Variance-Based Subgradient Extragradient Method for Stochastic Variational Inequality Problems

In this paper, we propose a variance-based subgradient extragradient algorithm with line search for stochastic variational inequality problems by aiming at robustness with respect to an unknown Lipschitz constant. This algorithm may be regarded as an integration of a subgradient extragradient algori...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 89; číslo 1; s. 4
Hlavní autoři: Yang, Zhen-Ping, Zhang, Jin, Wang, Yuliang, Lin, Gui-Hua
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2021
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose a variance-based subgradient extragradient algorithm with line search for stochastic variational inequality problems by aiming at robustness with respect to an unknown Lipschitz constant. This algorithm may be regarded as an integration of a subgradient extragradient algorithm for deterministic variational inequality problems and a stochastic approximation method for expected values. At each iteration, different from the conventional variance-based extragradient algorithms to take projection onto the feasible set twicely, our algorithm conducts a subgradient projection which can be calculated explicitly. Since our algorithm requires only one projection at each iteration, the computation load may be reduced. We discuss the asymptotic convergence, the sublinear convergence rate in terms of the mean natural residual function, and the optimal oracle complexity for the proposed algorithm. Furthermore, we establish the linear convergence rate with finite computational budget under both the strongly Minty variational inequality and the error bound condition. Preliminary numerical experiments indicate that the proposed algorithm is competitive with some existing methods.
AbstractList In this paper, we propose a variance-based subgradient extragradient algorithm with line search for stochastic variational inequality problems by aiming at robustness with respect to an unknown Lipschitz constant. This algorithm may be regarded as an integration of a subgradient extragradient algorithm for deterministic variational inequality problems and a stochastic approximation method for expected values. At each iteration, different from the conventional variance-based extragradient algorithms to take projection onto the feasible set twicely, our algorithm conducts a subgradient projection which can be calculated explicitly. Since our algorithm requires only one projection at each iteration, the computation load may be reduced. We discuss the asymptotic convergence, the sublinear convergence rate in terms of the mean natural residual function, and the optimal oracle complexity for the proposed algorithm. Furthermore, we establish the linear convergence rate with finite computational budget under both the strongly Minty variational inequality and the error bound condition. Preliminary numerical experiments indicate that the proposed algorithm is competitive with some existing methods.
ArticleNumber 4
Author Zhang, Jin
Yang, Zhen-Ping
Lin, Gui-Hua
Wang, Yuliang
Author_xml – sequence: 1
  givenname: Zhen-Ping
  surname: Yang
  fullname: Yang, Zhen-Ping
  organization: School of Mathematics, Jiaying University, School of Management, Shanghai University
– sequence: 2
  givenname: Jin
  surname: Zhang
  fullname: Zhang, Jin
  email: zhangj9@sustech.edu.cn
  organization: Department of Mathematics, Southern University of Science and Technology, National Center for Applied Mathematics Shenzhen
– sequence: 3
  givenname: Yuliang
  surname: Wang
  fullname: Wang, Yuliang
  organization: Research Center for Mathematics, Beijing Normal University at Zhuhai, Division of Science and Technology, BNU-HKBU United International College
– sequence: 4
  givenname: Gui-Hua
  surname: Lin
  fullname: Lin, Gui-Hua
  email: guihualin@shu.edu.cn
  organization: School of Management, Shanghai University
BookMark eNp9kNFKwzAUhoNMcJu-gFcFr6M5adomlzqmDiYKUy8NaZpsHV2zJRm4t7duouDFrsIh_3f4zzdAvda1BqFLINdASHETgAjIMKGACeQkxbsT1IesSHGRC-ihPuE8wwUr2BkahLAkhAguaB99vCtfq1YbfKeCqZLZtpx7VdWmjcn4M3r1Oz2ZuHBVYp1PZtHphQqx1skej7VrVZNMWrPZqqaOu-TFu7Ixq3COTq1qgrn4eYfo7X78OnrE0-eHyeh2inUKImJTcUupYUKVjFkNvCp4yjSlJKOgSptxoU3BlGAmt5TkDKD7qYCV3KbEknSIrg57195ttiZEuXRb35UKkgrgKWSM512KH1LauxC8sVLXcd--O7RuJBD5bVMebMrOptzblLsOpf_Qta9Xyu-OQ-kBCl24nRv_1-oI9QWKAori
CitedBy_id crossref_primary_10_1016_j_cam_2022_114786
crossref_primary_10_1016_j_apnum_2025_01_003
crossref_primary_10_1080_02331934_2024_2312198
crossref_primary_10_1016_j_apnum_2023_10_004
crossref_primary_10_1016_j_cam_2024_116381
crossref_primary_10_1007_s10898_023_01346_0
crossref_primary_10_1007_s10957_025_02825_y
crossref_primary_10_1016_j_camwa_2024_03_025
crossref_primary_10_1016_j_nonrwa_2023_103869
crossref_primary_10_1007_s10957_025_02676_7
crossref_primary_10_1080_02331934_2025_2541709
crossref_primary_10_1016_j_cam_2022_114132
Cites_doi 10.1214/aoms/1177729586
10.1142/S0217595910002569
10.1007/s10589-013-9599-7
10.1109/TAC.2008.925853
10.1080/10556788.2010.551536
10.1007/s10589-020-00185-z
10.1007/s10107-018-1254-8
10.1109/CDC.2014.7040302
10.1007/s10107-017-1175-y
10.1109/CDC.2018.8618953
10.1016/j.cam.2018.12.013
10.1007/s10589-014-9673-9
10.1007/s101070050024
10.1007/s10957-010-9757-3
10.1137/110825352
10.1007/s10589-019-00120-x
10.1109/TAC.2015.2478124
10.1109/WSC.2016.7822133
10.1137/1.9780898718751
10.1007/s10107-018-1266-4
10.1287/opre.2016.1501
10.1137/100792644
10.1287/educ.2013.0120
10.1007/s11228-018-0472-9
10.1007/BF01585696
10.1007/s40305-019-00267-8
10.1007/s11228-021-00591-3
10.1109/TSP.2017.2695451
10.1080/02331934.2010.539689
10.1109/TAC.2012.2215413
10.1142/S0217595920500116
10.1109/WSC.2015.7408179
10.1137/S0363012997317475
10.1137/17M1144799
10.1109/CDC.2016.7798955
10.1007/s10957-014-0673-9
10.1016/B978-0-12-604550-5.50015-8
10.1007/s10107-017-1161-4
10.1007/s10957-019-01578-9
10.1137/15M1031953
10.1007/s11424-011-0948-2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-021-01603-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: AAdvanced Technologies & Aerospace Database (subscription)
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_021_01603_y
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-ed8f22e49ab44fc18d7834c220521abf589ce74a94e6f206411052d14b8f30f03
IEDL.DBID P5Z
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686657900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 03:15:35 EST 2025
Sat Nov 29 01:56:29 EST 2025
Tue Nov 18 21:10:50 EST 2025
Fri Feb 21 02:47:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Stochastic variational inequality
65K15
Bounded proximal error bound
90C33
Variance reduction
Convergence rate
Stochastic approximation
90C15
Subgradient extragradient algorithm
62L20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ed8f22e49ab44fc18d7834c220521abf589ce74a94e6f206411052d14b8f30f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918315486
PQPubID 2043771
ParticipantIDs proquest_journals_2918315486
crossref_citationtrail_10_1007_s10915_021_01603_y
crossref_primary_10_1007_s10915_021_01603_y
springer_journals_10_1007_s10915_021_01603_y
PublicationCentury 2000
PublicationDate 20211000
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References FukushimaMEquivalent differentiable optimization problems and descent methods for asymmetric variational inequality problemsMath. Program.199253199110115176710.1007/BF01585696
RavatUShanbhagUVOn the characterization of solution sets of smooth and nonsmooth convex stochastic Nash gamesSIAM J. Optimiz.201121311681199283756710.1137/100792644
Shanbhag, U.V.: Stochastic variational inequality problems: Applications, analysis, and algorithms. Inf. Tutorials Oper. Res. pp. 71–107,(2013)
Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61(9), 1119–1132 (2012)
GürkanGYoncaÖzge ARobonsonSMSample-path solution of stochastic variational inequalitiesMath. Program.1999842313333169000510.1007/s101070050024
YousefianFNedićAShanbhagUVOn smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problemsMath. Program.20171651391431370350710.1007/s10107-017-1175-y
DangCDLanGOn the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operatorsComput. Optim. Appl.2015602277310331668010.1007/s10589-014-9673-9
KannanAShanbhagUVDistributed computation of equilibria in monotone Nash games via iterative regularization techniquesSIAM J. Optimiz.201222411771205302376910.1137/110825352
JiangJChenXChenZQuantitative analysis for a class of two-stage stochastic linear variational inequality problemsComput. Optim. Appl.2020762431460409883510.1007/s10589-020-00185-z
ChenXSunHXuHDiscrete approximation of two-stage stochastic and distributionally robust linear complementarityMath. Program.20191771255289398720010.1007/s10107-018-1266-4
XuHSample average approximation methods for a class of stochastic variational inequality problemsAsia Pac. J. Oper. Res.2010271103119264695510.1142/S0217595910002569
Shanbhag, U.V., Blanchet, J.H.: In: Budget-constrained Stochastic Approximation, pp. 368–379. , Huntington Beach, CA (2015)
IusemANJofréAOliveiraRIThompsonPExtragradient method with variance reduction for stochastic variational inequalitiesSIAM J. Optimiz.2017272686724363958810.1137/15M1031953
YuCVan Der SchaarMSayedAHDistributed learning for stochastic generalized Nash equilibrium problemsIEEE T. Signal Proces.2017651538933908368403710.1109/TSP.2017.2695451
CaiXGuGHeBOn the O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/t)$$\end{document} convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operatorsComput. Optim. Appl.2014572339363316505210.1007/s10589-013-9599-7
SunHChenXTwo-stage stochastic variational inequalities: Theory, algorithms and applicationsJ. Oper. Res. Soc. China20219132421800110.1007/s40305-019-00267-8
WangMLinGHGaoYAliMMSample average approximation method for a class of stochastic variational inequality problemsJ. Syst. Sci. Complex.201124611431153286398410.1007/s11424-011-0948-2
IusemANJofréAOliveiraRIThompsonPVariance-based extragradient methods with line search for stochastic variational inequalitiesSIAM J. Optimiz.2019291175206390080110.1137/17M1144799
IusemANJofréAThompsonPIncremental constraint projection methods for monotone stochastic variational inequalitiesMath. Oper. Res.2019441236263392072207179960
Lei, J., Shanbhag, U.V.: Linearly convergent variable sample-size schemes for stochastic Nash games: Best-response schemes and distributed gradient-response schemes. Presented at the (2018)
Burkholder, D.L., Davis, B.J., Gundy, R.F.: Integral inequalities for convex functions of operators on martingales. Presented at the (1972)
Mertikopoulos, P., Lecouat, B., Zenati, H., Foo, C.S., Chandrasekhar, V., Piliouras, G.: In: Optimistic Mirror Descent in Saddle-point Problems: Going the Extra (gradient) Mile, pp. 1–23. United States, New Orleans (2019)
YangZPZhangJZhuXLinGHInfeasible interior-point algorithms based on sampling average approximations for a class of stochastic complementarity problems and their applicationsJ. Comput. Appl. Math.2019352382400389507110.1016/j.cam.2018.12.013
JadambaBRacitiFVariational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopolyJ. Optim. Theory Appl.2015165310501070334167910.1007/s10957-014-0673-9
YangZPWangYLinGHVariance-based modified backward-forward algorithm with line search for stochastic variational inequality problems and its applicationsAsia Pac. J. Oper. Res.2020373133410795510.1142/S0217595920500116
Robbins H., Siegund D.: A convergence theorem for non-negative almost supermartingales and some applications, In: Optimizing Methods in Statistics (Proceedings of a Symposium at Ohio State University, Columbus, Ohio), Rustagi, J. S. (eds.), Academic Press, New York, pp. 233-257 (1971)
CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.20111482318335278056610.1007/s10957-010-9757-3
KoshalJNedićAShanbhagUVRegularized iterative stochastic approximation methods for stochastic variational inequality problemsIEEE T. Automat. Control2013583594609302945810.1109/TAC.2012.2215413
SolodovMVSvaiterBFA new projection method for variational inequality problemsSIAM J. Control Optim.1999373765776167508610.1137/S0363012997317475
LinGHFukushimaMStochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: A surveyPac. J. Optim.20106345548227430381200.65052
KannanAShanbhagUVOptimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variantsComput. Optim. Appl.2019743779820402986010.1007/s10589-019-00120-x
Ye J.J., Yuan X., Zeng S., Zhang J.: Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems. Set-Valued Var. Anal. doi: https://doi.org/10.1007/s11228-021-00591-3(2021)
Jalilzadeh, A., Shanbhag, U.V., eg-VSSA, : An extragradient variable sample-size stochastic approximation scheme: error analysis and complexity trade-offs. Presented at the (2016)
Yousefian, F., Nedić, A., Shanbhag, U.V.: In: Optimal Robust Smoothing Extragradient Algorithms for Stochastic Variational Inequality Problems, pp. 5831–5836. , Los Angeles, CA (2014)
Liu, M., Mroueh, Y., Ross, J., Zhang, W., Cui, X., Das, P., Yang, T.: Towards better understanding of adaptive gradient algorithms in generative adversarial nets. In: Proceedings of the 2020 International Conference on Learning Representations, (2020). https://openreview.net/forum?id=SJxIm0VtwH
MertikopoulosPZhouZLearning in games with continuous action sets and unknown payoff functionsMath. Program.20191731465507390446910.1007/s10107-018-1254-8
ShapiroADentchevaDRuszczynskiALectures on Stochastic Programming: Modeling and Theory2009PhiladelphiaSIAM10.1137/1.9780898718751
FacchineiFPangJSFinite-Dimensional Variational Inequalities and Complementarity Problems. I and II2003New YorkSpringer1062.90002
ChenYLanGOuyangYAccelerated schemes for a class of variational inequalitiesMath. Program.20171651113149370350010.1007/s10107-017-1161-4
Cui, S., Shanbhag, U.V.: On the analysis of reflected gradient and splitting methods for monotone stochastic variational inequality problems. Presented at the (2016)
KoshalJNediécAShanbhagUVDistributed algorithms for aggregative games on graphsOper. Res.2016643680704351520510.1287/opre.2016.1501
YousefianFNedićAShanbhagUVSelf-tuned stochastic approximation schemes for non-Lipschitzian stochastic multi-user optimization and Nash gamesIEEE T. Automat. Control201661717531766352128610.1109/TAC.2015.2478124
CensorYGibaliAReichSStrong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert spaceOptim. Method. Soft.2011264–5827845283780010.1080/10556788.2010.551536
JiangHXuHStochastic approximation approaches to the stochastic variational inequality problemIEEE T. Automat. Control200853614621475245123510.1109/TAC.2008.925853
RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951224004074266810.1214/aoms/1177729586
YousefianFNedićAShanbhagUVOn stochastic mirror-prox algorithms for stochastic Cartesian variational inequalities randomized block coordinate and optimal averaging schemesSet-Valued Var. Anal.2018264789819388194210.1007/s11228-018-0472-9
ZhangXJDuXWYangZPLinGHAn infeasible stochastic approximation and projection algorithm for stochastic variational inequalitiesJ. Optim. Theory Appl.2019183310531076402344910.1007/s10957-019-01578-9
1603_CR3
Y Chen (1603_CR6) 2017; 165
H Jiang (1603_CR19) 2008; 53
F Yousefian (1603_CR43) 2018; 26
1603_CR44
AN Iusem (1603_CR15) 2019; 44
A Kannan (1603_CR21) 2019; 74
1603_CR1
J Koshal (1603_CR23) 2013; 58
1603_CR41
X Cai (1603_CR2) 2014; 57
F Facchinei (1603_CR10) 2003
1603_CR28
H Sun (1603_CR36) 2021; 9
X Chen (1603_CR7) 2019; 177
1603_CR24
J Jiang (1603_CR18) 2020; 76
1603_CR26
H Robbins (1603_CR30) 1951; 22
MV Solodov (1603_CR35) 1999; 37
F Yousefian (1603_CR45) 2016; 61
M Fukushima (1603_CR11) 1992; 53
1603_CR8
M Wang (1603_CR37) 2011; 24
1603_CR32
1603_CR31
A Kannan (1603_CR20) 2012; 22
1603_CR33
J Koshal (1603_CR22) 2016; 64
GH Lin (1603_CR25) 2010; 6
C Yu (1603_CR46) 2017; 65
CD Dang (1603_CR9) 2015; 60
AN Iusem (1603_CR14) 2019; 29
1603_CR17
XJ Zhang (1603_CR47) 2019; 183
ZP Yang (1603_CR39) 2020; 37
AN Iusem (1603_CR13) 2017; 27
P Mertikopoulos (1603_CR27) 2019; 173
Y Censor (1603_CR4) 2011; 26
ZP Yang (1603_CR40) 2019; 352
A Shapiro (1603_CR34) 2009
G Gürkan (1603_CR12) 1999; 84
H Xu (1603_CR38) 2010; 27
B Jadamba (1603_CR16) 2015; 165
U Ravat (1603_CR29) 2011; 21
F Yousefian (1603_CR42) 2017; 165
Y Censor (1603_CR5) 2011; 148
References_xml – reference: Mertikopoulos, P., Lecouat, B., Zenati, H., Foo, C.S., Chandrasekhar, V., Piliouras, G.: In: Optimistic Mirror Descent in Saddle-point Problems: Going the Extra (gradient) Mile, pp. 1–23. United States, New Orleans (2019)
– reference: FukushimaMEquivalent differentiable optimization problems and descent methods for asymmetric variational inequality problemsMath. Program.199253199110115176710.1007/BF01585696
– reference: KannanAShanbhagUVOptimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variantsComput. Optim. Appl.2019743779820402986010.1007/s10589-019-00120-x
– reference: ChenYLanGOuyangYAccelerated schemes for a class of variational inequalitiesMath. Program.20171651113149370350010.1007/s10107-017-1161-4
– reference: CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.20111482318335278056610.1007/s10957-010-9757-3
– reference: LinGHFukushimaMStochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: A surveyPac. J. Optim.20106345548227430381200.65052
– reference: Cui, S., Shanbhag, U.V.: On the analysis of reflected gradient and splitting methods for monotone stochastic variational inequality problems. Presented at the (2016)
– reference: JiangJChenXChenZQuantitative analysis for a class of two-stage stochastic linear variational inequality problemsComput. Optim. Appl.2020762431460409883510.1007/s10589-020-00185-z
– reference: Liu, M., Mroueh, Y., Ross, J., Zhang, W., Cui, X., Das, P., Yang, T.: Towards better understanding of adaptive gradient algorithms in generative adversarial nets. In: Proceedings of the 2020 International Conference on Learning Representations, (2020). https://openreview.net/forum?id=SJxIm0VtwH
– reference: Shanbhag, U.V.: Stochastic variational inequality problems: Applications, analysis, and algorithms. Inf. Tutorials Oper. Res. pp. 71–107,(2013)
– reference: Jalilzadeh, A., Shanbhag, U.V., eg-VSSA, : An extragradient variable sample-size stochastic approximation scheme: error analysis and complexity trade-offs. Presented at the (2016)
– reference: Shanbhag, U.V., Blanchet, J.H.: In: Budget-constrained Stochastic Approximation, pp. 368–379. , Huntington Beach, CA (2015)
– reference: KannanAShanbhagUVDistributed computation of equilibria in monotone Nash games via iterative regularization techniquesSIAM J. Optimiz.201222411771205302376910.1137/110825352
– reference: ZhangXJDuXWYangZPLinGHAn infeasible stochastic approximation and projection algorithm for stochastic variational inequalitiesJ. Optim. Theory Appl.2019183310531076402344910.1007/s10957-019-01578-9
– reference: JiangHXuHStochastic approximation approaches to the stochastic variational inequality problemIEEE T. Automat. Control200853614621475245123510.1109/TAC.2008.925853
– reference: SunHChenXTwo-stage stochastic variational inequalities: Theory, algorithms and applicationsJ. Oper. Res. Soc. China20219132421800110.1007/s40305-019-00267-8
– reference: YousefianFNedićAShanbhagUVOn stochastic mirror-prox algorithms for stochastic Cartesian variational inequalities randomized block coordinate and optimal averaging schemesSet-Valued Var. Anal.2018264789819388194210.1007/s11228-018-0472-9
– reference: YousefianFNedićAShanbhagUVOn smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problemsMath. Program.20171651391431370350710.1007/s10107-017-1175-y
– reference: Ye J.J., Yuan X., Zeng S., Zhang J.: Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems. Set-Valued Var. Anal. doi: https://doi.org/10.1007/s11228-021-00591-3(2021)
– reference: YuCVan Der SchaarMSayedAHDistributed learning for stochastic generalized Nash equilibrium problemsIEEE T. Signal Proces.2017651538933908368403710.1109/TSP.2017.2695451
– reference: ChenXSunHXuHDiscrete approximation of two-stage stochastic and distributionally robust linear complementarityMath. Program.20191771255289398720010.1007/s10107-018-1266-4
– reference: KoshalJNediécAShanbhagUVDistributed algorithms for aggregative games on graphsOper. Res.2016643680704351520510.1287/opre.2016.1501
– reference: XuHSample average approximation methods for a class of stochastic variational inequality problemsAsia Pac. J. Oper. Res.2010271103119264695510.1142/S0217595910002569
– reference: YangZPWangYLinGHVariance-based modified backward-forward algorithm with line search for stochastic variational inequality problems and its applicationsAsia Pac. J. Oper. Res.2020373133410795510.1142/S0217595920500116
– reference: GürkanGYoncaÖzge ARobonsonSMSample-path solution of stochastic variational inequalitiesMath. Program.1999842313333169000510.1007/s101070050024
– reference: Lei, J., Shanbhag, U.V.: Linearly convergent variable sample-size schemes for stochastic Nash games: Best-response schemes and distributed gradient-response schemes. Presented at the (2018)
– reference: FacchineiFPangJSFinite-Dimensional Variational Inequalities and Complementarity Problems. I and II2003New YorkSpringer1062.90002
– reference: KoshalJNedićAShanbhagUVRegularized iterative stochastic approximation methods for stochastic variational inequality problemsIEEE T. Automat. Control2013583594609302945810.1109/TAC.2012.2215413
– reference: WangMLinGHGaoYAliMMSample average approximation method for a class of stochastic variational inequality problemsJ. Syst. Sci. Complex.201124611431153286398410.1007/s11424-011-0948-2
– reference: IusemANJofréAOliveiraRIThompsonPExtragradient method with variance reduction for stochastic variational inequalitiesSIAM J. Optimiz.2017272686724363958810.1137/15M1031953
– reference: Burkholder, D.L., Davis, B.J., Gundy, R.F.: Integral inequalities for convex functions of operators on martingales. Presented at the (1972)
– reference: JadambaBRacitiFVariational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopolyJ. Optim. Theory Appl.2015165310501070334167910.1007/s10957-014-0673-9
– reference: CensorYGibaliAReichSStrong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert spaceOptim. Method. Soft.2011264–5827845283780010.1080/10556788.2010.551536
– reference: Yousefian, F., Nedić, A., Shanbhag, U.V.: In: Optimal Robust Smoothing Extragradient Algorithms for Stochastic Variational Inequality Problems, pp. 5831–5836. , Los Angeles, CA (2014)
– reference: Robbins H., Siegund D.: A convergence theorem for non-negative almost supermartingales and some applications, In: Optimizing Methods in Statistics (Proceedings of a Symposium at Ohio State University, Columbus, Ohio), Rustagi, J. S. (eds.), Academic Press, New York, pp. 233-257 (1971)
– reference: Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61(9), 1119–1132 (2012)
– reference: DangCDLanGOn the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operatorsComput. Optim. Appl.2015602277310331668010.1007/s10589-014-9673-9
– reference: RavatUShanbhagUVOn the characterization of solution sets of smooth and nonsmooth convex stochastic Nash gamesSIAM J. Optimiz.201121311681199283756710.1137/100792644
– reference: IusemANJofréAThompsonPIncremental constraint projection methods for monotone stochastic variational inequalitiesMath. Oper. Res.2019441236263392072207179960
– reference: RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951224004074266810.1214/aoms/1177729586
– reference: ShapiroADentchevaDRuszczynskiALectures on Stochastic Programming: Modeling and Theory2009PhiladelphiaSIAM10.1137/1.9780898718751
– reference: YangZPZhangJZhuXLinGHInfeasible interior-point algorithms based on sampling average approximations for a class of stochastic complementarity problems and their applicationsJ. Comput. Appl. Math.2019352382400389507110.1016/j.cam.2018.12.013
– reference: MertikopoulosPZhouZLearning in games with continuous action sets and unknown payoff functionsMath. Program.20191731465507390446910.1007/s10107-018-1254-8
– reference: SolodovMVSvaiterBFA new projection method for variational inequality problemsSIAM J. Control Optim.1999373765776167508610.1137/S0363012997317475
– reference: YousefianFNedićAShanbhagUVSelf-tuned stochastic approximation schemes for non-Lipschitzian stochastic multi-user optimization and Nash gamesIEEE T. Automat. Control201661717531766352128610.1109/TAC.2015.2478124
– reference: IusemANJofréAOliveiraRIThompsonPVariance-based extragradient methods with line search for stochastic variational inequalitiesSIAM J. Optimiz.2019291175206390080110.1137/17M1144799
– reference: CaiXGuGHeBOn the O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/t)$$\end{document} convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operatorsComput. Optim. Appl.2014572339363316505210.1007/s10589-013-9599-7
– volume: 22
  start-page: 400
  year: 1951
  ident: 1603_CR30
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729586
– volume: 27
  start-page: 103
  issue: 1
  year: 2010
  ident: 1603_CR38
  publication-title: Asia Pac. J. Oper. Res.
  doi: 10.1142/S0217595910002569
– volume: 57
  start-page: 339
  issue: 2
  year: 2014
  ident: 1603_CR2
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-013-9599-7
– volume: 53
  start-page: 1462
  issue: 6
  year: 2008
  ident: 1603_CR19
  publication-title: IEEE T. Automat. Control
  doi: 10.1109/TAC.2008.925853
– volume: 26
  start-page: 827
  issue: 4–5
  year: 2011
  ident: 1603_CR4
  publication-title: Optim. Method. Soft.
  doi: 10.1080/10556788.2010.551536
– volume: 76
  start-page: 431
  issue: 2
  year: 2020
  ident: 1603_CR18
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00185-z
– volume: 173
  start-page: 465
  issue: 1
  year: 2019
  ident: 1603_CR27
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1254-8
– ident: 1603_CR26
– ident: 1603_CR44
  doi: 10.1109/CDC.2014.7040302
– ident: 1603_CR28
– volume: 165
  start-page: 391
  issue: 1
  year: 2017
  ident: 1603_CR42
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1175-y
– ident: 1603_CR24
  doi: 10.1109/CDC.2018.8618953
– volume: 352
  start-page: 382
  year: 2019
  ident: 1603_CR40
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.12.013
– volume: 44
  start-page: 236
  issue: 1
  year: 2019
  ident: 1603_CR15
  publication-title: Math. Oper. Res.
– volume: 60
  start-page: 277
  issue: 2
  year: 2015
  ident: 1603_CR9
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-014-9673-9
– volume: 84
  start-page: 313
  issue: 2
  year: 1999
  ident: 1603_CR12
  publication-title: Math. Program.
  doi: 10.1007/s101070050024
– volume: 148
  start-page: 318
  issue: 2
  year: 2011
  ident: 1603_CR5
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9757-3
– volume: 22
  start-page: 1177
  issue: 4
  year: 2012
  ident: 1603_CR20
  publication-title: SIAM J. Optimiz.
  doi: 10.1137/110825352
– volume: 74
  start-page: 779
  issue: 3
  year: 2019
  ident: 1603_CR21
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00120-x
– volume: 61
  start-page: 1753
  issue: 7
  year: 2016
  ident: 1603_CR45
  publication-title: IEEE T. Automat. Control
  doi: 10.1109/TAC.2015.2478124
– ident: 1603_CR17
  doi: 10.1109/WSC.2016.7822133
– volume-title: Lectures on Stochastic Programming: Modeling and Theory
  year: 2009
  ident: 1603_CR34
  doi: 10.1137/1.9780898718751
– volume: 177
  start-page: 255
  issue: 1
  year: 2019
  ident: 1603_CR7
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1266-4
– volume: 64
  start-page: 680
  issue: 3
  year: 2016
  ident: 1603_CR22
  publication-title: Oper. Res.
  doi: 10.1287/opre.2016.1501
– ident: 1603_CR1
– volume: 21
  start-page: 1168
  issue: 3
  year: 2011
  ident: 1603_CR29
  publication-title: SIAM J. Optimiz.
  doi: 10.1137/100792644
– ident: 1603_CR32
  doi: 10.1287/educ.2013.0120
– volume: 26
  start-page: 789
  issue: 4
  year: 2018
  ident: 1603_CR43
  publication-title: Set-Valued Var. Anal.
  doi: 10.1007/s11228-018-0472-9
– volume: 53
  start-page: 99
  issue: 1
  year: 1992
  ident: 1603_CR11
  publication-title: Math. Program.
  doi: 10.1007/BF01585696
– volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems. I and II
  year: 2003
  ident: 1603_CR10
– volume: 9
  start-page: 1
  year: 2021
  ident: 1603_CR36
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-019-00267-8
– ident: 1603_CR41
  doi: 10.1007/s11228-021-00591-3
– volume: 65
  start-page: 3893
  issue: 15
  year: 2017
  ident: 1603_CR46
  publication-title: IEEE T. Signal Proces.
  doi: 10.1109/TSP.2017.2695451
– ident: 1603_CR3
  doi: 10.1080/02331934.2010.539689
– volume: 58
  start-page: 594
  issue: 3
  year: 2013
  ident: 1603_CR23
  publication-title: IEEE T. Automat. Control
  doi: 10.1109/TAC.2012.2215413
– volume: 37
  start-page: 1
  issue: 3
  year: 2020
  ident: 1603_CR39
  publication-title: Asia Pac. J. Oper. Res.
  doi: 10.1142/S0217595920500116
– ident: 1603_CR33
  doi: 10.1109/WSC.2015.7408179
– volume: 37
  start-page: 765
  issue: 3
  year: 1999
  ident: 1603_CR35
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012997317475
– volume: 29
  start-page: 175
  issue: 1
  year: 2019
  ident: 1603_CR14
  publication-title: SIAM J. Optimiz.
  doi: 10.1137/17M1144799
– ident: 1603_CR8
  doi: 10.1109/CDC.2016.7798955
– volume: 165
  start-page: 1050
  issue: 3
  year: 2015
  ident: 1603_CR16
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-014-0673-9
– ident: 1603_CR31
  doi: 10.1016/B978-0-12-604550-5.50015-8
– volume: 6
  start-page: 455
  issue: 3
  year: 2010
  ident: 1603_CR25
  publication-title: Pac. J. Optim.
– volume: 165
  start-page: 113
  issue: 1
  year: 2017
  ident: 1603_CR6
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1161-4
– volume: 183
  start-page: 1053
  issue: 3
  year: 2019
  ident: 1603_CR47
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01578-9
– volume: 27
  start-page: 686
  issue: 2
  year: 2017
  ident: 1603_CR13
  publication-title: SIAM J. Optimiz.
  doi: 10.1137/15M1031953
– volume: 24
  start-page: 1143
  issue: 6
  year: 2011
  ident: 1603_CR37
  publication-title: J. Syst. Sci. Complex.
  doi: 10.1007/s11424-011-0948-2
SSID ssj0009892
Score 2.3736322
Snippet In this paper, we propose a variance-based subgradient extragradient algorithm with line search for stochastic variational inequality problems by aiming at...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4
SubjectTerms Algebra
Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Convergence
Iterative methods
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Numerical analysis
Random variables
Regularization methods
Robustness (mathematics)
Theoretical
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8etAHP6bi_CIPPigaWNO0Sx5VNhRUxOnwyZKkiQqyyVrF_fcmabupqKCPpUkoubvcXXP3-wHsNIXNOlgkcRgrhWkzlVhax4O1CjWRKTfUF2N2z5oXF-z2ll-WTWFZVe1eXUn6k_pDsxsPXDexS3_jRoiHkzBt3R1zhA1Xne4Yapd5KmRrPhG2wTItW2W-X-OzOxrHmF-uRb23aS_87zsXYb6MLtFhoQ5LMKF7NZg7H0GzZjVYKq05Q7sl5PTeMtx1bcrs5I-PrFdLkT1O7ge-GCxHrbd8IEZP555xGtlQF3XyvnoQDucZ-enFX0V02tNFp-YQXRZsNdkK3LRb18cnuGRewMqaZI51ygwhmnIhKTUqYKnj41CuKZcEQpqIcaWbVHCqY0NsVGODiIikAZXMhA3TCFdhqtfv6TVAKmaaq4CbKBZUCCYjI6RIbVoTES5jVoegEkCiSlhyx47xlIwBld2GJnZDE7-hybAO-6M5zwUox6-jNyu5JqWBZgnh9ixz6Vpch4NKjuPXP6-2_rfhGzBLnCr48r9NmMoHL3oLZtRr_pgNtr3ivgNFkehM
  priority: 102
  providerName: Springer Nature
Title Variance-Based Subgradient Extragradient Method for Stochastic Variational Inequality Problems
URI https://link.springer.com/article/10.1007/s10915-021-01603-y
https://www.proquest.com/docview/2918315486
Volume 89
WOSCitedRecordID wos000686657900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_x9bAXGB8ThVL5gQcQWGscJ7GfEJ2KhoCqgq1Ce1hkO_aGhFpoAqL_PbbjEm3SeNlLpCixFeXufHf23e8HsJ8Jm3WwROI4VQrTrJBYWseDtYo1kQU31Bdjji6zwYDd3vJh2HArQ1nlfE30C3UxUW6P_DPhVvlcfJ2ePDxixxrlTlcDhcYiLDuUBEfdMEx-NKC7zJMiW0NKsA2baWiaCa1zPHK9yS6ZTrsxnv3pmJpo868DUu93ztb-94s_wmqIONFprSLrsKDHG7AebLpEBwF4-nATfo5s4uy0APesbyuQXVR-TX1JWIX6L9VUvN1ded5pZANedFNN1G_h0J6RH17vLaLzsa77NWdoWHPWlFvw_az_7ctXHPgXsLKGWWFdMEOIplxISo2KWOFYOZRrzSWRkCZhXOmMCk51aoiNbWwokZAiopKZuGu68SdYGk_GehuQSpnmKuImSQUVgsnECCkKm9wkhMuUtSCa__xcBXByx5Fxnzewyk5guRVY7gWWz1pw9DbmoYbmePft9lxKeTDTMm9E1ILjuZybx_-ebef92XbhA3Gq5Yv-2rBUTZ_0Hqyo5-qunHZgudcfDK87sHiR4Y5XWXu9vhm9AuHS8L4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xqEQvFGhRl1d9KFKr1mLjOIl9qBBQEKtdVkiliBPBdmyoVO1Ckhb2T_U31nYSoiLBjUOPkWNLib952TPzAbxPhI06WCRxGCuFaZJJLK3hwVqFmsiMG-qTMU8HyXDIzs748RT8aWphXFploxO9os7Gyp2RbxFuwef863j7-gY71ih3u9pQaFSw6OvJrQ3Zii-9r3Z_Nwk52D_ZO8Q1qwBWFm4l1hkzhGjKhaTUqIBljmtCuYJTEghpIsaVTqjgVMeGWIttDWREsoBKZsKu6YZ23WmYpSFLnFz1E9w2-WWehNkKboStm07rIp26VI8HrhbaBe9xN8STfw1h690-uJD1du7g1f_2hxZgvvao0U4lAoswpUdLsFjrrAJ9qBtrf3wN56cid2c4Gu9a250hqzQvc5_yVqL9uzIX909HnlcbWYcefSvH6kq4btbIT6_OTlFvpKt61Ak6rjh5ijfw_Vm-cxlmRuORfgtIxUxzFXATxYIKwWRkhBSZDd4iwmXMOhA0m52quvm64wD5mbZtox1AUguQ1AMknXTg0_2c66r1yJNvrzWoSGs1VKQtJDrwucFVO_z4aitPr_YO5g5PjgbpoDfsr8JL4mDtExzXYKbMf-l1eKF-lz-KfMMLCIKL58bbX3fGSFU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xWCE48FxEefrAYRFr0ThOah95VSCgqsRScSKyHXtBQmnVBET_PbaTtiyClRDHKLYVeWY8M_F83wDsNoTNOlgkcRgrhWkjlVhax4O1CjWRKTfUF2N2LhutFru95e03KH5f7T68kiwxDY6lKSsOeqk5eAN844FDFrtUOK6HeDAJ09QV0rt8_bozpt1lvi2yNaUI28CZVrCZj9f41zWN4813V6Te8zQXvv_NizBfRZ3osFSTJZjQ2TLMXY0oW_NlWKqsPEe_KirqvRW469hU2ukFPrLeLkX2mPnb90ViBTp9Kfpi9HTlO1EjGwKj66Kr7oXjf0Z-evm3EZ1nukRwDlC77GKT_4Sb5umf4zNcdWTAyppqgXXKDCGaciEpNSpgqevToRxYlwRCmohxpRtUcKpjQ2y0Y4OLiKQBlcyEdVMPV2Eq62Z6DZCKmeYq4CaKBRWCycgIKVKb7kSEy5jVIBgKI1EVXbnrmvGYjImW3YYmdkMTv6HJoAb7ozm9kqzjv6M3hzJOKsPNE8LtGefSuLgGv4cyHb_-fLX1rw3fgZn2STO5PG9dbMAscVrhKwQ3YaroP-kt-KGei4e8v-31-RWx5vQU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variance-Based+Subgradient+Extragradient+Method+for+Stochastic+Variational+Inequality+Problems&rft.jtitle=Journal+of+scientific+computing&rft.au=Yang%2C+Zhen-Ping&rft.au=Zhang%2C+Jin&rft.au=Wang%2C+Yuliang&rft.au=Lin%2C+Gui-Hua&rft.date=2021-10-01&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=89&rft.issue=1&rft_id=info:doi/10.1007%2Fs10915-021-01603-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10915_021_01603_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon