Conditional Variational Autoencoder Networks for Autonomous Vehicle Path Prediction

Mobility of autonomous vehicles is a challenging task to implement. Under the given traffic circumstances, all agent vehicles’ behavior is to be understood and their paths for a short future needs to be predicted to decide upon the maneuver of the ego vehicle. We explore variational autoencoder netw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters Jg. 54; H. 5; S. 3965 - 3978
Hauptverfasser: Jagadish, D. N., Chauhan, Arun, Mahto, Lakshman
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.10.2022
Springer Nature B.V
Schlagworte:
ISSN:1370-4621, 1573-773X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Mobility of autonomous vehicles is a challenging task to implement. Under the given traffic circumstances, all agent vehicles’ behavior is to be understood and their paths for a short future needs to be predicted to decide upon the maneuver of the ego vehicle. We explore variational autoencoder networks to get multimodal predictions of agents. In our work, we condition the network on past trajectories of agents and traffic scenes as well. The latent space representation of traffic scenes is achieved by using another variational autoencoder network. The proposed networks are trained for varied prediction horizon. The performance of a network is compared with other networks trained on the dataset.
AbstractList Mobility of autonomous vehicles is a challenging task to implement. Under the given traffic circumstances, all agent vehicles’ behavior is to be understood and their paths for a short future needs to be predicted to decide upon the maneuver of the ego vehicle. We explore variational autoencoder networks to get multimodal predictions of agents. In our work, we condition the network on past trajectories of agents and traffic scenes as well. The latent space representation of traffic scenes is achieved by using another variational autoencoder network. The proposed networks are trained for varied prediction horizon. The performance of a network is compared with other networks trained on the dataset.
Author Chauhan, Arun
Mahto, Lakshman
Jagadish, D. N.
Author_xml – sequence: 1
  givenname: D. N.
  surname: Jagadish
  fullname: Jagadish, D. N.
  organization: Indian Institute of Information Technology Dharwad
– sequence: 2
  givenname: Arun
  surname: Chauhan
  fullname: Chauhan, Arun
  organization: Graphic Era University
– sequence: 3
  givenname: Lakshman
  orcidid: 0000-0003-4243-0706
  surname: Mahto
  fullname: Mahto, Lakshman
  email: lm.optlearning@gmail.com
  organization: Indian Institute of Information Technology Dharwad
BookMark eNp9kE1LAzEQhoNUsK3-AU8Lnlfz1Wx6LMUvKFpQi7cQs7M2dbupSRaxv960Kwgeepph5n2Gd94B6jWuAYTOCb4kGBdXgRAsWI4pzQmWmObbI9Qno4LlRcFee6lnBc65oOQEDUJYYZwwivvoaeqa0kbrGl1nC-2t_u0nbXTQGFeCzx4gfjn_EbLK-f2icWvXhmwBS2tqyOY6LrO5h9KaHX2KjitdBzj7rUP0cnP9PL3LZ4-399PJLDeMjGMOgItSCmP4WyUlYFkKSZNPXlaagRBEGK65IHxEuMZjrSGNS6Ep8AoMNmyILrq7G-8-WwhRrVzrk_mg6JhIxiVlRVLJTmW8C8FDpYyN-y-j17ZWBKtdhKqLUKUI1T5CtU0o_YduvF1r_30YYh0Ukrh5B__n6gD1A5y3h-s
CitedBy_id crossref_primary_10_1145_3719290
crossref_primary_10_1016_j_trc_2025_105145
Cites_doi 10.1109/LRA.2018.2805314
10.1016/j.neunet.2018.09.002
10.1109/TITS.2010.2048314
10.1016/S0925-2312(99)00174-5
10.1109/TRO.2012.2195829
10.1162/neco.1997.9.8.1735
10.1109/ACCESS.2019.2907000
10.1109/IVS.2013.6629601
10.1109/TITS.2020.3012034
10.1109/CVPR.2018.00240
10.1109/IVS.2018.8500419
10.1109/CVPR.2016.90
10.1109/IVS.2017.7995948
10.1109/ICRA.2019.8793868
10.1109/IVS.2017.7995919
10.1109/CVPR.2019.01240
10.1109/ACCESS.2021.3083918
10.1109/IVS.2018.8500493
10.1109/CVPR.2017.233
10.1109/IVS.2018.8500697
10.1109/ICRA.2019.8793582
10.1109/ICCCA49541.2020.9250790
10.1007/978-3-030-75762-5_11
10.1109/ICRA.2018.8460874
10.1109/ITSC48978.2021.9564733
10.1109/ITSC.2010.5625262
10.3115/v1/D14-1179
10.1109/CVPR.2018.00376
10.1109/ITSC.2018.8569595
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
Copyright Springer Nature B.V. Oct 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: Copyright Springer Nature B.V. Oct 2022
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-022-10802-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 3978
ExternalDocumentID 10_1007_s11063_022_10802_z
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
77I
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-ee07d86cc4bf88e08d6821374dfa3e6616c4a4614514a09aaea3ed6a2e4fec0c3
IEDL.DBID P5Z
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777379600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1370-4621
IngestDate Sat Oct 18 23:15:07 EDT 2025
Sat Nov 29 02:27:53 EST 2025
Tue Nov 18 21:01:04 EST 2025
Fri Feb 21 02:47:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Conditional variational autoencoder
Deep learning
Autonomous vehicle path
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ee07d86cc4bf88e08d6821374dfa3e6616c4a4614514a09aaea3ed6a2e4fec0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4243-0706
PQID 2918348237
PQPubID 2043838
PageCount 14
ParticipantIDs proquest_journals_2918348237
crossref_citationtrail_10_1007_s11063_022_10802_z
crossref_primary_10_1007_s11063_022_10802_z
springer_journals_10_1007_s11063_022_10802_z
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zyner, Worrall, Nebot (CR12) 2018; 3
Hammer (CR15) 2000; 31
Fernando, Denman, Sridharan, Fookes (CR8) 2018; 108
CR19
CR17
CR16
CR14
CR13
CR34
CR11
CR33
CR10
CR32
CR31
CR30
Dai, Li, Li (CR18) 2019; 7
Agamennoni, Nieto, Nebot (CR5) 2012; 28
CR2
CR4
CR3
CR6
CR7
CR29
CR28
CR9
CR27
CR26
CR25
CR24
CR23
CR22
CR20
Brännström, Coelingh, Sjöberg (CR1) 2010; 11
Hochreiter, Schmidhuber (CR21) 1997; 9
10802_CR28
A Zyner (10802_CR12) 2018; 3
10802_CR27
10802_CR29
10802_CR24
10802_CR23
10802_CR26
10802_CR25
T Fernando (10802_CR8) 2018; 108
10802_CR20
10802_CR22
B Hammer (10802_CR15) 2000; 31
10802_CR2
10802_CR7
10802_CR9
10802_CR3
10802_CR17
10802_CR4
10802_CR16
10802_CR19
10802_CR6
S Hochreiter (10802_CR21) 1997; 9
10802_CR13
10802_CR34
10802_CR14
10802_CR31
10802_CR30
M Brännström (10802_CR1) 2010; 11
10802_CR11
10802_CR33
10802_CR10
10802_CR32
G Agamennoni (10802_CR5) 2012; 28
S Dai (10802_CR18) 2019; 7
References_xml – volume: 3
  start-page: 1759
  issue: 3
  year: 2018
  end-page: 1764
  ident: CR12
  article-title: A recurrent neural network solution for predicting driver intention at unsignalized intersections
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2018.2805314
– ident: CR22
– volume: 108
  start-page: 466
  year: 2018
  end-page: 478
  ident: CR8
  article-title: Soft+ hardwired attention: an LSTM framework for human trajectory prediction and abnormal event detection
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.09.002
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR30
– ident: CR10
– volume: 11
  start-page: 658
  issue: 3
  year: 2010
  end-page: 669
  ident: CR1
  article-title: Model-based threat assessment for avoiding arbitrary vehicle collisions
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2010.2048314
– ident: CR33
– ident: CR6
– ident: CR29
– volume: 31
  start-page: 107
  issue: 1–4
  year: 2000
  end-page: 123
  ident: CR15
  article-title: On the approximation capability of recurrent neural networks
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(99)00174-5
– ident: CR25
– ident: CR27
– ident: CR23
– volume: 28
  start-page: 855
  issue: 4
  year: 2012
  end-page: 870
  ident: CR5
  article-title: Estimation of multivehicle dynamics by considering contextual information
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2012.2195829
– ident: CR19
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR21
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 7
  start-page: 38287
  year: 2019
  end-page: 38296
  ident: CR18
  article-title: Modeling vehicle interactions via modified LSTM models for trajectory prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907000
– ident: CR3
– ident: CR17
– ident: CR31
– ident: CR13
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR34
– ident: CR7
– ident: CR28
– ident: CR26
– ident: CR24
– ident: CR20
– volume: 11
  start-page: 658
  issue: 3
  year: 2010
  ident: 10802_CR1
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2010.2048314
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10802_CR21
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10802_CR3
  doi: 10.1109/IVS.2013.6629601
– ident: 10802_CR10
  doi: 10.1109/TITS.2020.3012034
– ident: 10802_CR11
– ident: 10802_CR7
  doi: 10.1109/CVPR.2018.00240
– ident: 10802_CR19
  doi: 10.1109/IVS.2018.8500419
– ident: 10802_CR34
– volume: 108
  start-page: 466
  year: 2018
  ident: 10802_CR8
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.09.002
– ident: 10802_CR2
– ident: 10802_CR30
  doi: 10.1109/CVPR.2016.90
– ident: 10802_CR4
– ident: 10802_CR17
  doi: 10.1109/IVS.2017.7995948
– volume: 3
  start-page: 1759
  issue: 3
  year: 2018
  ident: 10802_CR12
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2018.2805314
– ident: 10802_CR22
  doi: 10.1109/ICRA.2019.8793868
– ident: 10802_CR13
  doi: 10.1109/IVS.2017.7995919
– ident: 10802_CR26
  doi: 10.1109/CVPR.2019.01240
– ident: 10802_CR32
  doi: 10.1109/ACCESS.2021.3083918
– ident: 10802_CR16
  doi: 10.1109/IVS.2018.8500493
– ident: 10802_CR24
  doi: 10.1109/CVPR.2017.233
– ident: 10802_CR9
  doi: 10.1109/IVS.2018.8500697
– ident: 10802_CR29
  doi: 10.1109/ICRA.2019.8793582
– volume: 28
  start-page: 855
  issue: 4
  year: 2012
  ident: 10802_CR5
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2012.2195829
– ident: 10802_CR33
  doi: 10.1109/ICCCA49541.2020.9250790
– ident: 10802_CR27
  doi: 10.1007/978-3-030-75762-5_11
– ident: 10802_CR28
  doi: 10.1109/ICRA.2018.8460874
– ident: 10802_CR31
  doi: 10.1109/ITSC48978.2021.9564733
– ident: 10802_CR6
  doi: 10.1109/ITSC.2010.5625262
– ident: 10802_CR20
  doi: 10.3115/v1/D14-1179
– volume: 7
  start-page: 38287
  year: 2019
  ident: 10802_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907000
– ident: 10802_CR23
– ident: 10802_CR25
  doi: 10.1109/CVPR.2018.00376
– ident: 10802_CR14
  doi: 10.1109/ITSC.2018.8569595
– volume: 31
  start-page: 107
  issue: 1–4
  year: 2000
  ident: 10802_CR15
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(99)00174-5
SSID ssj0010020
Score 2.3168259
Snippet Mobility of autonomous vehicles is a challenging task to implement. Under the given traffic circumstances, all agent vehicles’ behavior is to be understood and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3965
SubjectTerms Artificial Intelligence
Complex Systems
Computational Intelligence
Computer Science
Networks
Neural networks
Path predictors
Semantics
Sensors
Traffic control
Traffic flow
Vehicles
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86ffDF-YnTKXnwTQNtkqXp4xgOn8ZwOvZW0iRFQVpZOx_215uk6Yqigr42l6PcJbm7XO53AFwrY3PxQGVImfPfgmpTFEdZhGSmCdFccimoazYRTSZ8sYinviisbF67NylJd1K3xW4merE5R4zsuziM1ttgx5g7bhs2PMzmm9yB9YBcmBUFiDIc-lKZ73l8Nketj_klLeqszbj7v_88APveu4TDejkcgi2dH4Fu07kB-o18DGajwqaq3TUgnJtw2V8JwuGqKiy0pTLUk_qFeAmNX-sG8sLeE8C5frbc4dQ4j3C6tJkeO_sEPI3vHkf3yLdXQNLsuwppHUSKMylpmnGuA64Yx0ZqVGWCaGO3maSCMtvKl4ogFkKbz4oJrGmmZSDJKejkRa7PAAxpNNAac6ZMgMN4kKaSDNKMhIJJQUjcA2Ej5UR67HHbAuM1aVGTrdQSIzUHWYqTdQ_cbOa81cgbv1L3G-UlfheWCY7NgUUtHE8P3DbKaod_5nb-N_ILsIdrfaMg7INOtVzpS7Ar36uXcnnlVucH1Rbfow
  priority: 102
  providerName: Springer Nature
Title Conditional Variational Autoencoder Networks for Autonomous Vehicle Path Prediction
URI https://link.springer.com/article/10.1007/s11063-022-10802-z
https://www.proquest.com/docview/2918348237
Volume 54
WOSCitedRecordID wos000777379600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-o8-DFb3E6Rw7eNNimWZqeREURhFE2HcNLyZIUBVl1mx78681r0w0FvXjpoU1CyXvJ-0p-P4Bj42wu65icGrf_I6g2p0mcx1TnNoqs1FIrXpJNxN2uHA6T1Cfcpv5YZb0nlhu1KTTmyM9Y4pSPI7TK-esbRdYorK56Co1laCBKAlI3pJ3HeRUBfaEy4IoDygUL_aWZ6uqci4WwgskonrJj9PO7YVp4mz8KpKXdudn47x9vwrr3OMlFpSJbsGTH27BRszkQv7h3oH9VYPm6TA2SgQuhfZqQXLzPCoS7NK51tzo1PiXO1y0_jAvMHZCBfcLRSeocSpJOsPqDvXfh4eb6_uqWesoFqt1anFFrg9hIoTUf5VLaQBohmZs_bnIVWWfLheaKC6T35SpIlLLutRGKWZ5bHehoD1bGxdjuAwl53LGWSWFc0CNkMBrpqDPKo1AJraIoaUJYz3emPR450mK8ZAskZZRR5mRUwpiy7LMJJ_M-rxUax5-tW7VgMr8yp9lCKk04rUW7-Pz7aAd_j3YIa6zSJhqELViZTd7tEazqj9nzdNKGxuV1N-21Yfkupu1SS92z1x98Adx_7Kk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6FggSXFgoVoQ98aE9gsWs7tvdQVVVp1CppFIkQ5bY4tldUQtmSpEX0R_U31rOPRiA1txx6Xa9H2vXnedrzAey7YHNZy2XUBf2PTbUFTVSmqM08515bbY0oyCZUr6dHo6TfgLv6Lgweq6x1YqGoXW4xR_6FJQF8AlurHF39psgahdXVmkKjhEXH__0TQrbZ4fnXsL4HjLVPBydntGIVoDbAbU69j5TT0loxzrT2kXZSs5gr4TLDfTBX0gojJDLYChMlxvjw2EnDvMi8jSwPcp_Bc8G1wn3VUfShaoG-VxHgqYgKyeLqkk55VS_EXlgxZRRP9TF6-68hXHi3_xVkCzvX3nhqf-g1rFceNTkut8AbaPjJJmzUbBWkUl5v4dtJjuX5IvVJhmZ6WaVByfH1PMd2ni683StPxc9I8OWLgUmOuREy9D9ROukHh5n0p1jdwtnv4PtKPm0L1ib5xL8HEgvV8p5p6UJQJ3U0HlveGmc8NtIazpMmxPX6prbqt460H7_SRadoxEQaMFG0aWXpbRM-Pcy5KruNLH17pwZCWmmeWbpAQRM-11BaDD8u7cNyaR_h5dngopt2z3udbXjFSiTTKN6Btfn02u_CC3szv5xN94o9QeDHqiF2D3HuR6Y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60injxLVar5uBNg7vZNJs9lmpRlFKolt6WNMmiINvSrh789Wb2YVVUEK-bybBMHjOTmfkG4MQ4ncuaJqHG3f8Iqs1pFCYh1YkNAiu11IrnzSbCblcOh1HvQxV_nu1ehSSLmgZEaUqz84lJzueFb86Twfgjo5gjx-jrIixxTKRHf70_eI8joDWUu1yhR7lgflk28z2Pz6ppbm9-CZHmmqez_v9_3oC10uokrWKbbMKCTbdgveroQMoDvg399hhD2PnzIBk4N7p8KiSt52yMkJfGUXeLzPEZcfZuPpCO8f2ADOwDcic9Z1SS3hQjQDh7B-47l3ftK1q2XaDanceMWuuFRgqt-SiR0nrSCMmcBLlJVGCdPheaKy6wxS9XXqSUdZ-NUMzyxGpPB7tQS8ep3QPi87BpLZPCOMdHSG800kFzlAS-EloFQVQHv5J4rEtMcmyN8RTP0ZRRarGTWg5lyuLXOpy-z5kUiBy_UjeqhYzL0zmLWeQuMo4wPXU4qxZuPvwzt_2_kR_DSu-iE99ed28OYJUVS089vwG1bPpsD2FZv2SPs-lRvmnfAOLA62s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+Variational+Autoencoder+Networks+for+Autonomous+Vehicle+Path+Prediction&rft.jtitle=Neural+processing+letters&rft.au=Jagadish%2C+D.+N.&rft.au=Chauhan%2C+Arun&rft.au=Mahto%2C+Lakshman&rft.date=2022-10-01&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=54&rft.issue=5&rft.spage=3965&rft.epage=3978&rft_id=info:doi/10.1007%2Fs11063-022-10802-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11063_022_10802_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon