8 start-page: 193907 year: 2020 end-page: 193934 ident: CR34 article-title: Contrastive representation learning: a framework and review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031549 – ident: CR35 – ident: CR25 – volume: 493 start-page: 176 year: 2019 end-page: 191 ident: CR8 article-title: Beyond global fusion: a group-aware fusion approach for multi-view image clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.04.034 – volume: 52 start-page: 14918 issue: 13 year: 2022 end-page: 14934 ident: CR32 article-title: Efficient multi-view clustering networks publication-title: Appl. Intell. doi: 10.1007/s10489-021-03129-0 – volume: 35 start-page: 1637 issue: 2 year: 2021 end-page: 1650 ident: CR29 article-title: Interpretable and efficient heterogeneous graph convolutional network publication-title: IEEE Trans. Knowl. Data Eng. – volume: 108 start-page: 102393 year: 2024 ident: CR49 article-title: Multi-view contrastive clustering via integrating graph aggregation and confidence enhancement publication-title: Inf. Fusion doi: 10.1016/j.inffus.2024.102393 – volume: 435 start-page: 186 year: 2021 end-page: 196 ident: CR33 article-title: Attentive multi-view deep subspace clustering net publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.011 – volume: 33 start-page: 3594 issue: 11 year: 2020 end-page: 3606 ident: CR6 article-title: Joint deep multi-view learning for image clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.2973981 – ident: CR15 – volume: 13 start-page: 1 year: 2023 end-page: 13 ident: CR20 article-title: Graph-collaborated auto-encoder hashing for multiview binary clustering publication-title: IEEE Trans. Neural Netw. Learn Syst. doi: 10.1109/TNNLS.2023.3341807 – volume: 31 start-page: 1863 issue: 10 year: 2018 end-page: 1883 ident: CR3 article-title: A survey of multi-view representation learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2872063 – volume: 27 start-page: 1501 issue: 3 year: 2017 end-page: 1511 ident: CR9 article-title: Auto-weighted multi-view learning for image clustering and semi-supervised classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2754939 – volume: 45 start-page: 4447 issue: 4 year: 2022 end-page: 4461 ident: CR46 article-title: Dual contrastive prediction for incomplete multi-view representation learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 23 start-page: 3483 year: 2020 end-page: 3493 ident: CR27 article-title: Deep multi-view subspace clustering with unified and discriminative learning publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.3025666 – volume: 13 start-page: 1 year: 2022 end-page: 13 ident: CR12 article-title: Multi-view data clustering via non-negative matrix factorization with manifold regularization publication-title: Int. J Mach Learn. Cybern. doi: 10.1007/s13042-021-01307-7 – volume: 60 start-page: 103284 issue: 3 year: 2023 ident: CR24 article-title: Joint contrastive triple-learning for deep multi-view clustering publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2023.103284 – ident: CR26 – volume: 89 start-page: 198 year: 2023 end-page: 209 ident: CR48 article-title: Comprehensive multi-view representation learning publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.08.014 – volume: 24 start-page: 3182 year: 2021 end-page: 3192 ident: CR30 article-title: Self-supervised graph convolutional network for multi-view clustering publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3094296 – ident: CR43 – ident: CR47 – volume: 9 start-page: 2579 issue: 11 year: 2008 end-page: 2605 ident: CR50 article-title: Visualizing data using t-sne publication-title: J Mach. Learn. Res. – volume: 35 start-page: 4058 issue: 3 year: 2022 end-page: 4071 ident: CR1 article-title: Augmented sparse representation for incomplete multiview clustering publication-title: IEEE Trans. Neural Netw. Learn Syst. doi: 10.1109/TNNLS.2022.3201699 – volume: 143 start-page: 109764 year: 2023 ident: CR31 article-title: Auto-attention mechanism for multi-view deep embedding clustering publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2023.109764 – volume: 32 start-page: 5307 issue: 8 year: 2022 end-page: 5318 ident: CR21 article-title: Tensorial multi-view clustering via low-rank constrained high-order graph learning publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2022.3143848 – volume: 35 start-page: 4058 issue: 3 year: 2022 end-page: 4071 ident: CR44 article-title: Augmented sparse representation for incomplete multiview clustering publication-title: IEEE Trans. Neural Netw. Learn Syst. doi: 10.1109/TNNLS.2022.3201699 – volume: 25 start-page: 1008 year: 2021 end-page: 1018 ident: CR19 article-title: Consistent multiple graph embedding for multi-view clustering publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3136098 – volume: 35 start-page: 7470 issue: 7 year: 2022 end-page: 7482 ident: CR2 article-title: Self-supervised discriminative feature learning for deep multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng doi: 10.1109/TKDE.2022.3193569 – volume: 35 start-page: 12350 issue: 12 year: 2023 end-page: 12368 ident: CR10 article-title: A comprehensive survey on multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3270311 – volume: 35 start-page: 4894 issue: 5 year: 2022 end-page: 4907 ident: CR28 article-title: Graph substructure assembling network with soft sequence and context attention publication-title: IEEE Trans. Knowl. Data Eng. – ident: CR40 – volume: 28 start-page: 16 issue: 12 year: 2012 end-page: 24 ident: CR42 article-title: Joint stage recognition and anatomical annotation of drosophila gene expression patterns publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts220 – volume: 33 start-page: 6827 year: 2020 end-page: 6839 ident: CR36 article-title: What makes for good views for contrastive learning? publication-title: Adv. Neural. Inf. Process. Syst. – volume: 93 start-page: 330 year: 2023 end-page: 343 ident: CR5 article-title: Neighbor-aware deep multi-view clustering via graph convolutional network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.01.001 – volume: 32 start-page: 1116 issue: 6 year: 2019 end-page: 1129 ident: CR17 article-title: Gmc: Graph-based multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2903810 – volume: 34 start-page: 5869 issue: 12 year: 2021 end-page: 5883 ident: CR18 article-title: Measuring diversity in graph learning: a unified framework for structured multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3068461 – ident: CR38 – volume: 32 start-page: 814 issue: 2 year: 2020 end-page: 825 ident: CR11 article-title: Multiview concept learning via deep matrix factorization publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2979532 – volume: 25 start-page: 6629 year: 2022 end-page: 6641 ident: CR22 article-title: Towards adaptive consensus graph: multi-view clustering via graph collaboration publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2022.3212270 – volume: 52 start-page: 12364 issue: 11 year: 2021 end-page: 12378 ident: CR13 article-title: Multiview subspace clustering using low-rank representation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3087114 – volume: 17 start-page: 395 year: 2007 end-page: 416 ident: CR23 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – volume: 28 start-page: 4634 issue: 9 year: 2019 end-page: 4645 ident: CR7 article-title: Multi-view saliency-guided clustering for image cosegmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2913555 – ident: CR41 – volume: 35 start-page: 4058 issue: 3 year: 2022 ident: 1400_CR44 publication-title: IEEE Trans. Neural Netw. Learn Syst. doi: 10.1109/TNNLS.2022.3201699 – volume: 13 start-page: 1 year: 2023 ident: 1400_CR20 publication-title: IEEE Trans. Neural Netw. Learn Syst. doi: 10.1109/TNNLS.2023.3341807 – volume: 52 start-page: 14918 issue: 13 year: 2022 ident: 1400_CR32 publication-title: Appl. Intell. doi: 10.1007/s10489-021-03129-0 – volume: 45 start-page: 4447 issue: 4 year: 2022 ident: 1400_CR46 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 35 start-page: 7470 issue: 7 year: 2022 ident: 1400_CR2 publication-title: IEEE Trans. Knowl. Data Eng doi: 10.1109/TKDE.2022.3193569 – volume: 32 start-page: 1116 issue: 6 year: 2019 ident: 1400_CR17 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2903810 – volume: 28 start-page: 4634 issue: 9 year: 2019 ident: 1400_CR7 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2913555 – volume: 52 start-page: 12364 issue: 11 year: 2021 ident: 1400_CR13 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3087114 – volume: 34 start-page: 5869 issue: 12 year: 2021 ident: 1400_CR18 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3068461 – volume: 13 start-page: 1 year: 2022 ident: 1400_CR12 publication-title: Int. J Mach Learn. Cybern. doi: 10.1007/s13042-021-01307-7 – volume: 25 start-page: 6629 year: 2022 ident: 1400_CR22 publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2022.3212270 – volume: 33 start-page: 3594 issue: 11 year: 2020 ident: 1400_CR6 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.2973981 – volume: 35 start-page: 1637 issue: 2 year: 2021 ident: 1400_CR29 publication-title: IEEE Trans. Knowl. Data Eng. – ident: 1400_CR45 – volume: 31 start-page: 1863 issue: 10 year: 2018 ident: 1400_CR3 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2872063 – volume: 435 start-page: 186 year: 2021 ident: 1400_CR33 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.011 – volume: 28 start-page: 16 issue: 12 year: 2012 ident: 1400_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts220 – ident: 1400_CR41 – volume: 24 start-page: 3182 year: 2021 ident: 1400_CR30 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3094296 – volume: 30 start-page: 5998 year: 2017 ident: 1400_CR37 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 108 start-page: 102393 year: 2024 ident: 1400_CR49 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2024.102393 – volume: 17 start-page: 395 year: 2007 ident: 1400_CR23 publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – volume: 8 start-page: 193907 year: 2020 ident: 1400_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031549 – volume: 547 start-page: 68 year: 2021 ident: 1400_CR16 publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.07.059 – volume: 33 start-page: 6827 year: 2020 ident: 1400_CR36 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: 1400_CR50 publication-title: J Mach. Learn. Res. – ident: 1400_CR43 doi: 10.1609/aaai.v33i01.33014392 – volume: 27 start-page: 1501 issue: 3 year: 2017 ident: 1400_CR9 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2754939 – ident: 1400_CR38 doi: 10.1109/ICCV.2005.148 – volume: 143 start-page: 109764 year: 2023 ident: 1400_CR31 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2023.109764 – volume: 23 start-page: 3483 year: 2020 ident: 1400_CR27 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.3025666 – ident: 1400_CR47 doi: 10.1109/CVPR52688.2022.00030 – volume: 60 start-page: 103284 issue: 3 year: 2023 ident: 1400_CR24 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2023.103284 – ident: 1400_CR25 doi: 10.1109/ICCV51070.2023.01536 – volume: 35 start-page: 12350 issue: 12 year: 2023 ident: 1400_CR10 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3270311 – volume: 32 start-page: 814 issue: 2 year: 2020 ident: 1400_CR11 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2979532 – volume: 35 start-page: 4058 issue: 3 year: 2022 ident: 1400_CR1 publication-title: IEEE Trans. Neural Netw. Learn Syst. doi: 10.1109/TNNLS.2022.3201699 – ident: 1400_CR4 doi: 10.24963/ijcai.2019/509 – ident: 1400_CR35 – ident: 1400_CR26 doi: 10.1109/CVPR52688.2022.01558 – ident: 1400_CR39 – ident: 1400_CR40 doi: 10.1109/CVPR.2005.16 – ident: 1400_CR15 doi: 10.1109/ICCV.2015.482 – volume: 25 start-page: 1008 year: 2021 ident: 1400_CR19 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3136098 – volume: 93 start-page: 330 year: 2023 ident: 1400_CR5 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.01.001 – volume: 35 start-page: 4894 issue: 5 year: 2022 ident: 1400_CR28 publication-title: IEEE Trans. Knowl. Data Eng. – volume: 89 start-page: 198 year: 2023 ident: 1400_CR48 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.08.014 – volume: 493 start-page: 176 year: 2019 ident: 1400_CR8 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.04.034 – volume: 284 start-page: 111271 year: 2024 ident: 1400_CR14 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.111271 – volume: 32 start-page: 5307 issue: 8 year: 2022 ident: 1400_CR21 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2022.3143848 |
| SSID | ssj0017630 |
| Score | 2.3808203 |
| Snippet | Recently, deep multi-view clustering leveraging autoencoders has garnered significant attention due to its ability to simultaneously enhance feature learning... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 196 |
| SubjectTerms | Clustering Commonality Computer Communication Networks Computer Graphics Computer Science Cryptology Data Storage Representation Datasets Dilution Learning Multimedia Information Systems Neural networks Operating Systems Regular Paper Semantics Training |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgcODCeIrBQDlwg4il7Zr2hBAwOE1I7LBb1SSuQJq6sW5I_HviLN0EErtwbZvEqu3YsR1_AJdKInaVCSn1H_DI5Fal7NGaC1OEwiSW49o4sAnZ7yfDYfriA26VL6us90S3UZuxphj5TWhtc0TugLidfHBCjaLsqofQ2IQt6pIgXOne6zKLYHXHxVjSyJKRxoG_NOOuzpH0dbi1UJzOGJa4n4Zp5W3-SpA6u9Nr_pfiPdj1Hie7W4jIPmxgeQDNGs2BeeU-hKcHxAlzpet5RZsgc8WGnFZhejSnjgqWQkaRW2bGczX6Yli-uQoCO4yWcz79EQx6j4P7Z-5hFri2-jfjiGGUoCSsl1gVpoOywG5sEmVMUATa5LGRaZEr5eD8MLVPOwKl9XQirZQIj6FRjks8AZZTczapQkwCHRkZpxiEaIrIctwaS1m0QNS_ONO-BTkhYYyyZfNkx5bMsiVzbMlEC66WYyaLBhxrv27XvMi8MlbZihEtuK65uXr992yn62c7g53ACRCVA7ahMZvO8Ry29efsvZpeOFH8Btjp45U priority: 102 providerName: ProQuest |
| Title | Deep contrastive multi-view clustering with doubly enhanced commonality |
| URI | https://link.springer.com/article/10.1007/s00530-024-01400-1 https://www.proquest.com/docview/3256495101 |
| Volume | 30 |
| WOSCitedRecordID | wos001262302200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1432-1882 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1432-1882 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: K7- dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1432-1882 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: M7S dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-1882 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-1882 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5s68GL9YnVWvbgTReaR7PJ0UerIJTSFileQjY7QaGkpWkF_72z2yRFUUEvOST7CPPYmd2ZnQ_gQgrEjlSODv3b3FURqRRtrbmlEsdSPnE8VgZsQvT7_mQSDPJLYVmR7V6EJM1KXV520_LS5mRTuN4V0HAVqJG58zVgw3D0VMYOSGPMyUrg0uSBZ-dXZb4f47M52viYX8Kixtr06v_7zz3Yzb1Ldr0Wh33YwvQA6gVyA8sV-RDu7xDnzKSpR5le8JhJLOQ6TsDi6UpXT6A5mT6lZWq2ktN3humLyRagblp2jf9-BONed3z7wHNIBR6Tri05ouP6KDSuiycT1UaRYMdTvlTKTuxYRZ4SQRJJaaD7MKC3bQsFeTVuLKXlHEM1naV4AizShdiEdNC3Y1cJL0DbQZW4xF0yjCJpgFUQNozzcuMa9WIaloWSDaFCIlRoCBVaDbgs-8zXxTZ-bd0s-BXmipeFDrlwrvYa6fNVwZ_N559HO_1b8zPYsQ2LdSpgE6rLxQrPYTt-W75mixbUbrr9wbAFlUfBWzqfdETPQee5ZUT1A6RW3bc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5RQGovBUoRKS8f4ARWs95lvXtACPFWIOKQAzdrbc-qlaIkzaMVP6r_sTPObqIiwY0D131YGs83L894BmDfasRj62NO_SuZ-IJEikJrGfkyjnxGHHc-DJvQ7Xb2-Jg_LMDf-i4Ml1XWOjEoat93fEb-PSbbnLA7EJ0OfkmeGsXZ1XqExhQWLXz6QyHb6OT2gvh7oNTVZef8RlZTBaQjuI0lYpxkqHm0SWpL30Rd4nHqM-u9KpXzRep1XhbWhul1mNPTZoSaDHvirI1iWvYDLCVxplmsWlrOkhYkquFIJ0-I6jxV1R2dcFOPwd6UZBAlhzS0F__bwblz-ywfG8zc1co726BV-Fz50-JsKgBrsIC9L7BSz6oQlepah-sLxIEIhfnFiFW8CKWUkokSrjvhfhG0IYLPpYXvT2z3SWDvR6iPoN-YuhCxfIXOW1CzAYu9fg83QRTcek7bGDPlEq_THFWMvkwIz-QK6LIBUc1R46oG6zzno2tmraEDCgyhwAQUmKgBh7N_BtP2Iq9-vV2z3lSqZmTmfG_AUQ2e-euXV_v2-mp78PGmc39n7m7brS34pAJ2ufBxGxbHwwnuwLL7Pf45Gu4GKRBg3hhU_wCFmUJU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dS8MwMOgU8cX5idOpefBNg2ubNe2jOKeijIFD9haa5IrC6MbWCf57L1m7qaggvjbJNdxH7pL7IuRUCYCmMoF1_fuMmwRFCq_WzDNp4JkIKa6NazYhOp2o34-7H7L4XbR76ZKc5TTYKk1ZfjEy6cU88c3yToOhfmH2hoCgl8kKt4H09r7--DT3I6D0uFeWmONG4tAv0ma-h_FZNS3szS8uUqd52tX_73mTbBRWJ72csckWWYJsm1TLjg60EPAdctMCGFEXvp5M7EFIXcAhs_4DqgdTW1UB_0_t6y01w6kavFHInl0UAS6zPO3s-l3Sa1_3rm5Z0WqBaZTBnAEEPAJh-72EKjUNECk0QxMpY_zU1yYJjYjTRCnX0g9i_NrwQKC1w7VSXrBHKtkwg31CE1ugTagAIl9zI8IY_ABMypHqqDBFWiNeiWSpizLkthvGQM4LKDtESUSUdIiSXo2czdeMZkU4fp1dL2knC4GcyABNO26tSRw-L2m1GP4Z2sHfpp-QtW6rLR_uOveHZN131LbRgnVSycdTOCKr-jV_mYyPHZ--A6LO5R0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+contrastive+multi-view+clustering+with+doubly+enhanced+commonality&rft.jtitle=Multimedia+systems&rft.au=Yang%2C+Zhiyuan&rft.au=Zhu%2C+Changming&rft.au=Li%2C+Zishi&rft.date=2024-08-01&rft.issn=0942-4962&rft.eissn=1432-1882&rft.volume=30&rft.issue=4&rft_id=info:doi/10.1007%2Fs00530-024-01400-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00530_024_01400_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon |