Deep contrastive multi-view clustering with doubly enhanced commonality

Recently, deep multi-view clustering leveraging autoencoders has garnered significant attention due to its ability to simultaneously enhance feature learning capabilities and optimize clustering outcomes. However, existing autoencoder-based deep multi-view clustering methods often exhibit a tendency...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia systems Vol. 30; no. 4; p. 196
Main Authors: Yang, Zhiyuan, Zhu, Changming, Li, Zishi
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
Springer Nature B.V
Subjects:
ISSN:0942-4962, 1432-1882
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, deep multi-view clustering leveraging autoencoders has garnered significant attention due to its ability to simultaneously enhance feature learning capabilities and optimize clustering outcomes. However, existing autoencoder-based deep multi-view clustering methods often exhibit a tendency to either overly emphasize view-specific information, thus neglecting shared information across views, or alternatively, to place undue focus on shared information, resulting in the dilution of complementary information from individual views. Given the principle that commonality resides within individuality, this paper proposes a staged training approach that comprises two phases: pre-training and fine-tuning. The pre-training phase primarily focuses on learning view-specific information, while the fine-tuning phase aims to doubly enhance commonality across views while maintaining these specific details. Specifically, we learn and extract the specific information of each view through the autoencoder in the pre-training stage. After entering the fine-tuning stage, we first initially enhance the commonality between independent specific views through the transformer layer, and then further strengthen these commonalities through contrastive learning on the semantic labels of each view, so as to obtain more accurate clustering results.
AbstractList Recently, deep multi-view clustering leveraging autoencoders has garnered significant attention due to its ability to simultaneously enhance feature learning capabilities and optimize clustering outcomes. However, existing autoencoder-based deep multi-view clustering methods often exhibit a tendency to either overly emphasize view-specific information, thus neglecting shared information across views, or alternatively, to place undue focus on shared information, resulting in the dilution of complementary information from individual views. Given the principle that commonality resides within individuality, this paper proposes a staged training approach that comprises two phases: pre-training and fine-tuning. The pre-training phase primarily focuses on learning view-specific information, while the fine-tuning phase aims to doubly enhance commonality across views while maintaining these specific details. Specifically, we learn and extract the specific information of each view through the autoencoder in the pre-training stage. After entering the fine-tuning stage, we first initially enhance the commonality between independent specific views through the transformer layer, and then further strengthen these commonalities through contrastive learning on the semantic labels of each view, so as to obtain more accurate clustering results.
ArticleNumber 196
Author Zhu, Changming
Li, Zishi
Yang, Zhiyuan
Author_xml – sequence: 1
  givenname: Zhiyuan
  surname: Yang
  fullname: Yang, Zhiyuan
  organization: College of Information Engineering, Shanghai Maritime University
– sequence: 2
  givenname: Changming
  surname: Zhu
  fullname: Zhu, Changming
  email: cmzhu@shmtu.edu.cn
  organization: College of Information Engineering, Shanghai Maritime University
– sequence: 3
  givenname: Zishi
  surname: Li
  fullname: Li, Zishi
  organization: College of Information Engineering, Shanghai Maritime University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOTZD-PUrUKBS-9h2x21qbsl0m2pf_e3a4geOhpYHif4Z1nQWZN2yAh9wweGUDy5AAiARR4SIGFAJRdkTkLBacsTfmMzCELOQ2zmN-QhXN7AJbEAuZk_YLYBbptvFXOmwMGdV95Qw8Gj4GueufRmuYrOBq_C4q2z6tTgM1ONRqLAavrtlGV8adbcl2qyuHd71yS7dvrdvVON5_rj9XzhmrBMk8RRZhiErEoivOyAExKjOIizYuCl1wXKi6SrFR5DgkTEWbDFhgmIs1CnedMLMnDdLaz7XePzst929uhgpOCR3GYRQzGVDqltG2ds1hKbbzy5vylqSQDOVqTkzU5WJNna3JE-T-0s6ZW9nQZEhPkulEW2r9WF6gfm0eCfg
CitedBy_id crossref_primary_10_3390_electronics13244866
crossref_primary_10_1007_s40747_025_01982_x
Cites_doi 10.1016/j.ins.2020.07.059
10.1016/j.knosys.2023.111271
10.1109/ACCESS.2020.3031549
10.1016/j.ins.2019.04.034
10.1007/s10489-021-03129-0
10.1016/j.inffus.2024.102393
10.1016/j.neucom.2021.01.011
10.1109/TKDE.2020.2973981
10.1109/TNNLS.2023.3341807
10.1109/TKDE.2018.2872063
10.1109/TIP.2017.2754939
10.1109/TMM.2020.3025666
10.1007/s13042-021-01307-7
10.1016/j.ipm.2023.103284
10.1016/j.inffus.2022.08.014
10.1109/TMM.2021.3094296
10.1109/TNNLS.2022.3201699
10.1016/j.patcog.2023.109764
10.1109/TCSVT.2022.3143848
10.1109/TMM.2021.3136098
10.1109/TKDE.2022.3193569
10.1109/TKDE.2023.3270311
10.1093/bioinformatics/bts220
10.1016/j.inffus.2023.01.001
10.1109/TKDE.2019.2903810
10.1109/TKDE.2021.3068461
10.1109/TNNLS.2020.2979532
10.1109/TMM.2022.3212270
10.1109/TCYB.2021.3087114
10.1007/s11222-007-9033-z
10.1109/TIP.2019.2913555
10.1609/aaai.v33i01.33014392
10.1109/ICCV.2005.148
10.1109/CVPR52688.2022.00030
10.1109/ICCV51070.2023.01536
10.24963/ijcai.2019/509
10.1109/CVPR52688.2022.01558
10.1109/CVPR.2005.16
10.1109/ICCV.2015.482
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00530-024-01400-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest MSED
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-1882
ExternalDocumentID 10_1007_s00530_024_01400_1
GrantInformation_xml – fundername: National Natural Science Foundation of China (CN)
  grantid: 62276164; 61602296
– fundername: Natural Science Foundation of Shanghai
  grantid: 22ZR1427000
GroupedDBID --Z
-4Z
-59
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
85S
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YIN
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-ee348e751556bfd0e7fe56d8bdd2f2cda6d79fabb07135e9d2f01e73894cbb13
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001262302200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0942-4962
IngestDate Fri Oct 03 06:01:27 EDT 2025
Sat Nov 29 03:46:01 EST 2025
Tue Nov 18 21:27:16 EST 2025
Fri Feb 21 02:38:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Autoencoder
Unsupervised learning
Deep multi-view clustering
Contrastive learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ee348e751556bfd0e7fe56d8bdd2f2cda6d79fabb07135e9d2f01e73894cbb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256495101
PQPubID 2043725
ParticipantIDs proquest_journals_3256495101
crossref_citationtrail_10_1007_s00530_024_01400_1
crossref_primary_10_1007_s00530_024_01400_1
springer_journals_10_1007_s00530_024_01400_1
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Multimedia systems
PublicationTitleAbbrev Multimedia Systems
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lu, Liu, Zuo (CR33) 2021; 435
Nie, Cai, Li, Li (CR9) 2017; 27
Lin, Gou, Liu, Bai, Lv, Peng (CR46) 2022; 45
Du, Zhou, Li, Wang, Lü (CR5) 2023; 93
CR39
CR38
Bian, Xie, Lai, Nie (CR49) 2024; 108
Li, Yang, Zhang (CR3) 2018; 31
CR35
Rong, Zhuo, Peng, Chen, Wang, Han, Cai (CR16) 2021; 547
Xu, Ren, Tang, Yang, Pan, Yang, Pu, Philip, He (CR2) 2022; 35
Xue, Li, Wang, Huang, Zhang, Huang (CR8) 2019; 493
Tao, Liu, Fu, Fu (CR7) 2019; 28
Wang, Yao, Jiang, Mi, Fu (CR20) 2023; 13
Diallo, Hu, Li, Khan, Liang, Wang (CR31) 2023; 143
Khan, Hu, Li, Diallo, Wang (CR12) 2022; 13
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (CR37) 2017; 30
Hu, Zou, Zhang, Lou, Geng, Ye (CR24) 2023; 60
Le-Khac, Healy, Smeaton (CR34) 2020; 8
CR4
Ke, Hong, Yu, Zhang, Liu (CR32) 2022; 52
Xia, Wang, Gao, Zhang, Gao (CR30) 2021; 24
Von Luxburg (CR23) 2007; 17
Zhao, Xu, Guan, Liu (CR11) 2020; 32
CR47
CR45
CR43
Xie, Lin, Qu, Li, Zhang, Ma, Wen, Tao (CR6) 2020; 33
Huang, Tsang, Xu, Lv (CR18) 2021; 34
CR41
CR40
Maaten, Hinton (CR50) 2008; 9
Wang, Chang, Fu, Zhao (CR19) 2021; 25
Wang, Cheng, Gao, Zhao, Jiao (CR27) 2020; 23
Yang, Guan, Zhao, Lu, Zong (CR28) 2022; 35
Cai, Wang, Huang, Ding (CR42) 2012; 28
Lan, Zheng, Yu (CR14) 2024; 284
CR15
Chen, Yang, Peng, Peng, Wang (CR1) 2022; 35
Chen, Yang, Mao, Fahy (CR13) 2021; 52
Fang, Li, Li, Gao, Jia, Zhang (CR10) 2023; 35
Wang, Yang, Liu (CR17) 2019; 32
CR26
CR25
Yang, Guan, Li, Zhao, Cui, Wang (CR29) 2021; 35
Chen, Yang, Peng, Peng, Wang (CR44) 2022; 35
Zheng, Zhu, Li, Tian, Li (CR48) 2023; 89
Wang, Jiang, Peng, Deng, Fu (CR22) 2022; 25
Tian, Sun, Poole, Krishnan, Schmid, Isola (CR36) 2020; 33
Jiang, Peng, Wang, Mi, Fu (CR21) 2022; 32
R-K Lu (1400_CR33) 2021; 435
H Wang (1400_CR20) 2023; 13
1400_CR25
1400_CR26
S Hu (1400_CR24) 2023; 60
S Lan (1400_CR14) 2024; 284
Y Tian (1400_CR36) 2020; 33
S Huang (1400_CR18) 2021; 34
U Von Luxburg (1400_CR23) 2007; 17
U Fang (1400_CR10) 2023; 35
G Jiang (1400_CR21) 2022; 32
Z Xue (1400_CR8) 2019; 493
J Xu (1400_CR2) 2022; 35
Y Yang (1400_CR29) 2021; 35
H Wang (1400_CR22) 2022; 25
1400_CR35
GA Khan (1400_CR12) 2022; 13
1400_CR38
Y Li (1400_CR3) 2018; 31
1400_CR39
A Vaswani (1400_CR37) 2017; 30
F Nie (1400_CR9) 2017; 27
W Rong (1400_CR16) 2021; 547
X Cai (1400_CR42) 2012; 28
Y Wang (1400_CR19) 2021; 25
Y Yang (1400_CR28) 2022; 35
1400_CR40
1400_CR45
1400_CR47
1400_CR41
1400_CR43
J Chen (1400_CR13) 2021; 52
G Du (1400_CR5) 2023; 93
B Diallo (1400_CR31) 2023; 143
J Chen (1400_CR1) 2022; 35
Q Wang (1400_CR27) 2020; 23
L Maaten (1400_CR50) 2008; 9
J Chen (1400_CR44) 2022; 35
1400_CR4
W Zhao (1400_CR11) 2020; 32
J Bian (1400_CR49) 2024; 108
Q Zheng (1400_CR48) 2023; 89
G Ke (1400_CR32) 2022; 52
Y Lin (1400_CR46) 2022; 45
1400_CR15
W Xia (1400_CR30) 2021; 24
Z Tao (1400_CR7) 2019; 28
H Wang (1400_CR17) 2019; 32
PH Le-Khac (1400_CR34) 2020; 8
Y Xie (1400_CR6) 2020; 33
References_xml – ident: CR45
– ident: CR4
– ident: CR39
– volume: 547
  start-page: 68
  year: 2021
  end-page: 87
  ident: CR16
  article-title: Learning a consensus affinity matrix for multi-view clustering via subspaces merging on Grassmann manifold
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.07.059
– volume: 30
  start-page: 5998
  year: 2017
  end-page: 6008
  ident: CR37
  article-title: Attention is all you need
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 284
  start-page: 111271
  year: 2024
  ident: CR14
  article-title: Double-level view-correlation multi-view subspace clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.111271
– volume: 8
  start-page: 193907
  year: 2020
  end-page: 193934
  ident: CR34
  article-title: Contrastive representation learning: a framework and review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031549
– ident: CR35
– ident: CR25
– volume: 493
  start-page: 176
  year: 2019
  end-page: 191
  ident: CR8
  article-title: Beyond global fusion: a group-aware fusion approach for multi-view image clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.04.034
– volume: 52
  start-page: 14918
  issue: 13
  year: 2022
  end-page: 14934
  ident: CR32
  article-title: Efficient multi-view clustering networks
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-03129-0
– volume: 35
  start-page: 1637
  issue: 2
  year: 2021
  end-page: 1650
  ident: CR29
  article-title: Interpretable and efficient heterogeneous graph convolutional network
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 108
  start-page: 102393
  year: 2024
  ident: CR49
  article-title: Multi-view contrastive clustering via integrating graph aggregation and confidence enhancement
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2024.102393
– volume: 435
  start-page: 186
  year: 2021
  end-page: 196
  ident: CR33
  article-title: Attentive multi-view deep subspace clustering net
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.011
– volume: 33
  start-page: 3594
  issue: 11
  year: 2020
  end-page: 3606
  ident: CR6
  article-title: Joint deep multi-view learning for image clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.2973981
– ident: CR15
– volume: 13
  start-page: 1
  year: 2023
  end-page: 13
  ident: CR20
  article-title: Graph-collaborated auto-encoder hashing for multiview binary clustering
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
  doi: 10.1109/TNNLS.2023.3341807
– volume: 31
  start-page: 1863
  issue: 10
  year: 2018
  end-page: 1883
  ident: CR3
  article-title: A survey of multi-view representation learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2872063
– volume: 27
  start-page: 1501
  issue: 3
  year: 2017
  end-page: 1511
  ident: CR9
  article-title: Auto-weighted multi-view learning for image clustering and semi-supervised classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2754939
– volume: 45
  start-page: 4447
  issue: 4
  year: 2022
  end-page: 4461
  ident: CR46
  article-title: Dual contrastive prediction for incomplete multi-view representation learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 3483
  year: 2020
  end-page: 3493
  ident: CR27
  article-title: Deep multi-view subspace clustering with unified and discriminative learning
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.3025666
– volume: 13
  start-page: 1
  year: 2022
  end-page: 13
  ident: CR12
  article-title: Multi-view data clustering via non-negative matrix factorization with manifold regularization
  publication-title: Int. J Mach Learn. Cybern.
  doi: 10.1007/s13042-021-01307-7
– volume: 60
  start-page: 103284
  issue: 3
  year: 2023
  ident: CR24
  article-title: Joint contrastive triple-learning for deep multi-view clustering
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2023.103284
– ident: CR26
– volume: 89
  start-page: 198
  year: 2023
  end-page: 209
  ident: CR48
  article-title: Comprehensive multi-view representation learning
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.08.014
– volume: 24
  start-page: 3182
  year: 2021
  end-page: 3192
  ident: CR30
  article-title: Self-supervised graph convolutional network for multi-view clustering
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3094296
– ident: CR43
– ident: CR47
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  end-page: 2605
  ident: CR50
  article-title: Visualizing data using t-sne
  publication-title: J Mach. Learn. Res.
– volume: 35
  start-page: 4058
  issue: 3
  year: 2022
  end-page: 4071
  ident: CR1
  article-title: Augmented sparse representation for incomplete multiview clustering
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
  doi: 10.1109/TNNLS.2022.3201699
– volume: 143
  start-page: 109764
  year: 2023
  ident: CR31
  article-title: Auto-attention mechanism for multi-view deep embedding clustering
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2023.109764
– volume: 32
  start-page: 5307
  issue: 8
  year: 2022
  end-page: 5318
  ident: CR21
  article-title: Tensorial multi-view clustering via low-rank constrained high-order graph learning
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3143848
– volume: 35
  start-page: 4058
  issue: 3
  year: 2022
  end-page: 4071
  ident: CR44
  article-title: Augmented sparse representation for incomplete multiview clustering
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
  doi: 10.1109/TNNLS.2022.3201699
– volume: 25
  start-page: 1008
  year: 2021
  end-page: 1018
  ident: CR19
  article-title: Consistent multiple graph embedding for multi-view clustering
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3136098
– volume: 35
  start-page: 7470
  issue: 7
  year: 2022
  end-page: 7482
  ident: CR2
  article-title: Self-supervised discriminative feature learning for deep multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng
  doi: 10.1109/TKDE.2022.3193569
– volume: 35
  start-page: 12350
  issue: 12
  year: 2023
  end-page: 12368
  ident: CR10
  article-title: A comprehensive survey on multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2023.3270311
– volume: 35
  start-page: 4894
  issue: 5
  year: 2022
  end-page: 4907
  ident: CR28
  article-title: Graph substructure assembling network with soft sequence and context attention
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: CR40
– volume: 28
  start-page: 16
  issue: 12
  year: 2012
  end-page: 24
  ident: CR42
  article-title: Joint stage recognition and anatomical annotation of drosophila gene expression patterns
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts220
– volume: 33
  start-page: 6827
  year: 2020
  end-page: 6839
  ident: CR36
  article-title: What makes for good views for contrastive learning?
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 93
  start-page: 330
  year: 2023
  end-page: 343
  ident: CR5
  article-title: Neighbor-aware deep multi-view clustering via graph convolutional network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.01.001
– volume: 32
  start-page: 1116
  issue: 6
  year: 2019
  end-page: 1129
  ident: CR17
  article-title: Gmc: Graph-based multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2903810
– volume: 34
  start-page: 5869
  issue: 12
  year: 2021
  end-page: 5883
  ident: CR18
  article-title: Measuring diversity in graph learning: a unified framework for structured multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3068461
– ident: CR38
– volume: 32
  start-page: 814
  issue: 2
  year: 2020
  end-page: 825
  ident: CR11
  article-title: Multiview concept learning via deep matrix factorization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2979532
– volume: 25
  start-page: 6629
  year: 2022
  end-page: 6641
  ident: CR22
  article-title: Towards adaptive consensus graph: multi-view clustering via graph collaboration
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2022.3212270
– volume: 52
  start-page: 12364
  issue: 11
  year: 2021
  end-page: 12378
  ident: CR13
  article-title: Multiview subspace clustering using low-rank representation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3087114
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: CR23
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 28
  start-page: 4634
  issue: 9
  year: 2019
  end-page: 4645
  ident: CR7
  article-title: Multi-view saliency-guided clustering for image cosegmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2913555
– ident: CR41
– volume: 35
  start-page: 4058
  issue: 3
  year: 2022
  ident: 1400_CR44
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
  doi: 10.1109/TNNLS.2022.3201699
– volume: 13
  start-page: 1
  year: 2023
  ident: 1400_CR20
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
  doi: 10.1109/TNNLS.2023.3341807
– volume: 52
  start-page: 14918
  issue: 13
  year: 2022
  ident: 1400_CR32
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-03129-0
– volume: 45
  start-page: 4447
  issue: 4
  year: 2022
  ident: 1400_CR46
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 35
  start-page: 7470
  issue: 7
  year: 2022
  ident: 1400_CR2
  publication-title: IEEE Trans. Knowl. Data Eng
  doi: 10.1109/TKDE.2022.3193569
– volume: 32
  start-page: 1116
  issue: 6
  year: 2019
  ident: 1400_CR17
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2903810
– volume: 28
  start-page: 4634
  issue: 9
  year: 2019
  ident: 1400_CR7
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2913555
– volume: 52
  start-page: 12364
  issue: 11
  year: 2021
  ident: 1400_CR13
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3087114
– volume: 34
  start-page: 5869
  issue: 12
  year: 2021
  ident: 1400_CR18
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3068461
– volume: 13
  start-page: 1
  year: 2022
  ident: 1400_CR12
  publication-title: Int. J Mach Learn. Cybern.
  doi: 10.1007/s13042-021-01307-7
– volume: 25
  start-page: 6629
  year: 2022
  ident: 1400_CR22
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2022.3212270
– volume: 33
  start-page: 3594
  issue: 11
  year: 2020
  ident: 1400_CR6
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.2973981
– volume: 35
  start-page: 1637
  issue: 2
  year: 2021
  ident: 1400_CR29
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: 1400_CR45
– volume: 31
  start-page: 1863
  issue: 10
  year: 2018
  ident: 1400_CR3
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2872063
– volume: 435
  start-page: 186
  year: 2021
  ident: 1400_CR33
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.011
– volume: 28
  start-page: 16
  issue: 12
  year: 2012
  ident: 1400_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts220
– ident: 1400_CR41
– volume: 24
  start-page: 3182
  year: 2021
  ident: 1400_CR30
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3094296
– volume: 30
  start-page: 5998
  year: 2017
  ident: 1400_CR37
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 108
  start-page: 102393
  year: 2024
  ident: 1400_CR49
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2024.102393
– volume: 17
  start-page: 395
  year: 2007
  ident: 1400_CR23
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 8
  start-page: 193907
  year: 2020
  ident: 1400_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031549
– volume: 547
  start-page: 68
  year: 2021
  ident: 1400_CR16
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.07.059
– volume: 33
  start-page: 6827
  year: 2020
  ident: 1400_CR36
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 1400_CR50
  publication-title: J Mach. Learn. Res.
– ident: 1400_CR43
  doi: 10.1609/aaai.v33i01.33014392
– volume: 27
  start-page: 1501
  issue: 3
  year: 2017
  ident: 1400_CR9
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2754939
– ident: 1400_CR38
  doi: 10.1109/ICCV.2005.148
– volume: 143
  start-page: 109764
  year: 2023
  ident: 1400_CR31
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2023.109764
– volume: 23
  start-page: 3483
  year: 2020
  ident: 1400_CR27
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.3025666
– ident: 1400_CR47
  doi: 10.1109/CVPR52688.2022.00030
– volume: 60
  start-page: 103284
  issue: 3
  year: 2023
  ident: 1400_CR24
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2023.103284
– ident: 1400_CR25
  doi: 10.1109/ICCV51070.2023.01536
– volume: 35
  start-page: 12350
  issue: 12
  year: 2023
  ident: 1400_CR10
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2023.3270311
– volume: 32
  start-page: 814
  issue: 2
  year: 2020
  ident: 1400_CR11
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2979532
– volume: 35
  start-page: 4058
  issue: 3
  year: 2022
  ident: 1400_CR1
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
  doi: 10.1109/TNNLS.2022.3201699
– ident: 1400_CR4
  doi: 10.24963/ijcai.2019/509
– ident: 1400_CR35
– ident: 1400_CR26
  doi: 10.1109/CVPR52688.2022.01558
– ident: 1400_CR39
– ident: 1400_CR40
  doi: 10.1109/CVPR.2005.16
– ident: 1400_CR15
  doi: 10.1109/ICCV.2015.482
– volume: 25
  start-page: 1008
  year: 2021
  ident: 1400_CR19
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3136098
– volume: 93
  start-page: 330
  year: 2023
  ident: 1400_CR5
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.01.001
– volume: 35
  start-page: 4894
  issue: 5
  year: 2022
  ident: 1400_CR28
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 89
  start-page: 198
  year: 2023
  ident: 1400_CR48
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.08.014
– volume: 493
  start-page: 176
  year: 2019
  ident: 1400_CR8
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.04.034
– volume: 284
  start-page: 111271
  year: 2024
  ident: 1400_CR14
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.111271
– volume: 32
  start-page: 5307
  issue: 8
  year: 2022
  ident: 1400_CR21
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3143848
SSID ssj0017630
Score 2.3808203
Snippet Recently, deep multi-view clustering leveraging autoencoders has garnered significant attention due to its ability to simultaneously enhance feature learning...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 196
SubjectTerms Clustering
Commonality
Computer Communication Networks
Computer Graphics
Computer Science
Cryptology
Data Storage Representation
Datasets
Dilution
Learning
Multimedia Information Systems
Neural networks
Operating Systems
Regular Paper
Semantics
Training
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgcODCeIrBQDlwg4il7Zr2hBAwOE1I7LBb1SSuQJq6sW5I_HviLN0EErtwbZvEqu3YsR1_AJdKInaVCSn1H_DI5Fal7NGaC1OEwiSW49o4sAnZ7yfDYfriA26VL6us90S3UZuxphj5TWhtc0TugLidfHBCjaLsqofQ2IQt6pIgXOne6zKLYHXHxVjSyJKRxoG_NOOuzpH0dbi1UJzOGJa4n4Zp5W3-SpA6u9Nr_pfiPdj1Hie7W4jIPmxgeQDNGs2BeeU-hKcHxAlzpet5RZsgc8WGnFZhejSnjgqWQkaRW2bGczX6Yli-uQoCO4yWcz79EQx6j4P7Z-5hFri2-jfjiGGUoCSsl1gVpoOywG5sEmVMUATa5LGRaZEr5eD8MLVPOwKl9XQirZQIj6FRjks8AZZTczapQkwCHRkZpxiEaIrIctwaS1m0QNS_ONO-BTkhYYyyZfNkx5bMsiVzbMlEC66WYyaLBhxrv27XvMi8MlbZihEtuK65uXr992yn62c7g53ACRCVA7ahMZvO8Ry29efsvZpeOFH8Btjp45U
  priority: 102
  providerName: ProQuest
Title Deep contrastive multi-view clustering with doubly enhanced commonality
URI https://link.springer.com/article/10.1007/s00530-024-01400-1
https://www.proquest.com/docview/3256495101
Volume 30
WOSCitedRecordID wos001262302200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5s68GL9YnVWvbgTReaR7PJ0UerIJTSFileQjY7QaGkpWkF_72z2yRFUUEvOST7CPPYmd2ZnQ_gQgrEjlSODv3b3FURqRRtrbmlEsdSPnE8VgZsQvT7_mQSDPJLYVmR7V6EJM1KXV520_LS5mRTuN4V0HAVqJG58zVgw3D0VMYOSGPMyUrg0uSBZ-dXZb4f47M52viYX8Kixtr06v_7zz3Yzb1Ldr0Wh33YwvQA6gVyA8sV-RDu7xDnzKSpR5le8JhJLOQ6TsDi6UpXT6A5mT6lZWq2ktN3humLyRagblp2jf9-BONed3z7wHNIBR6Tri05ouP6KDSuiycT1UaRYMdTvlTKTuxYRZ4SQRJJaaD7MKC3bQsFeTVuLKXlHEM1naV4AizShdiEdNC3Y1cJL0DbQZW4xF0yjCJpgFUQNozzcuMa9WIaloWSDaFCIlRoCBVaDbgs-8zXxTZ-bd0s-BXmipeFDrlwrvYa6fNVwZ_N559HO_1b8zPYsQ2LdSpgE6rLxQrPYTt-W75mixbUbrr9wbAFlUfBWzqfdETPQee5ZUT1A6RW3bc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5RQGovBUoRKS8f4ARWs95lvXtACPFWIOKQAzdrbc-qlaIkzaMVP6r_sTPObqIiwY0D131YGs83L894BmDfasRj62NO_SuZ-IJEikJrGfkyjnxGHHc-DJvQ7Xb2-Jg_LMDf-i4Ml1XWOjEoat93fEb-PSbbnLA7EJ0OfkmeGsXZ1XqExhQWLXz6QyHb6OT2gvh7oNTVZef8RlZTBaQjuI0lYpxkqHm0SWpL30Rd4nHqM-u9KpXzRep1XhbWhul1mNPTZoSaDHvirI1iWvYDLCVxplmsWlrOkhYkquFIJ0-I6jxV1R2dcFOPwd6UZBAlhzS0F__bwblz-ywfG8zc1co726BV-Fz50-JsKgBrsIC9L7BSz6oQlepah-sLxIEIhfnFiFW8CKWUkokSrjvhfhG0IYLPpYXvT2z3SWDvR6iPoN-YuhCxfIXOW1CzAYu9fg83QRTcek7bGDPlEq_THFWMvkwIz-QK6LIBUc1R46oG6zzno2tmraEDCgyhwAQUmKgBh7N_BtP2Iq9-vV2z3lSqZmTmfG_AUQ2e-euXV_v2-mp78PGmc39n7m7brS34pAJ2ufBxGxbHwwnuwLL7Pf45Gu4GKRBg3hhU_wCFmUJU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dS8MwMOgU8cX5idOpefBNg2ubNe2jOKeijIFD9haa5IrC6MbWCf57L1m7qaggvjbJNdxH7pL7IuRUCYCmMoF1_fuMmwRFCq_WzDNp4JkIKa6NazYhOp2o34-7H7L4XbR76ZKc5TTYKk1ZfjEy6cU88c3yToOhfmH2hoCgl8kKt4H09r7--DT3I6D0uFeWmONG4tAv0ma-h_FZNS3szS8uUqd52tX_73mTbBRWJ72csckWWYJsm1TLjg60EPAdctMCGFEXvp5M7EFIXcAhs_4DqgdTW1UB_0_t6y01w6kavFHInl0UAS6zPO3s-l3Sa1_3rm5Z0WqBaZTBnAEEPAJh-72EKjUNECk0QxMpY_zU1yYJjYjTRCnX0g9i_NrwQKC1w7VSXrBHKtkwg31CE1ugTagAIl9zI8IY_ABMypHqqDBFWiNeiWSpizLkthvGQM4LKDtESUSUdIiSXo2czdeMZkU4fp1dL2knC4GcyABNO26tSRw-L2m1GP4Z2sHfpp-QtW6rLR_uOveHZN131LbRgnVSycdTOCKr-jV_mYyPHZ--A6LO5R0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+contrastive+multi-view+clustering+with+doubly+enhanced+commonality&rft.jtitle=Multimedia+systems&rft.au=Yang%2C+Zhiyuan&rft.au=Zhu%2C+Changming&rft.au=Li%2C+Zishi&rft.date=2024-08-01&rft.issn=0942-4962&rft.eissn=1432-1882&rft.volume=30&rft.issue=4&rft_id=info:doi/10.1007%2Fs00530-024-01400-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00530_024_01400_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon