Variance-Based Subgradient Extragradient Method for Stochastic Variational Inequality Problems
In this paper, we propose a variance-based subgradient extragradient algorithm with line search for stochastic variational inequality problems by aiming at robustness with respect to an unknown Lipschitz constant. This algorithm may be regarded as an integration of a subgradient extragradient algori...
Gespeichert in:
| Veröffentlicht in: | Journal of scientific computing Jg. 89; H. 1; S. 4 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.10.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose a variance-based subgradient extragradient algorithm with line search for stochastic variational inequality problems by aiming at robustness with respect to an unknown Lipschitz constant. This algorithm may be regarded as an integration of a subgradient extragradient algorithm for deterministic variational inequality problems and a stochastic approximation method for expected values. At each iteration, different from the conventional variance-based extragradient algorithms to take projection onto the feasible set twicely, our algorithm conducts a subgradient projection which can be calculated explicitly. Since our algorithm requires only one projection at each iteration, the computation load may be reduced. We discuss the asymptotic convergence, the sublinear convergence rate in terms of the mean natural residual function, and the optimal oracle complexity for the proposed algorithm. Furthermore, we establish the linear convergence rate with finite computational budget under both the strongly Minty variational inequality and the error bound condition. Preliminary numerical experiments indicate that the proposed algorithm is competitive with some existing methods. |
|---|---|
| AbstractList | In this paper, we propose a variance-based subgradient extragradient algorithm with line search for stochastic variational inequality problems by aiming at robustness with respect to an unknown Lipschitz constant. This algorithm may be regarded as an integration of a subgradient extragradient algorithm for deterministic variational inequality problems and a stochastic approximation method for expected values. At each iteration, different from the conventional variance-based extragradient algorithms to take projection onto the feasible set twicely, our algorithm conducts a subgradient projection which can be calculated explicitly. Since our algorithm requires only one projection at each iteration, the computation load may be reduced. We discuss the asymptotic convergence, the sublinear convergence rate in terms of the mean natural residual function, and the optimal oracle complexity for the proposed algorithm. Furthermore, we establish the linear convergence rate with finite computational budget under both the strongly Minty variational inequality and the error bound condition. Preliminary numerical experiments indicate that the proposed algorithm is competitive with some existing methods. |
| ArticleNumber | 4 |
| Author | Zhang, Jin Yang, Zhen-Ping Lin, Gui-Hua Wang, Yuliang |
| Author_xml | – sequence: 1 givenname: Zhen-Ping surname: Yang fullname: Yang, Zhen-Ping organization: School of Mathematics, Jiaying University, School of Management, Shanghai University – sequence: 2 givenname: Jin surname: Zhang fullname: Zhang, Jin email: zhangj9@sustech.edu.cn organization: Department of Mathematics, Southern University of Science and Technology, National Center for Applied Mathematics Shenzhen – sequence: 3 givenname: Yuliang surname: Wang fullname: Wang, Yuliang organization: Research Center for Mathematics, Beijing Normal University at Zhuhai, Division of Science and Technology, BNU-HKBU United International College – sequence: 4 givenname: Gui-Hua surname: Lin fullname: Lin, Gui-Hua email: guihualin@shu.edu.cn organization: School of Management, Shanghai University |
| BookMark | eNp9kNFKwzAUhoNMcJu-gFcFr6M5adomlzqmDiYKUy8NaZpsHV2zJRm4t7duouDFrsIh_3f4zzdAvda1BqFLINdASHETgAjIMKGACeQkxbsT1IesSHGRC-ihPuE8wwUr2BkahLAkhAguaB99vCtfq1YbfKeCqZLZtpx7VdWmjcn4M3r1Oz2ZuHBVYp1PZtHphQqx1skej7VrVZNMWrPZqqaOu-TFu7Ixq3COTq1qgrn4eYfo7X78OnrE0-eHyeh2inUKImJTcUupYUKVjFkNvCp4yjSlJKOgSptxoU3BlGAmt5TkDKD7qYCV3KbEknSIrg57195ttiZEuXRb35UKkgrgKWSM512KH1LauxC8sVLXcd--O7RuJBD5bVMebMrOptzblLsOpf_Qta9Xyu-OQ-kBCl24nRv_1-oI9QWKAori |
| CitedBy_id | crossref_primary_10_1016_j_cam_2022_114786 crossref_primary_10_1016_j_apnum_2025_01_003 crossref_primary_10_1080_02331934_2024_2312198 crossref_primary_10_1016_j_apnum_2023_10_004 crossref_primary_10_1016_j_cam_2024_116381 crossref_primary_10_1007_s10898_023_01346_0 crossref_primary_10_1007_s10957_025_02825_y crossref_primary_10_1016_j_camwa_2024_03_025 crossref_primary_10_1016_j_nonrwa_2023_103869 crossref_primary_10_1007_s10957_025_02676_7 crossref_primary_10_1080_02331934_2025_2541709 crossref_primary_10_1016_j_cam_2022_114132 |
| Cites_doi | 10.1214/aoms/1177729586 10.1142/S0217595910002569 10.1007/s10589-013-9599-7 10.1109/TAC.2008.925853 10.1080/10556788.2010.551536 10.1007/s10589-020-00185-z 10.1007/s10107-018-1254-8 10.1109/CDC.2014.7040302 10.1007/s10107-017-1175-y 10.1109/CDC.2018.8618953 10.1016/j.cam.2018.12.013 10.1007/s10589-014-9673-9 10.1007/s101070050024 10.1007/s10957-010-9757-3 10.1137/110825352 10.1007/s10589-019-00120-x 10.1109/TAC.2015.2478124 10.1109/WSC.2016.7822133 10.1137/1.9780898718751 10.1007/s10107-018-1266-4 10.1287/opre.2016.1501 10.1137/100792644 10.1287/educ.2013.0120 10.1007/s11228-018-0472-9 10.1007/BF01585696 10.1007/s40305-019-00267-8 10.1007/s11228-021-00591-3 10.1109/TSP.2017.2695451 10.1080/02331934.2010.539689 10.1109/TAC.2012.2215413 10.1142/S0217595920500116 10.1109/WSC.2015.7408179 10.1137/S0363012997317475 10.1137/17M1144799 10.1109/CDC.2016.7798955 10.1007/s10957-014-0673-9 10.1016/B978-0-12-604550-5.50015-8 10.1007/s10107-017-1161-4 10.1007/s10957-019-01578-9 10.1137/15M1031953 10.1007/s11424-011-0948-2 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10915-021-01603-y |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: AAdvanced Technologies & Aerospace Database (subscription) url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| ExternalDocumentID | 10_1007_s10915_021_01603_y |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-ed8f22e49ab44fc18d7834c220521abf589ce74a94e6f206411052d14b8f30f03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686657900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 03:15:35 EST 2025 Sat Nov 29 01:56:29 EST 2025 Tue Nov 18 21:10:50 EST 2025 Fri Feb 21 02:47:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Stochastic variational inequality 65K15 Bounded proximal error bound 90C33 Variance reduction Convergence rate Stochastic approximation 90C15 Subgradient extragradient algorithm 62L20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ed8f22e49ab44fc18d7834c220521abf589ce74a94e6f206411052d14b8f30f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918315486 |
| PQPubID | 2043771 |
| ParticipantIDs | proquest_journals_2918315486 crossref_citationtrail_10_1007_s10915_021_01603_y crossref_primary_10_1007_s10915_021_01603_y springer_journals_10_1007_s10915_021_01603_y |
| PublicationCentury | 2000 |
| PublicationDate | 20211000 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | FukushimaMEquivalent differentiable optimization problems and descent methods for asymmetric variational inequality problemsMath. Program.199253199110115176710.1007/BF01585696 RavatUShanbhagUVOn the characterization of solution sets of smooth and nonsmooth convex stochastic Nash gamesSIAM J. Optimiz.201121311681199283756710.1137/100792644 Shanbhag, U.V.: Stochastic variational inequality problems: Applications, analysis, and algorithms. Inf. Tutorials Oper. Res. pp. 71–107,(2013) Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61(9), 1119–1132 (2012) GürkanGYoncaÖzge ARobonsonSMSample-path solution of stochastic variational inequalitiesMath. Program.1999842313333169000510.1007/s101070050024 YousefianFNedićAShanbhagUVOn smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problemsMath. Program.20171651391431370350710.1007/s10107-017-1175-y DangCDLanGOn the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operatorsComput. Optim. Appl.2015602277310331668010.1007/s10589-014-9673-9 KannanAShanbhagUVDistributed computation of equilibria in monotone Nash games via iterative regularization techniquesSIAM J. Optimiz.201222411771205302376910.1137/110825352 JiangJChenXChenZQuantitative analysis for a class of two-stage stochastic linear variational inequality problemsComput. Optim. Appl.2020762431460409883510.1007/s10589-020-00185-z ChenXSunHXuHDiscrete approximation of two-stage stochastic and distributionally robust linear complementarityMath. Program.20191771255289398720010.1007/s10107-018-1266-4 XuHSample average approximation methods for a class of stochastic variational inequality problemsAsia Pac. J. Oper. Res.2010271103119264695510.1142/S0217595910002569 Shanbhag, U.V., Blanchet, J.H.: In: Budget-constrained Stochastic Approximation, pp. 368–379. , Huntington Beach, CA (2015) IusemANJofréAOliveiraRIThompsonPExtragradient method with variance reduction for stochastic variational inequalitiesSIAM J. Optimiz.2017272686724363958810.1137/15M1031953 YuCVan Der SchaarMSayedAHDistributed learning for stochastic generalized Nash equilibrium problemsIEEE T. Signal Proces.2017651538933908368403710.1109/TSP.2017.2695451 CaiXGuGHeBOn the O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/t)$$\end{document} convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operatorsComput. Optim. Appl.2014572339363316505210.1007/s10589-013-9599-7 SunHChenXTwo-stage stochastic variational inequalities: Theory, algorithms and applicationsJ. Oper. Res. Soc. China20219132421800110.1007/s40305-019-00267-8 WangMLinGHGaoYAliMMSample average approximation method for a class of stochastic variational inequality problemsJ. Syst. Sci. Complex.201124611431153286398410.1007/s11424-011-0948-2 IusemANJofréAOliveiraRIThompsonPVariance-based extragradient methods with line search for stochastic variational inequalitiesSIAM J. Optimiz.2019291175206390080110.1137/17M1144799 IusemANJofréAThompsonPIncremental constraint projection methods for monotone stochastic variational inequalitiesMath. Oper. Res.2019441236263392072207179960 Lei, J., Shanbhag, U.V.: Linearly convergent variable sample-size schemes for stochastic Nash games: Best-response schemes and distributed gradient-response schemes. Presented at the (2018) Burkholder, D.L., Davis, B.J., Gundy, R.F.: Integral inequalities for convex functions of operators on martingales. Presented at the (1972) Mertikopoulos, P., Lecouat, B., Zenati, H., Foo, C.S., Chandrasekhar, V., Piliouras, G.: In: Optimistic Mirror Descent in Saddle-point Problems: Going the Extra (gradient) Mile, pp. 1–23. United States, New Orleans (2019) YangZPZhangJZhuXLinGHInfeasible interior-point algorithms based on sampling average approximations for a class of stochastic complementarity problems and their applicationsJ. Comput. Appl. Math.2019352382400389507110.1016/j.cam.2018.12.013 JadambaBRacitiFVariational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopolyJ. Optim. Theory Appl.2015165310501070334167910.1007/s10957-014-0673-9 YangZPWangYLinGHVariance-based modified backward-forward algorithm with line search for stochastic variational inequality problems and its applicationsAsia Pac. J. Oper. Res.2020373133410795510.1142/S0217595920500116 Robbins H., Siegund D.: A convergence theorem for non-negative almost supermartingales and some applications, In: Optimizing Methods in Statistics (Proceedings of a Symposium at Ohio State University, Columbus, Ohio), Rustagi, J. S. (eds.), Academic Press, New York, pp. 233-257 (1971) CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.20111482318335278056610.1007/s10957-010-9757-3 KoshalJNedićAShanbhagUVRegularized iterative stochastic approximation methods for stochastic variational inequality problemsIEEE T. Automat. Control2013583594609302945810.1109/TAC.2012.2215413 SolodovMVSvaiterBFA new projection method for variational inequality problemsSIAM J. Control Optim.1999373765776167508610.1137/S0363012997317475 LinGHFukushimaMStochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: A surveyPac. J. Optim.20106345548227430381200.65052 KannanAShanbhagUVOptimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variantsComput. Optim. Appl.2019743779820402986010.1007/s10589-019-00120-x Ye J.J., Yuan X., Zeng S., Zhang J.: Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems. Set-Valued Var. Anal. doi: https://doi.org/10.1007/s11228-021-00591-3(2021) Jalilzadeh, A., Shanbhag, U.V., eg-VSSA, : An extragradient variable sample-size stochastic approximation scheme: error analysis and complexity trade-offs. Presented at the (2016) Yousefian, F., Nedić, A., Shanbhag, U.V.: In: Optimal Robust Smoothing Extragradient Algorithms for Stochastic Variational Inequality Problems, pp. 5831–5836. , Los Angeles, CA (2014) Liu, M., Mroueh, Y., Ross, J., Zhang, W., Cui, X., Das, P., Yang, T.: Towards better understanding of adaptive gradient algorithms in generative adversarial nets. In: Proceedings of the 2020 International Conference on Learning Representations, (2020). https://openreview.net/forum?id=SJxIm0VtwH MertikopoulosPZhouZLearning in games with continuous action sets and unknown payoff functionsMath. Program.20191731465507390446910.1007/s10107-018-1254-8 ShapiroADentchevaDRuszczynskiALectures on Stochastic Programming: Modeling and Theory2009PhiladelphiaSIAM10.1137/1.9780898718751 FacchineiFPangJSFinite-Dimensional Variational Inequalities and Complementarity Problems. I and II2003New YorkSpringer1062.90002 ChenYLanGOuyangYAccelerated schemes for a class of variational inequalitiesMath. Program.20171651113149370350010.1007/s10107-017-1161-4 Cui, S., Shanbhag, U.V.: On the analysis of reflected gradient and splitting methods for monotone stochastic variational inequality problems. Presented at the (2016) KoshalJNediécAShanbhagUVDistributed algorithms for aggregative games on graphsOper. Res.2016643680704351520510.1287/opre.2016.1501 YousefianFNedićAShanbhagUVSelf-tuned stochastic approximation schemes for non-Lipschitzian stochastic multi-user optimization and Nash gamesIEEE T. Automat. Control201661717531766352128610.1109/TAC.2015.2478124 CensorYGibaliAReichSStrong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert spaceOptim. Method. Soft.2011264–5827845283780010.1080/10556788.2010.551536 JiangHXuHStochastic approximation approaches to the stochastic variational inequality problemIEEE T. Automat. Control200853614621475245123510.1109/TAC.2008.925853 RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951224004074266810.1214/aoms/1177729586 YousefianFNedićAShanbhagUVOn stochastic mirror-prox algorithms for stochastic Cartesian variational inequalities randomized block coordinate and optimal averaging schemesSet-Valued Var. Anal.2018264789819388194210.1007/s11228-018-0472-9 ZhangXJDuXWYangZPLinGHAn infeasible stochastic approximation and projection algorithm for stochastic variational inequalitiesJ. Optim. Theory Appl.2019183310531076402344910.1007/s10957-019-01578-9 1603_CR3 Y Chen (1603_CR6) 2017; 165 H Jiang (1603_CR19) 2008; 53 F Yousefian (1603_CR43) 2018; 26 1603_CR44 AN Iusem (1603_CR15) 2019; 44 A Kannan (1603_CR21) 2019; 74 1603_CR1 J Koshal (1603_CR23) 2013; 58 1603_CR41 X Cai (1603_CR2) 2014; 57 F Facchinei (1603_CR10) 2003 1603_CR28 H Sun (1603_CR36) 2021; 9 X Chen (1603_CR7) 2019; 177 1603_CR24 J Jiang (1603_CR18) 2020; 76 1603_CR26 H Robbins (1603_CR30) 1951; 22 MV Solodov (1603_CR35) 1999; 37 F Yousefian (1603_CR45) 2016; 61 M Fukushima (1603_CR11) 1992; 53 1603_CR8 M Wang (1603_CR37) 2011; 24 1603_CR32 1603_CR31 A Kannan (1603_CR20) 2012; 22 1603_CR33 J Koshal (1603_CR22) 2016; 64 GH Lin (1603_CR25) 2010; 6 C Yu (1603_CR46) 2017; 65 CD Dang (1603_CR9) 2015; 60 AN Iusem (1603_CR14) 2019; 29 1603_CR17 XJ Zhang (1603_CR47) 2019; 183 ZP Yang (1603_CR39) 2020; 37 AN Iusem (1603_CR13) 2017; 27 P Mertikopoulos (1603_CR27) 2019; 173 Y Censor (1603_CR4) 2011; 26 ZP Yang (1603_CR40) 2019; 352 A Shapiro (1603_CR34) 2009 G Gürkan (1603_CR12) 1999; 84 H Xu (1603_CR38) 2010; 27 B Jadamba (1603_CR16) 2015; 165 U Ravat (1603_CR29) 2011; 21 F Yousefian (1603_CR42) 2017; 165 Y Censor (1603_CR5) 2011; 148 |
| References_xml | – reference: Mertikopoulos, P., Lecouat, B., Zenati, H., Foo, C.S., Chandrasekhar, V., Piliouras, G.: In: Optimistic Mirror Descent in Saddle-point Problems: Going the Extra (gradient) Mile, pp. 1–23. United States, New Orleans (2019) – reference: FukushimaMEquivalent differentiable optimization problems and descent methods for asymmetric variational inequality problemsMath. Program.199253199110115176710.1007/BF01585696 – reference: KannanAShanbhagUVOptimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variantsComput. Optim. Appl.2019743779820402986010.1007/s10589-019-00120-x – reference: ChenYLanGOuyangYAccelerated schemes for a class of variational inequalitiesMath. Program.20171651113149370350010.1007/s10107-017-1161-4 – reference: CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.20111482318335278056610.1007/s10957-010-9757-3 – reference: LinGHFukushimaMStochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: A surveyPac. J. Optim.20106345548227430381200.65052 – reference: Cui, S., Shanbhag, U.V.: On the analysis of reflected gradient and splitting methods for monotone stochastic variational inequality problems. Presented at the (2016) – reference: JiangJChenXChenZQuantitative analysis for a class of two-stage stochastic linear variational inequality problemsComput. Optim. Appl.2020762431460409883510.1007/s10589-020-00185-z – reference: Liu, M., Mroueh, Y., Ross, J., Zhang, W., Cui, X., Das, P., Yang, T.: Towards better understanding of adaptive gradient algorithms in generative adversarial nets. In: Proceedings of the 2020 International Conference on Learning Representations, (2020). https://openreview.net/forum?id=SJxIm0VtwH – reference: Shanbhag, U.V.: Stochastic variational inequality problems: Applications, analysis, and algorithms. Inf. Tutorials Oper. Res. pp. 71–107,(2013) – reference: Jalilzadeh, A., Shanbhag, U.V., eg-VSSA, : An extragradient variable sample-size stochastic approximation scheme: error analysis and complexity trade-offs. Presented at the (2016) – reference: Shanbhag, U.V., Blanchet, J.H.: In: Budget-constrained Stochastic Approximation, pp. 368–379. , Huntington Beach, CA (2015) – reference: KannanAShanbhagUVDistributed computation of equilibria in monotone Nash games via iterative regularization techniquesSIAM J. Optimiz.201222411771205302376910.1137/110825352 – reference: ZhangXJDuXWYangZPLinGHAn infeasible stochastic approximation and projection algorithm for stochastic variational inequalitiesJ. Optim. Theory Appl.2019183310531076402344910.1007/s10957-019-01578-9 – reference: JiangHXuHStochastic approximation approaches to the stochastic variational inequality problemIEEE T. Automat. Control200853614621475245123510.1109/TAC.2008.925853 – reference: SunHChenXTwo-stage stochastic variational inequalities: Theory, algorithms and applicationsJ. Oper. Res. Soc. China20219132421800110.1007/s40305-019-00267-8 – reference: YousefianFNedićAShanbhagUVOn stochastic mirror-prox algorithms for stochastic Cartesian variational inequalities randomized block coordinate and optimal averaging schemesSet-Valued Var. Anal.2018264789819388194210.1007/s11228-018-0472-9 – reference: YousefianFNedićAShanbhagUVOn smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problemsMath. Program.20171651391431370350710.1007/s10107-017-1175-y – reference: Ye J.J., Yuan X., Zeng S., Zhang J.: Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems. Set-Valued Var. Anal. doi: https://doi.org/10.1007/s11228-021-00591-3(2021) – reference: YuCVan Der SchaarMSayedAHDistributed learning for stochastic generalized Nash equilibrium problemsIEEE T. Signal Proces.2017651538933908368403710.1109/TSP.2017.2695451 – reference: ChenXSunHXuHDiscrete approximation of two-stage stochastic and distributionally robust linear complementarityMath. Program.20191771255289398720010.1007/s10107-018-1266-4 – reference: KoshalJNediécAShanbhagUVDistributed algorithms for aggregative games on graphsOper. Res.2016643680704351520510.1287/opre.2016.1501 – reference: XuHSample average approximation methods for a class of stochastic variational inequality problemsAsia Pac. J. Oper. Res.2010271103119264695510.1142/S0217595910002569 – reference: YangZPWangYLinGHVariance-based modified backward-forward algorithm with line search for stochastic variational inequality problems and its applicationsAsia Pac. J. Oper. Res.2020373133410795510.1142/S0217595920500116 – reference: GürkanGYoncaÖzge ARobonsonSMSample-path solution of stochastic variational inequalitiesMath. Program.1999842313333169000510.1007/s101070050024 – reference: Lei, J., Shanbhag, U.V.: Linearly convergent variable sample-size schemes for stochastic Nash games: Best-response schemes and distributed gradient-response schemes. Presented at the (2018) – reference: FacchineiFPangJSFinite-Dimensional Variational Inequalities and Complementarity Problems. I and II2003New YorkSpringer1062.90002 – reference: KoshalJNedićAShanbhagUVRegularized iterative stochastic approximation methods for stochastic variational inequality problemsIEEE T. Automat. Control2013583594609302945810.1109/TAC.2012.2215413 – reference: WangMLinGHGaoYAliMMSample average approximation method for a class of stochastic variational inequality problemsJ. Syst. Sci. Complex.201124611431153286398410.1007/s11424-011-0948-2 – reference: IusemANJofréAOliveiraRIThompsonPExtragradient method with variance reduction for stochastic variational inequalitiesSIAM J. Optimiz.2017272686724363958810.1137/15M1031953 – reference: Burkholder, D.L., Davis, B.J., Gundy, R.F.: Integral inequalities for convex functions of operators on martingales. Presented at the (1972) – reference: JadambaBRacitiFVariational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopolyJ. Optim. Theory Appl.2015165310501070334167910.1007/s10957-014-0673-9 – reference: CensorYGibaliAReichSStrong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert spaceOptim. Method. Soft.2011264–5827845283780010.1080/10556788.2010.551536 – reference: Yousefian, F., Nedić, A., Shanbhag, U.V.: In: Optimal Robust Smoothing Extragradient Algorithms for Stochastic Variational Inequality Problems, pp. 5831–5836. , Los Angeles, CA (2014) – reference: Robbins H., Siegund D.: A convergence theorem for non-negative almost supermartingales and some applications, In: Optimizing Methods in Statistics (Proceedings of a Symposium at Ohio State University, Columbus, Ohio), Rustagi, J. S. (eds.), Academic Press, New York, pp. 233-257 (1971) – reference: Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61(9), 1119–1132 (2012) – reference: DangCDLanGOn the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operatorsComput. Optim. Appl.2015602277310331668010.1007/s10589-014-9673-9 – reference: RavatUShanbhagUVOn the characterization of solution sets of smooth and nonsmooth convex stochastic Nash gamesSIAM J. Optimiz.201121311681199283756710.1137/100792644 – reference: IusemANJofréAThompsonPIncremental constraint projection methods for monotone stochastic variational inequalitiesMath. Oper. Res.2019441236263392072207179960 – reference: RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951224004074266810.1214/aoms/1177729586 – reference: ShapiroADentchevaDRuszczynskiALectures on Stochastic Programming: Modeling and Theory2009PhiladelphiaSIAM10.1137/1.9780898718751 – reference: YangZPZhangJZhuXLinGHInfeasible interior-point algorithms based on sampling average approximations for a class of stochastic complementarity problems and their applicationsJ. Comput. Appl. Math.2019352382400389507110.1016/j.cam.2018.12.013 – reference: MertikopoulosPZhouZLearning in games with continuous action sets and unknown payoff functionsMath. Program.20191731465507390446910.1007/s10107-018-1254-8 – reference: SolodovMVSvaiterBFA new projection method for variational inequality problemsSIAM J. Control Optim.1999373765776167508610.1137/S0363012997317475 – reference: YousefianFNedićAShanbhagUVSelf-tuned stochastic approximation schemes for non-Lipschitzian stochastic multi-user optimization and Nash gamesIEEE T. Automat. Control201661717531766352128610.1109/TAC.2015.2478124 – reference: IusemANJofréAOliveiraRIThompsonPVariance-based extragradient methods with line search for stochastic variational inequalitiesSIAM J. Optimiz.2019291175206390080110.1137/17M1144799 – reference: CaiXGuGHeBOn the O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/t)$$\end{document} convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operatorsComput. Optim. Appl.2014572339363316505210.1007/s10589-013-9599-7 – volume: 22 start-page: 400 year: 1951 ident: 1603_CR30 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729586 – volume: 27 start-page: 103 issue: 1 year: 2010 ident: 1603_CR38 publication-title: Asia Pac. J. Oper. Res. doi: 10.1142/S0217595910002569 – volume: 57 start-page: 339 issue: 2 year: 2014 ident: 1603_CR2 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-013-9599-7 – volume: 53 start-page: 1462 issue: 6 year: 2008 ident: 1603_CR19 publication-title: IEEE T. Automat. Control doi: 10.1109/TAC.2008.925853 – volume: 26 start-page: 827 issue: 4–5 year: 2011 ident: 1603_CR4 publication-title: Optim. Method. Soft. doi: 10.1080/10556788.2010.551536 – volume: 76 start-page: 431 issue: 2 year: 2020 ident: 1603_CR18 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-020-00185-z – volume: 173 start-page: 465 issue: 1 year: 2019 ident: 1603_CR27 publication-title: Math. Program. doi: 10.1007/s10107-018-1254-8 – ident: 1603_CR26 – ident: 1603_CR44 doi: 10.1109/CDC.2014.7040302 – ident: 1603_CR28 – volume: 165 start-page: 391 issue: 1 year: 2017 ident: 1603_CR42 publication-title: Math. Program. doi: 10.1007/s10107-017-1175-y – ident: 1603_CR24 doi: 10.1109/CDC.2018.8618953 – volume: 352 start-page: 382 year: 2019 ident: 1603_CR40 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.12.013 – volume: 44 start-page: 236 issue: 1 year: 2019 ident: 1603_CR15 publication-title: Math. Oper. Res. – volume: 60 start-page: 277 issue: 2 year: 2015 ident: 1603_CR9 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-014-9673-9 – volume: 84 start-page: 313 issue: 2 year: 1999 ident: 1603_CR12 publication-title: Math. Program. doi: 10.1007/s101070050024 – volume: 148 start-page: 318 issue: 2 year: 2011 ident: 1603_CR5 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-010-9757-3 – volume: 22 start-page: 1177 issue: 4 year: 2012 ident: 1603_CR20 publication-title: SIAM J. Optimiz. doi: 10.1137/110825352 – volume: 74 start-page: 779 issue: 3 year: 2019 ident: 1603_CR21 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-019-00120-x – volume: 61 start-page: 1753 issue: 7 year: 2016 ident: 1603_CR45 publication-title: IEEE T. Automat. Control doi: 10.1109/TAC.2015.2478124 – ident: 1603_CR17 doi: 10.1109/WSC.2016.7822133 – volume-title: Lectures on Stochastic Programming: Modeling and Theory year: 2009 ident: 1603_CR34 doi: 10.1137/1.9780898718751 – volume: 177 start-page: 255 issue: 1 year: 2019 ident: 1603_CR7 publication-title: Math. Program. doi: 10.1007/s10107-018-1266-4 – volume: 64 start-page: 680 issue: 3 year: 2016 ident: 1603_CR22 publication-title: Oper. Res. doi: 10.1287/opre.2016.1501 – ident: 1603_CR1 – volume: 21 start-page: 1168 issue: 3 year: 2011 ident: 1603_CR29 publication-title: SIAM J. Optimiz. doi: 10.1137/100792644 – ident: 1603_CR32 doi: 10.1287/educ.2013.0120 – volume: 26 start-page: 789 issue: 4 year: 2018 ident: 1603_CR43 publication-title: Set-Valued Var. Anal. doi: 10.1007/s11228-018-0472-9 – volume: 53 start-page: 99 issue: 1 year: 1992 ident: 1603_CR11 publication-title: Math. Program. doi: 10.1007/BF01585696 – volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems. I and II year: 2003 ident: 1603_CR10 – volume: 9 start-page: 1 year: 2021 ident: 1603_CR36 publication-title: J. Oper. Res. Soc. China doi: 10.1007/s40305-019-00267-8 – ident: 1603_CR41 doi: 10.1007/s11228-021-00591-3 – volume: 65 start-page: 3893 issue: 15 year: 2017 ident: 1603_CR46 publication-title: IEEE T. Signal Proces. doi: 10.1109/TSP.2017.2695451 – ident: 1603_CR3 doi: 10.1080/02331934.2010.539689 – volume: 58 start-page: 594 issue: 3 year: 2013 ident: 1603_CR23 publication-title: IEEE T. Automat. Control doi: 10.1109/TAC.2012.2215413 – volume: 37 start-page: 1 issue: 3 year: 2020 ident: 1603_CR39 publication-title: Asia Pac. J. Oper. Res. doi: 10.1142/S0217595920500116 – ident: 1603_CR33 doi: 10.1109/WSC.2015.7408179 – volume: 37 start-page: 765 issue: 3 year: 1999 ident: 1603_CR35 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012997317475 – volume: 29 start-page: 175 issue: 1 year: 2019 ident: 1603_CR14 publication-title: SIAM J. Optimiz. doi: 10.1137/17M1144799 – ident: 1603_CR8 doi: 10.1109/CDC.2016.7798955 – volume: 165 start-page: 1050 issue: 3 year: 2015 ident: 1603_CR16 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-014-0673-9 – ident: 1603_CR31 doi: 10.1016/B978-0-12-604550-5.50015-8 – volume: 6 start-page: 455 issue: 3 year: 2010 ident: 1603_CR25 publication-title: Pac. J. Optim. – volume: 165 start-page: 113 issue: 1 year: 2017 ident: 1603_CR6 publication-title: Math. Program. doi: 10.1007/s10107-017-1161-4 – volume: 183 start-page: 1053 issue: 3 year: 2019 ident: 1603_CR47 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-019-01578-9 – volume: 27 start-page: 686 issue: 2 year: 2017 ident: 1603_CR13 publication-title: SIAM J. Optimiz. doi: 10.1137/15M1031953 – volume: 24 start-page: 1143 issue: 6 year: 2011 ident: 1603_CR37 publication-title: J. Syst. Sci. Complex. doi: 10.1007/s11424-011-0948-2 |
| SSID | ssj0009892 |
| Score | 2.3736322 |
| Snippet | In this paper, we propose a variance-based subgradient extragradient algorithm with line search for stochastic variational inequality problems by aiming at... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4 |
| SubjectTerms | Algebra Algorithms Approximation Computational Mathematics and Numerical Analysis Convergence Iterative methods Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Numerical analysis Random variables Regularization methods Robustness (mathematics) Theoretical |
| SummonAdditionalLinks | – databaseName: AAdvanced Technologies & Aerospace Database (subscription) dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwHA46PXhR5wOnU3LwoGiwTdMuOYnKRA-OgQ-GB0uahwqyzbWK--9N0mxFwV08ljSh9PfIl8fv-wDYlzzQPDYBSDUzCxSZYcQ41qjFRUIyhXUguBObaHU6tNdjXb_hlvtrlZOc6BK1HAi7R36CmXE-i6-T0-E7sqpR9nTVS2jMgwXLkmClG7rxY0W6S50osgmkGBnYTHzRjC-dY6GtTbaL6SSI0PjnxFShzV8HpG7euVz57xevgmWPOOFZ6SJ1MKf6a6DuYzqHB554-nAdPD2YhbP1AnRu5jYJTVJ5HrkrYQVsfxUjPn26cbrT0ABeeFsMxAu3bM_QdS_3FuF1X5X1mmPYLTVr8g1wf9m-u7hCXn8BCROYBVKSaowVYTwjRIuQSqvKIWxpLg55pmPKhGoRzohKNDbYxkCJGMuQZFRHgQ6iTVDrD_pqC8BARhkP4ixklBIVYG4SCZUiokJqFbVYA4STn58KT05uNTLe0opW2RosNQZLncHScQMcTfsMS2qOmW83J1ZKfZjmaWWiBjie2Llq_nu07dmj7YAlbF3LXfprglox-lC7YFF8Fq_5aM856TdTNO1Q priority: 102 providerName: ProQuest |
| Title | Variance-Based Subgradient Extragradient Method for Stochastic Variational Inequality Problems |
| URI | https://link.springer.com/article/10.1007/s10915-021-01603-y https://www.proquest.com/docview/2918315486 |
| Volume | 89 |
| WOSCitedRecordID | wos000686657900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 1573-7691 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7691 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7691 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8aLQc4MOhAlJXKBw5Dw1LiOI19pFMrEKKqYENoByLHH4CEWtQERP97bCdpN8QmbZdIUWwr8vP7sv1-P4ADJQIjYquAzHCboKiMYC6IwYmQPZppYgIpPNlEMhqx62s-rorC8vq2e30k6S31L8VuPHTVxC797QURnq9A07o75ggbLi6vllC7zFMhW_WJsQ2WaVUq8_4Yv7ujZYz55ljUe5vhx__7z03YqKJLdFwuhy34oCctWD9fQLPmLdiqtDlHXyrI6cNPcHNlU2Ynf9y3Xk0ha05uZ_4yWIEGL8VMLN7OPeM0sqEuuiym8k44nGfku5e7iuh0ostKzTkal2w1-Tb8GA6-fzvBFfMCllYlC6wVM4RoykVGqZEhU46PQ7qiXBKKzMSMS51QwanuGWKjGhtExESFNGMmCkwQ7UBjMp3oXUCBijIRxFnIGaM6IMKaEKZkxKQyOkp4G8JaAKmsYMkdO8ZDugRUdhOa2glN_YSm8zZ8XfR5LEE5_tq6U8s1rRQ0Twm3tsyla702HNVyXH7-82h7_9b8M6wRtxT89b8ONIrZk96HVflc3OezLjT7g9H4ogsrZwm2z3H8s-sX8yuq3-vO |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2CaSW6gdKCGKDUi1aiAovEcSb2AlWlBTEaGCGVIlYEx4-2EpqBJLTMT_GNtZ2EiEqwY8Eycmwp8blP-94D8EGJwIjYCiAz3AYoKiOYC2JwImSPZpqYQApPNpEMh-z0lB9NwW1TC-OuVTY60StqNZYuR75FuAWf8697ny-vsGONcqerDYVGBYuBnvy1IVux3f9m9_cjIXu7x1_3cc0qgKWFW4m1YoYQTbnIKDUyZMpxTUhXcEpCkZmYcakTKjjVPUOsxbYGMiYqpBkzUWCCyK47DS9oxBInV4MEt01-mSdhtoIbY-um07pIpy7V46GrhXbBey-I8OS-IWy92_8OZL2d25t7bn_oNczWHjX6UonAPEzp0RuYr3VWgdbrxtqf3sLZichdDkfjHWu7FbJK82fur7yVaPemzMXd06Hn1UbWoUffy7H8JVw3a-SnV7lT1B_pqh51go4qTp5iAX48yXcuQmc0HuklQIGKMhHEWcgZozogwipKpmTEpDI6SngXwmazU1k3X3ccIBdp2zbaASS1AEk9QNJJFzbu5lxWrUcefXu1QUVaq6EibSHRhc0GV-3ww6stP77ae5jZPz48SA_6w8EKvCIO1v6C4yp0yvxav4OX8k_5u8jXvIAgOH9qvP0DELdIbQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Q_TBuzidmgcfFC1r03RLHr0NRR0DL_hkSXNRQepYq7h_b5J2m4oK4mNpEkpyTnJOc77vA9iS3Nc8Mg5INTMJikywxzjWXoOLOkkU1r7gTmyi0WrR21vW_oDid9Xu_SvJAtNgWZrSvNaRuvYB-MYCiyy2qXDdD73eKIwTW0hv8_XLmyHtLnWyyMaVIs8EzqSEzXw_xuejaRhvfrkidSdPc_b_3zwHM2XUifYLM5mHEZUuwPTFgLI1W4D50ssztF1SUe8swt2NSaWtXXgH5rSTyGwz911XJJaj47e8ywdPF06JGpkQGF3mz-KBW_5n5LoXfxvRaaoKBGcPtQsVm2wJrpvHV4cnXqnI4AnjqrmnJNUYK8J4QogWAZVWp0NYsC4OeKIjyoRqEM6Iqmtsoh0TXERYBiShOvS1Hy7DWPqcqhVAvgwT7kdJwCglysfcbC1UipAKqVXYYBUI-osRi5Ku3KpmPMVDomU7obGZ0NhNaNyrwO6gT6cg6_i1dbW_xnHpuFmMmdnjbBpXr8Bef02Hr38ebfVvzTdhsn3UjM9PW2drMIWtVbgKwSqM5d0XtQ4T4jV_zLobzp7fAdsa9Cw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variance-Based+Subgradient+Extragradient+Method+for+Stochastic+Variational+Inequality+Problems&rft.jtitle=Journal+of+scientific+computing&rft.au=Yang%2C+Zhen-Ping&rft.au=Zhang%2C+Jin&rft.au=Wang%2C+Yuliang&rft.au=Lin%2C+Gui-Hua&rft.date=2021-10-01&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=89&rft.issue=1&rft_id=info:doi/10.1007%2Fs10915-021-01603-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10915_021_01603_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |