GANAD: A GAN-based method for network anomaly detection
Cyber-intrusion always leads to severe threats to the network, i,e., system paralysis, information leaky, and economic losses. To protect network security, anomaly detection methods based on generative adversarial networks (GAN) for hindering cyber-intrusion have been proposed. However, existing GAN...
Uloženo v:
| Vydáno v: | World wide web (Bussum) Ročník 26; číslo 5; s. 2727 - 2748 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1386-145X, 1573-1413 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cyber-intrusion always leads to severe threats to the network, i,e., system paralysis, information leaky, and economic losses. To protect network security, anomaly detection methods based on generative adversarial networks (GAN) for hindering cyber-intrusion have been proposed. However, existing GAN-based anomaly score methods built upon the generator network are designed for data synthesis, which would get unappealing performance on the anomaly detection task. Therefore, their low-efficient and unstable performance make detection tasks still quite challenging. To cope with these issues, we propose a novel GAN-based approach
GANAD
to address the above problems which is specifically designed for anomaly identification rather than data synthesis. Specifically, it first proposes a similar auto-encoder architecture, which makes up for the time-consuming problem of the traditional generator loss computation. In order to stabilize the training, the proposed discriminator training replaces JS divergence with Wasserstein distance adding gradient penalty. Then, it utilizes a new training strategy to better learn minority abnormal distribution from normal data, which contributes to the detection precision. Therefore, our approach can ensure the detection performance and overcomes the problem of unstable in the process of GAN training. Experimental results demonstrate that our approach achieves superior performance to state-of-the-art methods and reduces time consumption at the same time. |
|---|---|
| AbstractList | Cyber-intrusion always leads to severe threats to the network, i,e., system paralysis, information leaky, and economic losses. To protect network security, anomaly detection methods based on generative adversarial networks (GAN) for hindering cyber-intrusion have been proposed. However, existing GAN-based anomaly score methods built upon the generator network are designed for data synthesis, which would get unappealing performance on the anomaly detection task. Therefore, their low-efficient and unstable performance make detection tasks still quite challenging. To cope with these issues, we propose a novel GAN-based approach
GANAD
to address the above problems which is specifically designed for anomaly identification rather than data synthesis. Specifically, it first proposes a similar auto-encoder architecture, which makes up for the time-consuming problem of the traditional generator loss computation. In order to stabilize the training, the proposed discriminator training replaces JS divergence with Wasserstein distance adding gradient penalty. Then, it utilizes a new training strategy to better learn minority abnormal distribution from normal data, which contributes to the detection precision. Therefore, our approach can ensure the detection performance and overcomes the problem of unstable in the process of GAN training. Experimental results demonstrate that our approach achieves superior performance to state-of-the-art methods and reduces time consumption at the same time. Cyber-intrusion always leads to severe threats to the network, i,e., system paralysis, information leaky, and economic losses. To protect network security, anomaly detection methods based on generative adversarial networks (GAN) for hindering cyber-intrusion have been proposed. However, existing GAN-based anomaly score methods built upon the generator network are designed for data synthesis, which would get unappealing performance on the anomaly detection task. Therefore, their low-efficient and unstable performance make detection tasks still quite challenging. To cope with these issues, we propose a novel GAN-based approach GANAD to address the above problems which is specifically designed for anomaly identification rather than data synthesis. Specifically, it first proposes a similar auto-encoder architecture, which makes up for the time-consuming problem of the traditional generator loss computation. In order to stabilize the training, the proposed discriminator training replaces JS divergence with Wasserstein distance adding gradient penalty. Then, it utilizes a new training strategy to better learn minority abnormal distribution from normal data, which contributes to the detection precision. Therefore, our approach can ensure the detection performance and overcomes the problem of unstable in the process of GAN training. Experimental results demonstrate that our approach achieves superior performance to state-of-the-art methods and reduces time consumption at the same time. |
| Author | Yang, Kang Ke, Jianpeng Fu, Jie Wang, Lina Yu, Rongwei |
| Author_xml | – sequence: 1 givenname: Jie surname: Fu fullname: Fu, Jie organization: Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University – sequence: 2 givenname: Lina surname: Wang fullname: Wang, Lina email: lnwang@whu.edu.cn organization: Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University – sequence: 3 givenname: Jianpeng surname: Ke fullname: Ke, Jianpeng organization: Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University – sequence: 4 givenname: Kang surname: Yang fullname: Yang, Kang organization: Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University – sequence: 5 givenname: Rongwei surname: Yu fullname: Yu, Rongwei organization: Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University |
| BookMark | eNp9kEFLAzEUhINUsK3-AU8LnqN5STbZ9bZUrULRi4K3kG7e6tZ2U5MU6b93awXBQ08zh_neG2ZEBp3vkJBzYJfAmL6KALxglHFBGYBiVB6RIeRaUJAgBr0Xhep9_npCRjEuGGNKlDAkelo9VjfXWZX1hs5tRJetML17lzU-ZB2mLx8-Mtv5lV1uM4cJ69T67pQcN3YZ8exXx-Tl7vZ5ck9nT9OHSTWjtYAyUXS5k-gUq6WGQjGeywYLsDuVhUUBmlkN2jVOIZ9LJrUrnbKAqilUiWJMLvZ318F_bjAms_Cb0PUvDS90rqTkHPpUsU_VwccYsDF1m-yuZwq2XRpgZjeT2c9k-pnMz0xG9ij_h65Du7JhexgSeyj24e4Nw1-rA9Q3gdZ5pQ |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2025_113124 crossref_primary_10_1109_ACCESS_2025_3544260 crossref_primary_10_7717_peerj_cs_2009 crossref_primary_10_1007_s41870_024_02172_7 crossref_primary_10_1016_j_compeleceng_2025_110320 crossref_primary_10_4018_JOEUC_342094 |
| Cites_doi | 10.5120/758-993 10.1109/ICDCS.2018.00178 10.1109/ARGENCON.2016.7585247 10.1109/ICDM.2018.00088 10.1016/j.adhoc.2020.102177 10.1145/342009.335388 10.1109/LCN44214.2019.8990759 10.1145/3447548.3467417 10.1145/3439950 10.1007/978-3-319-59050-9_12 10.1109/DCOSS.2019.00059 10.1007/978-3-030-20893-6_39 10.1109/TCYB.2018.2804940 10.1016/j.media.2019.01.010 10.1109/CISDA.2009.5356528 10.1198/004017001316975899 10.1145/3097983.3098052 10.14722/ndss.2018.23204 10.1145/3472753 10.1609/aaai.v35i5.16523 10.1145/3292500.3330871 10.1109/TETCI.2017.2772792 10.1109/MilCIS.2015.7348942 10.1007/978-1-4614-7597-2_10 10.1109/ICC40277.2020.9148632 10.1109/ICDM.2008.17 10.5120/2303-2914 10.1016/j.ins.2019.05.040 10.1145/2018436.2018477 10.1109/CSE-EUC.2017.119 10.1145/3219819.3220042 10.24963/ijcai.2020/408 10.1007/978-3-030-30490-4_56 10.1007/978-3-030-23502-4_12 10.1109/JIOT.2020.3024800 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11280-023-01160-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-1413 |
| EndPage | 2748 |
| ExternalDocumentID | 10_1007_s11280_023_01160_4 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61876134; 61876134; 61876134; 61876134; 61876134 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2020YFB1805400; 2020YFB1805400; 2020YFB1805400; 2020YFB1805400; 2020YFB1805400 funderid: http://dx.doi.org/10.13039/501100012166 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1SB 203 29R 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LLZTM M0N M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQQKQ PROAC PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-ed5d4ed60c471860254fe81a254f48ae3170a717dfd6e2b4047d9d6a1e6f869e3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983601300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-145X |
| IngestDate | Wed Nov 05 02:04:17 EST 2025 Sat Nov 29 06:37:27 EST 2025 Tue Nov 18 20:00:23 EST 2025 Fri Feb 21 02:42:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Spectral normalization WGAN Network anomaly detection Gradient penalty |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ed5d4ed60c471860254fe81a254f48ae3170a717dfd6e2b4047d9d6a1e6f869e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2875644221 |
| PQPubID | 2034525 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2875644221 crossref_citationtrail_10_1007_s11280_023_01160_4 crossref_primary_10_1007_s11280_023_01160_4 springer_journals_10_1007_s11280_023_01160_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20230900 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | Internet and Web Information Systems |
| PublicationTitle | World wide web (Bussum) |
| PublicationTitleAbbrev | World Wide Web |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 353–362 (2019) AnJChoSVariational autoencoder based anomaly detection using reconstruction probabilitySpecial Lecture on IE201521118 Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. arXiv:1605.09782 (2016) Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient gan-based anomaly detection. arXiv:1802.06222 (2018) ShoneNNgocTNPhaiVDShiQA deep learning approach to network intrusion detectionIEEE Transactions on Emerging Topics in Computational Intelligence201821415010.1109/TETCI.2017.2772792 Pang, G., van den Hengel, A., Shen, C., Cao, L.: Toward deep supervised anomaly detection: Reinforcement learning from partially labeled anomaly data. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1298–1308 (2021) SchleglTSeeböckPWaldsteinSMLangsGSchmidt-ErfurthUf-anogan: Fast unsupervised anomaly detection with generative adversarial networksMed. Image Anal.201954304410.1016/j.media.2019.01.010 Flores, S.: Variational Autoencoders Are Beautiful. https://www.compthree.com/blog/autoencoder/ (2019). Accessed 15 Apr 2019 SelvakumarKKaruppiahMSaiRameshLIslamSHHassanMMFortinoGChooK-KRIntelligent temporal classification and fuzzy rough set-based feature selection algorithm for intrusion detection system in wsnsInform. Sci.2019497779010.1016/j.ins.2019.05.040 Zenati, H., Romain, M., Foo, C.-S., Lecouat, B., Chandrasekhar, V.: Adversarially learned anomaly detection. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 727–736. IEEE (2018) Lin, P., Ye, K., Xu, C.-Z.: Dynamic network anomaly detection system by using deep learning techniques. In: International Conference on Cloud Computing, pp. 161–176. Springer (2019) KhanMSARule based network intrusion detection using genetic algorithmInt. J. Comput. Applic.2011188262910.5120/2303-2914 Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International Conference on Information Processing in Medical Imaging, pp. 146–157. Springer (2017) Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017) Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: Semi-supervised anomaly detection via adversarial training. In: Asian Conference on Computer Vision, pp. 622–637. Springer (2018) Zhao, G., Zhang, C., Zheng, L.: Intrusion detection using deep belief network and probabilistic neural network. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 639–642. IEEE (2017) Blowers, M., Williams, J.: Machine learning applied to cyber operations. In: Network Science and Cybersecurity, pp. 155–175 (2014) de Araujo-FilhoPFKaddoumGCampeloDRSantosAGMacêdoDZanchettinCIntrusion detection for cyber-physical systems using generative adversarial networks in fog environmentIEEE Internet Things J.2020886247625610.1109/JIOT.2020.3024800 Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4027–4035 (2021) Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. Advances in neural information processing systems 30 (2017) PeñaDPrietoFJMultivariate outlier detection and robust covariance matrix estimationTechnometrics2001433286310194318510.1198/004017001316975899 Mohammadi, B., Sabokrou, M.: End-to-end adversarial learning for intrusion detection in computer networks. In: 2019 IEEE 44th Conference on Local Computer Networks (LCN), pp. 270–273. IEEE (2019) Kwon, D., Natarajan, K., Suh, S.C., Kim, H., Kim, J.: An empirical study on network anomaly detection using convolutional neural networks. In: ICDCS, pp. 1595–1598 (2018) Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6. Ieee (2009) Ruff, L., Vandermeulen, R.A., Görnitz, N., Binder, A., Müller, E., Müller, K.-R., Kloft, M.: Deep semi-supervised anomaly detection. In: International Conference on Learning Representations (2019) Wang, H., Pang, G., Shen, C., Ma, C.: Unsupervised representation learning by predicting random distances. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 2950–2956 (2021) ChouDJiangMA survey on data-driven network intrusion detectionACM Comput. Surveys (CSUR)202154913610.1145/3472753 Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. Advances in neural information processing systems 12 (1999) Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data centers: measurement, analysis, and implications. In: Proceedings of the ACM SIGCOMM 2011 Conference, pp. 350–361 (2011) Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv:1802.05957 (2018) Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS), pp. 1–6. IEEE (2015) Yuan, D., Ota, K., Dong, M., Zhu, X., Wu, T., Zhang, L., Ma, J.: Intrusion detection for smart home security based on data augmentation with edge computing. In: ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020) Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: An ensemble of autoencoders for online network intrusion detection. In: Network and Distributed Systems Security (NDSS) Symposium (2018) Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674 (2017) Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) MulaySADevalePGarjeGIntrusion detection system using support vector machine and decision treeInt. J. Comput. Applic.201033404310.5120/758-993 Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422. IEEE (2008) Torres, P., Catania, C., Garcia, S., Garino, C.G.: An analysis of recurrent neural networks for botnet detection behavior. In: 2016 IEEE Biennial Congress of Argentina (ARGENCON), pp. 1–6. IEEE (2016) PangGShenCCaoLHengelAVDDeep learning for anomaly detection: A reviewACM Comput. Surveys (CSUR)202154213810.1145/3439950 MiaoXLiuYZhaoHLiCDistributed online one-class support vector machine for anomaly detection over networksIEEE Trans. Cybern.20184941475148810.1109/TCYB.2018.2804940 Pang, G., Cao, L., Chen, L., Liu, H.: Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2041–2050 (2018) Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks. In: International Conference on Artificial Neural Networks, pp. 703–716. Springer (2019) Huang, S., Lei, K.: Igan-ids: An imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks. Ad Hoc Netw. 105,(2020) Ahmim, A., Maglaras, L., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hierarchical intrusion detection system based on decision tree and rules-based models. In: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 228–233. IEEE (2019) Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly detection. In: International Conference on Machine Learning, pp. 1100–1109. PMLR (2016) Pang, G., Shen, C., Jin, H., Hengel, A.v.d.: Deep weakly-supervised anomaly detection. arXiv:1910.13601 (2019) Xiong, L., Póczos, B., Schneider, J.: Group anomaly detection using flexible genre models. Advances in neural information processing systems 24 (2011) 1160_CR50 PF de Araujo-Filho (1160_CR40) 2020; 8 1160_CR13 1160_CR14 1160_CR11 1160_CR10 N Shone (1160_CR18) 2018; 2 1160_CR1 1160_CR3 1160_CR15 1160_CR16 SA Mulay (1160_CR19) 2010; 3 D Chou (1160_CR2) 2021; 54 MSA Khan (1160_CR17) 2011; 18 1160_CR24 1160_CR25 1160_CR23 1160_CR21 D Peña (1160_CR22) 2001; 43 1160_CR28 1160_CR29 1160_CR26 1160_CR27 1160_CR35 1160_CR36 1160_CR33 1160_CR34 1160_CR31 1160_CR30 J An (1160_CR32) 2015; 2 1160_CR37 1160_CR38 1160_CR5 1160_CR7 1160_CR6 1160_CR9 1160_CR8 G Pang (1160_CR12) 2021; 54 1160_CR46 1160_CR47 1160_CR44 1160_CR45 T Schlegl (1160_CR39) 2019; 54 1160_CR42 1160_CR43 X Miao (1160_CR4) 2018; 49 1160_CR41 K Selvakumar (1160_CR20) 2019; 497 1160_CR48 1160_CR49 |
| References_xml | – reference: Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. Advances in neural information processing systems 30 (2017) – reference: Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6. Ieee (2009) – reference: Pang, G., Cao, L., Chen, L., Liu, H.: Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2041–2050 (2018) – reference: Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: Semi-supervised anomaly detection via adversarial training. In: Asian Conference on Computer Vision, pp. 622–637. Springer (2018) – reference: Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly detection. In: International Conference on Machine Learning, pp. 1100–1109. PMLR (2016) – reference: Blowers, M., Williams, J.: Machine learning applied to cyber operations. In: Network Science and Cybersecurity, pp. 155–175 (2014) – reference: Yuan, D., Ota, K., Dong, M., Zhu, X., Wu, T., Zhang, L., Ma, J.: Intrusion detection for smart home security based on data augmentation with edge computing. In: ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020) – reference: PangGShenCCaoLHengelAVDDeep learning for anomaly detection: A reviewACM Comput. Surveys (CSUR)202154213810.1145/3439950 – reference: Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks. In: International Conference on Artificial Neural Networks, pp. 703–716. Springer (2019) – reference: Wang, H., Pang, G., Shen, C., Ma, C.: Unsupervised representation learning by predicting random distances. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 2950–2956 (2021) – reference: Torres, P., Catania, C., Garcia, S., Garino, C.G.: An analysis of recurrent neural networks for botnet detection behavior. In: 2016 IEEE Biennial Congress of Argentina (ARGENCON), pp. 1–6. IEEE (2016) – reference: Kwon, D., Natarajan, K., Suh, S.C., Kim, H., Kim, J.: An empirical study on network anomaly detection using convolutional neural networks. In: ICDCS, pp. 1595–1598 (2018) – reference: Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. Advances in neural information processing systems 12 (1999) – reference: Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674 (2017) – reference: Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) – reference: Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017) – reference: Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4027–4035 (2021) – reference: Pang, G., Shen, C., Jin, H., Hengel, A.v.d.: Deep weakly-supervised anomaly detection. arXiv:1910.13601 (2019) – reference: Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International Conference on Information Processing in Medical Imaging, pp. 146–157. Springer (2017) – reference: Mohammadi, B., Sabokrou, M.: End-to-end adversarial learning for intrusion detection in computer networks. In: 2019 IEEE 44th Conference on Local Computer Networks (LCN), pp. 270–273. IEEE (2019) – reference: Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 353–362 (2019) – reference: Huang, S., Lei, K.: Igan-ids: An imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks. Ad Hoc Netw. 105,(2020) – reference: Zhao, G., Zhang, C., Zheng, L.: Intrusion detection using deep belief network and probabilistic neural network. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 639–642. IEEE (2017) – reference: Zenati, H., Romain, M., Foo, C.-S., Lecouat, B., Chandrasekhar, V.: Adversarially learned anomaly detection. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 727–736. IEEE (2018) – reference: MiaoXLiuYZhaoHLiCDistributed online one-class support vector machine for anomaly detection over networksIEEE Trans. Cybern.20184941475148810.1109/TCYB.2018.2804940 – reference: Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) – reference: MulaySADevalePGarjeGIntrusion detection system using support vector machine and decision treeInt. J. Comput. Applic.201033404310.5120/758-993 – reference: KhanMSARule based network intrusion detection using genetic algorithmInt. J. Comput. Applic.2011188262910.5120/2303-2914 – reference: SchleglTSeeböckPWaldsteinSMLangsGSchmidt-ErfurthUf-anogan: Fast unsupervised anomaly detection with generative adversarial networksMed. Image Anal.201954304410.1016/j.media.2019.01.010 – reference: Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422. IEEE (2008) – reference: Flores, S.: Variational Autoencoders Are Beautiful. https://www.compthree.com/blog/autoencoder/ (2019). Accessed 15 Apr 2019 – reference: AnJChoSVariational autoencoder based anomaly detection using reconstruction probabilitySpecial Lecture on IE201521118 – reference: Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv:1802.05957 (2018) – reference: Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) – reference: Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data centers: measurement, analysis, and implications. In: Proceedings of the ACM SIGCOMM 2011 Conference, pp. 350–361 (2011) – reference: SelvakumarKKaruppiahMSaiRameshLIslamSHHassanMMFortinoGChooK-KRIntelligent temporal classification and fuzzy rough set-based feature selection algorithm for intrusion detection system in wsnsInform. Sci.2019497779010.1016/j.ins.2019.05.040 – reference: Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) – reference: Ahmim, A., Maglaras, L., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hierarchical intrusion detection system based on decision tree and rules-based models. In: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 228–233. IEEE (2019) – reference: ShoneNNgocTNPhaiVDShiQA deep learning approach to network intrusion detectionIEEE Transactions on Emerging Topics in Computational Intelligence201821415010.1109/TETCI.2017.2772792 – reference: Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: An ensemble of autoencoders for online network intrusion detection. In: Network and Distributed Systems Security (NDSS) Symposium (2018) – reference: Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS), pp. 1–6. IEEE (2015) – reference: Lin, P., Ye, K., Xu, C.-Z.: Dynamic network anomaly detection system by using deep learning techniques. In: International Conference on Cloud Computing, pp. 161–176. Springer (2019) – reference: PeñaDPrietoFJMultivariate outlier detection and robust covariance matrix estimationTechnometrics2001433286310194318510.1198/004017001316975899 – reference: de Araujo-FilhoPFKaddoumGCampeloDRSantosAGMacêdoDZanchettinCIntrusion detection for cyber-physical systems using generative adversarial networks in fog environmentIEEE Internet Things J.2020886247625610.1109/JIOT.2020.3024800 – reference: Xiong, L., Póczos, B., Schneider, J.: Group anomaly detection using flexible genre models. Advances in neural information processing systems 24 (2011) – reference: Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient gan-based anomaly detection. arXiv:1802.06222 (2018) – reference: Ruff, L., Vandermeulen, R.A., Görnitz, N., Binder, A., Müller, E., Müller, K.-R., Kloft, M.: Deep semi-supervised anomaly detection. In: International Conference on Learning Representations (2019) – reference: Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. arXiv:1605.09782 (2016) – reference: Pang, G., van den Hengel, A., Shen, C., Cao, L.: Toward deep supervised anomaly detection: Reinforcement learning from partially labeled anomaly data. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1298–1308 (2021) – reference: ChouDJiangMA survey on data-driven network intrusion detectionACM Comput. Surveys (CSUR)202154913610.1145/3472753 – volume: 3 start-page: 40 issue: 3 year: 2010 ident: 1160_CR19 publication-title: Int. J. Comput. Applic. doi: 10.5120/758-993 – ident: 1160_CR26 doi: 10.1109/ICDCS.2018.00178 – ident: 1160_CR6 – ident: 1160_CR24 doi: 10.1109/ARGENCON.2016.7585247 – ident: 1160_CR37 doi: 10.1109/ICDM.2018.00088 – ident: 1160_CR41 doi: 10.1016/j.adhoc.2020.102177 – ident: 1160_CR21 doi: 10.1145/342009.335388 – ident: 1160_CR38 doi: 10.1109/LCN44214.2019.8990759 – ident: 1160_CR28 doi: 10.1145/3447548.3467417 – volume: 54 start-page: 1 issue: 2 year: 2021 ident: 1160_CR12 publication-title: ACM Comput. Surveys (CSUR) doi: 10.1145/3439950 – ident: 1160_CR10 doi: 10.1007/978-3-319-59050-9_12 – ident: 1160_CR7 – ident: 1160_CR3 doi: 10.1109/DCOSS.2019.00059 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 1160_CR32 publication-title: Special Lecture on IE – ident: 1160_CR11 doi: 10.1007/978-3-030-20893-6_39 – volume: 49 start-page: 1475 issue: 4 year: 2018 ident: 1160_CR4 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2804940 – ident: 1160_CR45 – volume: 54 start-page: 30 year: 2019 ident: 1160_CR39 publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.01.010 – ident: 1160_CR48 doi: 10.1109/CISDA.2009.5356528 – volume: 43 start-page: 286 issue: 3 year: 2001 ident: 1160_CR22 publication-title: Technometrics doi: 10.1198/004017001316975899 – ident: 1160_CR8 – ident: 1160_CR31 doi: 10.1145/3097983.3098052 – ident: 1160_CR34 – ident: 1160_CR35 doi: 10.14722/ndss.2018.23204 – volume: 54 start-page: 1 issue: 9 year: 2021 ident: 1160_CR2 publication-title: ACM Comput. Surveys (CSUR) doi: 10.1145/3472753 – ident: 1160_CR25 doi: 10.1609/aaai.v35i5.16523 – ident: 1160_CR30 doi: 10.1145/3292500.3330871 – volume: 2 start-page: 41 issue: 1 year: 2018 ident: 1160_CR18 publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence doi: 10.1109/TETCI.2017.2772792 – ident: 1160_CR47 – ident: 1160_CR49 doi: 10.1109/MilCIS.2015.7348942 – ident: 1160_CR16 doi: 10.1007/978-1-4614-7597-2_10 – ident: 1160_CR44 – ident: 1160_CR42 doi: 10.1109/ICC40277.2020.9148632 – ident: 1160_CR50 – ident: 1160_CR14 – ident: 1160_CR23 doi: 10.1109/ICDM.2008.17 – volume: 18 start-page: 26 issue: 8 year: 2011 ident: 1160_CR17 publication-title: Int. J. Comput. Applic. doi: 10.5120/2303-2914 – volume: 497 start-page: 77 year: 2019 ident: 1160_CR20 publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.05.040 – ident: 1160_CR9 doi: 10.1145/2018436.2018477 – ident: 1160_CR33 – ident: 1160_CR27 doi: 10.1109/CSE-EUC.2017.119 – ident: 1160_CR46 – ident: 1160_CR5 doi: 10.1145/3219819.3220042 – ident: 1160_CR43 – ident: 1160_CR29 doi: 10.24963/ijcai.2020/408 – ident: 1160_CR15 – ident: 1160_CR13 doi: 10.1007/978-3-030-30490-4_56 – ident: 1160_CR1 doi: 10.1007/978-3-030-23502-4_12 – ident: 1160_CR36 – volume: 8 start-page: 6247 issue: 8 year: 2020 ident: 1160_CR40 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3024800 |
| SSID | ssj0006391 |
| Score | 2.358623 |
| Snippet | Cyber-intrusion always leads to severe threats to the network, i,e., system paralysis, information leaky, and economic losses. To protect network security,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2727 |
| SubjectTerms | Anomalies Classification Computer networks Computer Science Database Management Datasets Decision trees Design Discrimination Economic impact Efficiency Generative adversarial networks Information Systems Applications (incl.Internet) Intrusion Machine learning Methods Operating Systems Paralysis Special Issue on Privacy and Security in Machine Learning Support vector machines Synthesis Training World Wide Web |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfidEoefNNA26Vt6ltRpw8yxC_2VpImBWF2slXB_95L2q4qKuhTC01Cucvd7477AjiUkcy4dDQ1zcso40GEMidc2kfHDeGdR46w3fWvwuGQj0bRdVUUNquz3euQpNXUTbEbbnUoYgw1wQOHskVYQrjjZmDDze3DXP8i5pZuFg-oy_xRVSrz_Rmf4aixMb-ERS3aDNr_-891WKusSxKX12EDFnTegXY9uYFUgtyB1Q9tCDchvIiH8dkJiQm-UINripSTpQmatCQvM8WJyCdPYvxGlC5s_la-BfeD87vTS1oNVKApSlpBtfIV0ypwUgNJgSmEzzR3hXkyLjTaEo5A_05lKtCeZA4LVaQC4eogQy7q_ja08kmud4B40pdCCx75CnWADHnfzXgqhUQTUQuhuuDWdE3Sqtu4GXoxTpo-yYZOCdIpsXRKWBeO5nuey14bv67u1exKKrmbJej_-WjheZ7bheOaPc3nn0_b_dvyPVjxLIdNslkPWsX0Re_DcvpaPM6mB_Y-vgOp79Wa priority: 102 providerName: Springer Nature |
| Title | GANAD: A GAN-based method for network anomaly detection |
| URI | https://link.springer.com/article/10.1007/s11280-023-01160-4 https://www.proquest.com/docview/2875644221 |
| Volume | 26 |
| WOSCitedRecordID | wos000983601300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1413 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006391 issn: 1386-145X databaseCode: RSV dateStart: 19980301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5s60EPvsVqLXvwpotJmsfGi0RtFZRS6oPiJexmNyDUtLZR8N87m0ergr14SQJJlmVmd77Z3ZlvAI6EL2ImDEU1eRm1mevjnOMmbeHCDeGd-QbP2PXvvG6XDQZ-r9hwmxZhlaVNzAy1HEV6j_wUPXsHsduyzPPxG9VVo_TpalFCowI1zZKgSzf0nOeZJUb0zRdczKWm7QyKpJk8dQ47YlBELKqPIgxq_wSmubf564A0w53O-n97vAFrhcdJgnyIbMKSSrZg9RsP4TZ410E3uDojAcEHqoFNkry0NEGfliR5qDjhyeiVDz-JVGkWwJXswGOn_XB5Q4uKCjTCqZZSJR1pK-kakcYkV2fCx4qZXN9txhU6EwbHBZ6MpassYRu2J33pclO5MapRtXahmowStQfEEo7gijPfkWgEhMdaZswiwQX6iIpzWQezFGcYFXTjuurFMJwTJWsVhKiCMFNBaNfhePbPOCfbWPh1o5R7WEy8aTgXeh1OSs3NX__d2v7i1g5gxcoGi44ua0A1nbyrQ1iOPtKX6aQJtYt2t9dvQuXWo81sEOK1f__0BdSc3Rc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60CurBt1ife9CTLibpJtkIIsU3rcVDhd7ibnYDQk1rW5X-KX-js3lYFezNg6cEkizZfLPzzWTnAbAnAxlzaWlqipdRxr0A15ywaQUdN6R3Hlgira5f9xsN3moFdxPwXuTCmLDKQiemilp1IvOP_Agtexe523Hs0-4zNV2jzO5q0UIjE4uaHr6hy9Y_uTlHfPcd5_KieXZN864CNEJxG1CtXMW08qzI6GXPZIPHmtvCHBkXGgnVEujkqFh52pHMYr4KlCds7cU4FV3BcSdhilW4b9ZVzaefmh_ZPnPwuEdt5rbyJJ0sVQ8nblFkSGq2PizKvhPhyLr9sSGb8tzlwn_7Qoswn1vUpJotgSWY0MkyzH2ps7gC_lW1UT0_JlWCJ9QQtyJZ62yCNjtJslB4IpLOk2gPidKDNEAtWYX7P3nzNSglnUSvA3GkK4UWPHAVKjnp84od80gKiTawFkKVwS7gC6O8nLrp6tEOR4WgDeQhQh6mkIesDAefz3SzYiJj794qcA5zxdIPRyCX4bCQlNHl30fbGD_aLsxcN2_rYf2mUduEWScVVBNJtwWlQe9Fb8N09Dp47Pd2UpEn8PDXEvQB66E2Ew |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qFdGDb7E-96AnXZqkeWwEkWCtiqX0oFC8xN3sBoSaqo1K_5q_ztk8rAp68-ApgSRLsvPtfDPZeQDsCl_ETBiK6uJl1Gauj2uOm7SBjhvSO_MNnlXXb3udDuv1_G4F3spcGB1WWerETFHLQaT_kdfRsneQuy3LrMdFWES32Tp-eKS6g5TeaS3baeQQuVSjV3TfhkcXTZT1nmW1Tq9OzmnRYYBGCL2UKulIW0nXiLSOdnVmeKyYyfXRZlwhuRocHR4ZS1dZwjZsT_rS5aZyY_ws1cBxJ2DSQx9ThxN2nZsPFkDmz5095lLTdnpFwk6etoeTYFBkS6q3QQxqfyXFsaX7bXM247zW_H-erQWYKyxtEuRLYxEqKlmC2U_1F5fBOws6QfOQBARPqCZ0SfKW2gRteZLkIfKEJ4N73h8RqdIscC1Zges_efNVqCaDRK0BsYQjuOLMdyQqP-GxhhmzSHCBtrHiXNbALEUZRkWZdd3tox-OC0Rr8Yco_jATf2jXYP_jmYe8yMivd2-WMg8LhTMMxwKvwUGJmvHln0db_320HZhG4ITti87lBsxYGWZ1gN0mVNOnZ7UFU9FLejd82s7QT-D2rwH0DnMIPzc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GANAD%3A+A+GAN-based+method+for+network+anomaly+detection&rft.jtitle=World+wide+web+%28Bussum%29&rft.au=Fu%2C+Jie&rft.au=Wang%2C+Lina&rft.au=Ke%2C+Jianpeng&rft.au=Yang%2C+Kang&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-145X&rft.eissn=1573-1413&rft.volume=26&rft.issue=5&rft.spage=2727&rft.epage=2748&rft_id=info:doi/10.1007%2Fs11280-023-01160-4&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-145X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-145X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-145X&client=summon |