Conditional Variational Autoencoder Networks for Autonomous Vehicle Path Prediction

Mobility of autonomous vehicles is a challenging task to implement. Under the given traffic circumstances, all agent vehicles’ behavior is to be understood and their paths for a short future needs to be predicted to decide upon the maneuver of the ego vehicle. We explore variational autoencoder netw...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural processing letters Ročník 54; číslo 5; s. 3965 - 3978
Hlavní autori: Jagadish, D. N., Chauhan, Arun, Mahto, Lakshman
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2022
Springer Nature B.V
Predmet:
ISSN:1370-4621, 1573-773X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Mobility of autonomous vehicles is a challenging task to implement. Under the given traffic circumstances, all agent vehicles’ behavior is to be understood and their paths for a short future needs to be predicted to decide upon the maneuver of the ego vehicle. We explore variational autoencoder networks to get multimodal predictions of agents. In our work, we condition the network on past trajectories of agents and traffic scenes as well. The latent space representation of traffic scenes is achieved by using another variational autoencoder network. The proposed networks are trained for varied prediction horizon. The performance of a network is compared with other networks trained on the dataset.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1370-4621
1573-773X
DOI:10.1007/s11063-022-10802-z