GANAD: A GAN-based method for network anomaly detection

Cyber-intrusion always leads to severe threats to the network, i,e., system paralysis, information leaky, and economic losses. To protect network security, anomaly detection methods based on generative adversarial networks (GAN) for hindering cyber-intrusion have been proposed. However, existing GAN...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:World wide web (Bussum) Ročník 26; číslo 5; s. 2727 - 2748
Hlavní autoři: Fu, Jie, Wang, Lina, Ke, Jianpeng, Yang, Kang, Yu, Rongwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2023
Springer Nature B.V
Témata:
ISSN:1386-145X, 1573-1413
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cyber-intrusion always leads to severe threats to the network, i,e., system paralysis, information leaky, and economic losses. To protect network security, anomaly detection methods based on generative adversarial networks (GAN) for hindering cyber-intrusion have been proposed. However, existing GAN-based anomaly score methods built upon the generator network are designed for data synthesis, which would get unappealing performance on the anomaly detection task. Therefore, their low-efficient and unstable performance make detection tasks still quite challenging. To cope with these issues, we propose a novel GAN-based approach GANAD to address the above problems which is specifically designed for anomaly identification rather than data synthesis. Specifically, it first proposes a similar auto-encoder architecture, which makes up for the time-consuming problem of the traditional generator loss computation. In order to stabilize the training, the proposed discriminator training replaces JS divergence with Wasserstein distance adding gradient penalty. Then, it utilizes a new training strategy to better learn minority abnormal distribution from normal data, which contributes to the detection precision. Therefore, our approach can ensure the detection performance and overcomes the problem of unstable in the process of GAN training. Experimental results demonstrate that our approach achieves superior performance to state-of-the-art methods and reduces time consumption at the same time.
AbstractList Cyber-intrusion always leads to severe threats to the network, i,e., system paralysis, information leaky, and economic losses. To protect network security, anomaly detection methods based on generative adversarial networks (GAN) for hindering cyber-intrusion have been proposed. However, existing GAN-based anomaly score methods built upon the generator network are designed for data synthesis, which would get unappealing performance on the anomaly detection task. Therefore, their low-efficient and unstable performance make detection tasks still quite challenging. To cope with these issues, we propose a novel GAN-based approach GANAD to address the above problems which is specifically designed for anomaly identification rather than data synthesis. Specifically, it first proposes a similar auto-encoder architecture, which makes up for the time-consuming problem of the traditional generator loss computation. In order to stabilize the training, the proposed discriminator training replaces JS divergence with Wasserstein distance adding gradient penalty. Then, it utilizes a new training strategy to better learn minority abnormal distribution from normal data, which contributes to the detection precision. Therefore, our approach can ensure the detection performance and overcomes the problem of unstable in the process of GAN training. Experimental results demonstrate that our approach achieves superior performance to state-of-the-art methods and reduces time consumption at the same time.
Cyber-intrusion always leads to severe threats to the network, i,e., system paralysis, information leaky, and economic losses. To protect network security, anomaly detection methods based on generative adversarial networks (GAN) for hindering cyber-intrusion have been proposed. However, existing GAN-based anomaly score methods built upon the generator network are designed for data synthesis, which would get unappealing performance on the anomaly detection task. Therefore, their low-efficient and unstable performance make detection tasks still quite challenging. To cope with these issues, we propose a novel GAN-based approach GANAD to address the above problems which is specifically designed for anomaly identification rather than data synthesis. Specifically, it first proposes a similar auto-encoder architecture, which makes up for the time-consuming problem of the traditional generator loss computation. In order to stabilize the training, the proposed discriminator training replaces JS divergence with Wasserstein distance adding gradient penalty. Then, it utilizes a new training strategy to better learn minority abnormal distribution from normal data, which contributes to the detection precision. Therefore, our approach can ensure the detection performance and overcomes the problem of unstable in the process of GAN training. Experimental results demonstrate that our approach achieves superior performance to state-of-the-art methods and reduces time consumption at the same time.
Author Yang, Kang
Ke, Jianpeng
Fu, Jie
Wang, Lina
Yu, Rongwei
Author_xml – sequence: 1
  givenname: Jie
  surname: Fu
  fullname: Fu, Jie
  organization: Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University
– sequence: 2
  givenname: Lina
  surname: Wang
  fullname: Wang, Lina
  email: lnwang@whu.edu.cn
  organization: Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University
– sequence: 3
  givenname: Jianpeng
  surname: Ke
  fullname: Ke, Jianpeng
  organization: Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University
– sequence: 4
  givenname: Kang
  surname: Yang
  fullname: Yang, Kang
  organization: Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University
– sequence: 5
  givenname: Rongwei
  surname: Yu
  fullname: Yu, Rongwei
  organization: Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University
BookMark eNp9kEFLAzEUhINUsK3-AU8LnqN5STbZ9bZUrULRi4K3kG7e6tZ2U5MU6b93awXBQ08zh_neG2ZEBp3vkJBzYJfAmL6KALxglHFBGYBiVB6RIeRaUJAgBr0Xhep9_npCRjEuGGNKlDAkelo9VjfXWZX1hs5tRJetML17lzU-ZB2mLx8-Mtv5lV1uM4cJ69T67pQcN3YZ8exXx-Tl7vZ5ck9nT9OHSTWjtYAyUXS5k-gUq6WGQjGeywYLsDuVhUUBmlkN2jVOIZ9LJrUrnbKAqilUiWJMLvZ318F_bjAms_Cb0PUvDS90rqTkHPpUsU_VwccYsDF1m-yuZwq2XRpgZjeT2c9k-pnMz0xG9ij_h65Du7JhexgSeyj24e4Nw1-rA9Q3gdZ5pQ
CitedBy_id crossref_primary_10_1016_j_knosys_2025_113124
crossref_primary_10_1109_ACCESS_2025_3544260
crossref_primary_10_7717_peerj_cs_2009
crossref_primary_10_1007_s41870_024_02172_7
crossref_primary_10_1016_j_compeleceng_2025_110320
crossref_primary_10_4018_JOEUC_342094
Cites_doi 10.5120/758-993
10.1109/ICDCS.2018.00178
10.1109/ARGENCON.2016.7585247
10.1109/ICDM.2018.00088
10.1016/j.adhoc.2020.102177
10.1145/342009.335388
10.1109/LCN44214.2019.8990759
10.1145/3447548.3467417
10.1145/3439950
10.1007/978-3-319-59050-9_12
10.1109/DCOSS.2019.00059
10.1007/978-3-030-20893-6_39
10.1109/TCYB.2018.2804940
10.1016/j.media.2019.01.010
10.1109/CISDA.2009.5356528
10.1198/004017001316975899
10.1145/3097983.3098052
10.14722/ndss.2018.23204
10.1145/3472753
10.1609/aaai.v35i5.16523
10.1145/3292500.3330871
10.1109/TETCI.2017.2772792
10.1109/MilCIS.2015.7348942
10.1007/978-1-4614-7597-2_10
10.1109/ICC40277.2020.9148632
10.1109/ICDM.2008.17
10.5120/2303-2914
10.1016/j.ins.2019.05.040
10.1145/2018436.2018477
10.1109/CSE-EUC.2017.119
10.1145/3219819.3220042
10.24963/ijcai.2020/408
10.1007/978-3-030-30490-4_56
10.1007/978-3-030-23502-4_12
10.1109/JIOT.2020.3024800
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11280-023-01160-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-1413
EndPage 2748
ExternalDocumentID 10_1007_s11280_023_01160_4
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61876134; 61876134; 61876134; 61876134; 61876134
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2020YFB1805400; 2020YFB1805400; 2020YFB1805400; 2020YFB1805400; 2020YFB1805400
  funderid: http://dx.doi.org/10.13039/501100012166
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1SB
203
29R
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LLZTM
M0N
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-ed5d4ed60c471860254fe81a254f48ae3170a717dfd6e2b4047d9d6a1e6f869e3
IEDL.DBID P5Z
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983601300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-145X
IngestDate Wed Nov 05 02:04:17 EST 2025
Sat Nov 29 06:37:27 EST 2025
Tue Nov 18 20:00:23 EST 2025
Fri Feb 21 02:42:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Spectral normalization
WGAN
Network anomaly detection
Gradient penalty
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ed5d4ed60c471860254fe81a254f48ae3170a717dfd6e2b4047d9d6a1e6f869e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2875644221
PQPubID 2034525
PageCount 22
ParticipantIDs proquest_journals_2875644221
crossref_citationtrail_10_1007_s11280_023_01160_4
crossref_primary_10_1007_s11280_023_01160_4
springer_journals_10_1007_s11280_023_01160_4
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Internet and Web Information Systems
PublicationTitle World wide web (Bussum)
PublicationTitleAbbrev World Wide Web
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)
Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 353–362 (2019)
AnJChoSVariational autoencoder based anomaly detection using reconstruction probabilitySpecial Lecture on IE201521118
Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. arXiv:1605.09782 (2016)
Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient gan-based anomaly detection. arXiv:1802.06222 (2018)
ShoneNNgocTNPhaiVDShiQA deep learning approach to network intrusion detectionIEEE Transactions on Emerging Topics in Computational Intelligence201821415010.1109/TETCI.2017.2772792
Pang, G., van den Hengel, A., Shen, C., Cao, L.: Toward deep supervised anomaly detection: Reinforcement learning from partially labeled anomaly data. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1298–1308 (2021)
SchleglTSeeböckPWaldsteinSMLangsGSchmidt-ErfurthUf-anogan: Fast unsupervised anomaly detection with generative adversarial networksMed. Image Anal.201954304410.1016/j.media.2019.01.010
Flores, S.: Variational Autoencoders Are Beautiful. https://www.compthree.com/blog/autoencoder/ (2019).  Accessed 15 Apr 2019
SelvakumarKKaruppiahMSaiRameshLIslamSHHassanMMFortinoGChooK-KRIntelligent temporal classification and fuzzy rough set-based feature selection algorithm for intrusion detection system in wsnsInform. Sci.2019497779010.1016/j.ins.2019.05.040
Zenati, H., Romain, M., Foo, C.-S., Lecouat, B., Chandrasekhar, V.: Adversarially learned anomaly detection. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 727–736. IEEE (2018)
Lin, P., Ye, K., Xu, C.-Z.: Dynamic network anomaly detection system by using deep learning techniques. In: International Conference on Cloud Computing, pp. 161–176. Springer (2019)
KhanMSARule based network intrusion detection using genetic algorithmInt. J. Comput. Applic.2011188262910.5120/2303-2914
Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International Conference on Information Processing in Medical Imaging, pp. 146–157. Springer (2017)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)
Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: Semi-supervised anomaly detection via adversarial training. In: Asian Conference on Computer Vision, pp. 622–637. Springer (2018)
Zhao, G., Zhang, C., Zheng, L.: Intrusion detection using deep belief network and probabilistic neural network. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 639–642. IEEE (2017)
Blowers, M., Williams, J.: Machine learning applied to cyber operations. In: Network Science and Cybersecurity, pp. 155–175 (2014)
de Araujo-FilhoPFKaddoumGCampeloDRSantosAGMacêdoDZanchettinCIntrusion detection for cyber-physical systems using generative adversarial networks in fog environmentIEEE Internet Things J.2020886247625610.1109/JIOT.2020.3024800
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017)
Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4027–4035 (2021)
Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. Advances in neural information processing systems 30 (2017)
PeñaDPrietoFJMultivariate outlier detection and robust covariance matrix estimationTechnometrics2001433286310194318510.1198/004017001316975899
Mohammadi, B., Sabokrou, M.: End-to-end adversarial learning for intrusion detection in computer networks. In: 2019 IEEE 44th Conference on Local Computer Networks (LCN), pp. 270–273. IEEE (2019)
Kwon, D., Natarajan, K., Suh, S.C., Kim, H., Kim, J.: An empirical study on network anomaly detection using convolutional neural networks. In: ICDCS, pp. 1595–1598 (2018)
Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6. Ieee (2009)
Ruff, L., Vandermeulen, R.A., Görnitz, N., Binder, A., Müller, E., Müller, K.-R., Kloft, M.: Deep semi-supervised anomaly detection. In: International Conference on Learning Representations (2019)
Wang, H., Pang, G., Shen, C., Ma, C.: Unsupervised representation learning by predicting random distances. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 2950–2956 (2021)
ChouDJiangMA survey on data-driven network intrusion detectionACM Comput. Surveys (CSUR)202154913610.1145/3472753
Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. Advances in neural information processing systems 12 (1999)
Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data centers: measurement, analysis, and implications. In: Proceedings of the ACM SIGCOMM 2011 Conference, pp. 350–361 (2011)
Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv:1802.05957 (2018)
Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS), pp. 1–6. IEEE (2015)
Yuan, D., Ota, K., Dong, M., Zhu, X., Wu, T., Zhang, L., Ma, J.: Intrusion detection for smart home security based on data augmentation with edge computing. In: ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020)
Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: An ensemble of autoencoders for online network intrusion detection. In: Network and Distributed Systems Security (NDSS) Symposium (2018)
Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674 (2017)
Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)
MulaySADevalePGarjeGIntrusion detection system using support vector machine and decision treeInt. J. Comput. Applic.201033404310.5120/758-993
Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422. IEEE (2008)
Torres, P., Catania, C., Garcia, S., Garino, C.G.: An analysis of recurrent neural networks for botnet detection behavior. In: 2016 IEEE Biennial Congress of Argentina (ARGENCON), pp. 1–6. IEEE (2016)
PangGShenCCaoLHengelAVDDeep learning for anomaly detection: A reviewACM Comput. Surveys (CSUR)202154213810.1145/3439950
MiaoXLiuYZhaoHLiCDistributed online one-class support vector machine for anomaly detection over networksIEEE Trans. Cybern.20184941475148810.1109/TCYB.2018.2804940
Pang, G., Cao, L., Chen, L., Liu, H.: Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2041–2050 (2018)
Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks. In: International Conference on Artificial Neural Networks, pp. 703–716. Springer (2019)
Huang, S., Lei, K.: Igan-ids: An imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks. Ad Hoc Netw. 105,(2020)
Ahmim, A., Maglaras, L., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hierarchical intrusion detection system based on decision tree and rules-based models. In: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 228–233. IEEE (2019)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014)
Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly detection. In: International Conference on Machine Learning, pp. 1100–1109. PMLR (2016)
Pang, G., Shen, C., Jin, H., Hengel, A.v.d.: Deep weakly-supervised anomaly detection. arXiv:1910.13601 (2019)
Xiong, L., Póczos, B., Schneider, J.: Group anomaly detection using flexible genre models. Advances in neural information processing systems 24 (2011)
1160_CR50
PF de Araujo-Filho (1160_CR40) 2020; 8
1160_CR13
1160_CR14
1160_CR11
1160_CR10
N Shone (1160_CR18) 2018; 2
1160_CR1
1160_CR3
1160_CR15
1160_CR16
SA Mulay (1160_CR19) 2010; 3
D Chou (1160_CR2) 2021; 54
MSA Khan (1160_CR17) 2011; 18
1160_CR24
1160_CR25
1160_CR23
1160_CR21
D Peña (1160_CR22) 2001; 43
1160_CR28
1160_CR29
1160_CR26
1160_CR27
1160_CR35
1160_CR36
1160_CR33
1160_CR34
1160_CR31
1160_CR30
J An (1160_CR32) 2015; 2
1160_CR37
1160_CR38
1160_CR5
1160_CR7
1160_CR6
1160_CR9
1160_CR8
G Pang (1160_CR12) 2021; 54
1160_CR46
1160_CR47
1160_CR44
1160_CR45
T Schlegl (1160_CR39) 2019; 54
1160_CR42
1160_CR43
X Miao (1160_CR4) 2018; 49
1160_CR41
K Selvakumar (1160_CR20) 2019; 497
1160_CR48
1160_CR49
References_xml – reference: Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. Advances in neural information processing systems 30 (2017)
– reference: Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6. Ieee (2009)
– reference: Pang, G., Cao, L., Chen, L., Liu, H.: Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2041–2050 (2018)
– reference: Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: Semi-supervised anomaly detection via adversarial training. In: Asian Conference on Computer Vision, pp. 622–637. Springer (2018)
– reference: Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly detection. In: International Conference on Machine Learning, pp. 1100–1109. PMLR (2016)
– reference: Blowers, M., Williams, J.: Machine learning applied to cyber operations. In: Network Science and Cybersecurity, pp. 155–175 (2014)
– reference: Yuan, D., Ota, K., Dong, M., Zhu, X., Wu, T., Zhang, L., Ma, J.: Intrusion detection for smart home security based on data augmentation with edge computing. In: ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020)
– reference: PangGShenCCaoLHengelAVDDeep learning for anomaly detection: A reviewACM Comput. Surveys (CSUR)202154213810.1145/3439950
– reference: Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks. In: International Conference on Artificial Neural Networks, pp. 703–716. Springer (2019)
– reference: Wang, H., Pang, G., Shen, C., Ma, C.: Unsupervised representation learning by predicting random distances. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 2950–2956 (2021)
– reference: Torres, P., Catania, C., Garcia, S., Garino, C.G.: An analysis of recurrent neural networks for botnet detection behavior. In: 2016 IEEE Biennial Congress of Argentina (ARGENCON), pp. 1–6. IEEE (2016)
– reference: Kwon, D., Natarajan, K., Suh, S.C., Kim, H., Kim, J.: An empirical study on network anomaly detection using convolutional neural networks. In: ICDCS, pp. 1595–1598 (2018)
– reference: Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. Advances in neural information processing systems 12 (1999)
– reference: Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674 (2017)
– reference: Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017)
– reference: Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)
– reference: Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4027–4035 (2021)
– reference: Pang, G., Shen, C., Jin, H., Hengel, A.v.d.: Deep weakly-supervised anomaly detection. arXiv:1910.13601 (2019)
– reference: Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International Conference on Information Processing in Medical Imaging, pp. 146–157. Springer (2017)
– reference: Mohammadi, B., Sabokrou, M.: End-to-end adversarial learning for intrusion detection in computer networks. In: 2019 IEEE 44th Conference on Local Computer Networks (LCN), pp. 270–273. IEEE (2019)
– reference: Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 353–362 (2019)
– reference: Huang, S., Lei, K.: Igan-ids: An imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks. Ad Hoc Netw. 105,(2020)
– reference: Zhao, G., Zhang, C., Zheng, L.: Intrusion detection using deep belief network and probabilistic neural network. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 639–642. IEEE (2017)
– reference: Zenati, H., Romain, M., Foo, C.-S., Lecouat, B., Chandrasekhar, V.: Adversarially learned anomaly detection. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 727–736. IEEE (2018)
– reference: MiaoXLiuYZhaoHLiCDistributed online one-class support vector machine for anomaly detection over networksIEEE Trans. Cybern.20184941475148810.1109/TCYB.2018.2804940
– reference: Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)
– reference: MulaySADevalePGarjeGIntrusion detection system using support vector machine and decision treeInt. J. Comput. Applic.201033404310.5120/758-993
– reference: KhanMSARule based network intrusion detection using genetic algorithmInt. J. Comput. Applic.2011188262910.5120/2303-2914
– reference: SchleglTSeeböckPWaldsteinSMLangsGSchmidt-ErfurthUf-anogan: Fast unsupervised anomaly detection with generative adversarial networksMed. Image Anal.201954304410.1016/j.media.2019.01.010
– reference: Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422. IEEE (2008)
– reference: Flores, S.: Variational Autoencoders Are Beautiful. https://www.compthree.com/blog/autoencoder/ (2019).  Accessed 15 Apr 2019
– reference: AnJChoSVariational autoencoder based anomaly detection using reconstruction probabilitySpecial Lecture on IE201521118
– reference: Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv:1802.05957 (2018)
– reference: Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)
– reference: Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data centers: measurement, analysis, and implications. In: Proceedings of the ACM SIGCOMM 2011 Conference, pp. 350–361 (2011)
– reference: SelvakumarKKaruppiahMSaiRameshLIslamSHHassanMMFortinoGChooK-KRIntelligent temporal classification and fuzzy rough set-based feature selection algorithm for intrusion detection system in wsnsInform. Sci.2019497779010.1016/j.ins.2019.05.040
– reference: Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014)
– reference: Ahmim, A., Maglaras, L., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hierarchical intrusion detection system based on decision tree and rules-based models. In: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 228–233. IEEE (2019)
– reference: ShoneNNgocTNPhaiVDShiQA deep learning approach to network intrusion detectionIEEE Transactions on Emerging Topics in Computational Intelligence201821415010.1109/TETCI.2017.2772792
– reference: Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: An ensemble of autoencoders for online network intrusion detection. In: Network and Distributed Systems Security (NDSS) Symposium (2018)
– reference: Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS), pp. 1–6. IEEE (2015)
– reference: Lin, P., Ye, K., Xu, C.-Z.: Dynamic network anomaly detection system by using deep learning techniques. In: International Conference on Cloud Computing, pp. 161–176. Springer (2019)
– reference: PeñaDPrietoFJMultivariate outlier detection and robust covariance matrix estimationTechnometrics2001433286310194318510.1198/004017001316975899
– reference: de Araujo-FilhoPFKaddoumGCampeloDRSantosAGMacêdoDZanchettinCIntrusion detection for cyber-physical systems using generative adversarial networks in fog environmentIEEE Internet Things J.2020886247625610.1109/JIOT.2020.3024800
– reference: Xiong, L., Póczos, B., Schneider, J.: Group anomaly detection using flexible genre models. Advances in neural information processing systems 24 (2011)
– reference: Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient gan-based anomaly detection. arXiv:1802.06222 (2018)
– reference: Ruff, L., Vandermeulen, R.A., Görnitz, N., Binder, A., Müller, E., Müller, K.-R., Kloft, M.: Deep semi-supervised anomaly detection. In: International Conference on Learning Representations (2019)
– reference: Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. arXiv:1605.09782 (2016)
– reference: Pang, G., van den Hengel, A., Shen, C., Cao, L.: Toward deep supervised anomaly detection: Reinforcement learning from partially labeled anomaly data. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1298–1308 (2021)
– reference: ChouDJiangMA survey on data-driven network intrusion detectionACM Comput. Surveys (CSUR)202154913610.1145/3472753
– volume: 3
  start-page: 40
  issue: 3
  year: 2010
  ident: 1160_CR19
  publication-title: Int. J. Comput. Applic.
  doi: 10.5120/758-993
– ident: 1160_CR26
  doi: 10.1109/ICDCS.2018.00178
– ident: 1160_CR6
– ident: 1160_CR24
  doi: 10.1109/ARGENCON.2016.7585247
– ident: 1160_CR37
  doi: 10.1109/ICDM.2018.00088
– ident: 1160_CR41
  doi: 10.1016/j.adhoc.2020.102177
– ident: 1160_CR21
  doi: 10.1145/342009.335388
– ident: 1160_CR38
  doi: 10.1109/LCN44214.2019.8990759
– ident: 1160_CR28
  doi: 10.1145/3447548.3467417
– volume: 54
  start-page: 1
  issue: 2
  year: 2021
  ident: 1160_CR12
  publication-title: ACM Comput. Surveys (CSUR)
  doi: 10.1145/3439950
– ident: 1160_CR10
  doi: 10.1007/978-3-319-59050-9_12
– ident: 1160_CR7
– ident: 1160_CR3
  doi: 10.1109/DCOSS.2019.00059
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 1160_CR32
  publication-title: Special Lecture on IE
– ident: 1160_CR11
  doi: 10.1007/978-3-030-20893-6_39
– volume: 49
  start-page: 1475
  issue: 4
  year: 2018
  ident: 1160_CR4
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2804940
– ident: 1160_CR45
– volume: 54
  start-page: 30
  year: 2019
  ident: 1160_CR39
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.010
– ident: 1160_CR48
  doi: 10.1109/CISDA.2009.5356528
– volume: 43
  start-page: 286
  issue: 3
  year: 2001
  ident: 1160_CR22
  publication-title: Technometrics
  doi: 10.1198/004017001316975899
– ident: 1160_CR8
– ident: 1160_CR31
  doi: 10.1145/3097983.3098052
– ident: 1160_CR34
– ident: 1160_CR35
  doi: 10.14722/ndss.2018.23204
– volume: 54
  start-page: 1
  issue: 9
  year: 2021
  ident: 1160_CR2
  publication-title: ACM Comput. Surveys (CSUR)
  doi: 10.1145/3472753
– ident: 1160_CR25
  doi: 10.1609/aaai.v35i5.16523
– ident: 1160_CR30
  doi: 10.1145/3292500.3330871
– volume: 2
  start-page: 41
  issue: 1
  year: 2018
  ident: 1160_CR18
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2017.2772792
– ident: 1160_CR47
– ident: 1160_CR49
  doi: 10.1109/MilCIS.2015.7348942
– ident: 1160_CR16
  doi: 10.1007/978-1-4614-7597-2_10
– ident: 1160_CR44
– ident: 1160_CR42
  doi: 10.1109/ICC40277.2020.9148632
– ident: 1160_CR50
– ident: 1160_CR14
– ident: 1160_CR23
  doi: 10.1109/ICDM.2008.17
– volume: 18
  start-page: 26
  issue: 8
  year: 2011
  ident: 1160_CR17
  publication-title: Int. J. Comput. Applic.
  doi: 10.5120/2303-2914
– volume: 497
  start-page: 77
  year: 2019
  ident: 1160_CR20
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.05.040
– ident: 1160_CR9
  doi: 10.1145/2018436.2018477
– ident: 1160_CR33
– ident: 1160_CR27
  doi: 10.1109/CSE-EUC.2017.119
– ident: 1160_CR46
– ident: 1160_CR5
  doi: 10.1145/3219819.3220042
– ident: 1160_CR43
– ident: 1160_CR29
  doi: 10.24963/ijcai.2020/408
– ident: 1160_CR15
– ident: 1160_CR13
  doi: 10.1007/978-3-030-30490-4_56
– ident: 1160_CR1
  doi: 10.1007/978-3-030-23502-4_12
– ident: 1160_CR36
– volume: 8
  start-page: 6247
  issue: 8
  year: 2020
  ident: 1160_CR40
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3024800
SSID ssj0006391
Score 2.358623
Snippet Cyber-intrusion always leads to severe threats to the network, i,e., system paralysis, information leaky, and economic losses. To protect network security,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2727
SubjectTerms Anomalies
Classification
Computer networks
Computer Science
Database Management
Datasets
Decision trees
Design
Discrimination
Economic impact
Efficiency
Generative adversarial networks
Information Systems Applications (incl.Internet)
Intrusion
Machine learning
Methods
Operating Systems
Paralysis
Special Issue on Privacy and Security in Machine Learning
Support vector machines
Synthesis
Training
World Wide Web
SummonAdditionalLinks – databaseName: SpringerLink Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfidEoefNNA26Vt6ltRpw8yxC_2VpImBWF2slXB_95L2q4qKuhTC01Cucvd7477AjiUkcy4dDQ1zcso40GEMidc2kfHDeGdR46w3fWvwuGQj0bRdVUUNquz3euQpNXUTbEbbnUoYgw1wQOHskVYQrjjZmDDze3DXP8i5pZuFg-oy_xRVSrz_Rmf4aixMb-ERS3aDNr_-891WKusSxKX12EDFnTegXY9uYFUgtyB1Q9tCDchvIiH8dkJiQm-UINripSTpQmatCQvM8WJyCdPYvxGlC5s_la-BfeD87vTS1oNVKApSlpBtfIV0ypwUgNJgSmEzzR3hXkyLjTaEo5A_05lKtCeZA4LVaQC4eogQy7q_ja08kmud4B40pdCCx75CnWADHnfzXgqhUQTUQuhuuDWdE3Sqtu4GXoxTpo-yYZOCdIpsXRKWBeO5nuey14bv67u1exKKrmbJej_-WjheZ7bheOaPc3nn0_b_dvyPVjxLIdNslkPWsX0Re_DcvpaPM6mB_Y-vgOp79Wa
  priority: 102
  providerName: Springer Nature
Title GANAD: A GAN-based method for network anomaly detection
URI https://link.springer.com/article/10.1007/s11280-023-01160-4
https://www.proquest.com/docview/2875644221
Volume 26
WOSCitedRecordID wos000983601300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1413
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006391
  issn: 1386-145X
  databaseCode: RSV
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5s60EPvsVqLXvwpotJmsfGi0RtFZRS6oPiJexmNyDUtLZR8N87m0ergr14SQJJlmVmd77Z3ZlvAI6EL2ImDEU1eRm1mevjnOMmbeHCDeGd-QbP2PXvvG6XDQZ-r9hwmxZhlaVNzAy1HEV6j_wUPXsHsduyzPPxG9VVo_TpalFCowI1zZKgSzf0nOeZJUb0zRdczKWm7QyKpJk8dQ47YlBELKqPIgxq_wSmubf564A0w53O-n97vAFrhcdJgnyIbMKSSrZg9RsP4TZ410E3uDojAcEHqoFNkry0NEGfliR5qDjhyeiVDz-JVGkWwJXswGOn_XB5Q4uKCjTCqZZSJR1pK-kakcYkV2fCx4qZXN9txhU6EwbHBZ6MpassYRu2J33pclO5MapRtXahmowStQfEEo7gijPfkWgEhMdaZswiwQX6iIpzWQezFGcYFXTjuurFMJwTJWsVhKiCMFNBaNfhePbPOCfbWPh1o5R7WEy8aTgXeh1OSs3NX__d2v7i1g5gxcoGi44ua0A1nbyrQ1iOPtKX6aQJtYt2t9dvQuXWo81sEOK1f__0BdSc3Rc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60CurBt1ife9CTLibpJtkIIsU3rcVDhd7ibnYDQk1rW5X-KX-js3lYFezNg6cEkizZfLPzzWTnAbAnAxlzaWlqipdRxr0A15ywaQUdN6R3Hlgira5f9xsN3moFdxPwXuTCmLDKQiemilp1IvOP_Agtexe523Hs0-4zNV2jzO5q0UIjE4uaHr6hy9Y_uTlHfPcd5_KieXZN864CNEJxG1CtXMW08qzI6GXPZIPHmtvCHBkXGgnVEujkqFh52pHMYr4KlCds7cU4FV3BcSdhilW4b9ZVzaefmh_ZPnPwuEdt5rbyJJ0sVQ8nblFkSGq2PizKvhPhyLr9sSGb8tzlwn_7Qoswn1vUpJotgSWY0MkyzH2ps7gC_lW1UT0_JlWCJ9QQtyJZ62yCNjtJslB4IpLOk2gPidKDNEAtWYX7P3nzNSglnUSvA3GkK4UWPHAVKjnp84od80gKiTawFkKVwS7gC6O8nLrp6tEOR4WgDeQhQh6mkIesDAefz3SzYiJj794qcA5zxdIPRyCX4bCQlNHl30fbGD_aLsxcN2_rYf2mUduEWScVVBNJtwWlQe9Fb8N09Dp47Pd2UpEn8PDXEvQB66E2Ew
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qFdGDb7E-96AnXZqkeWwEkWCtiqX0oFC8xN3sBoSaqo1K_5q_ztk8rAp68-ApgSRLsvPtfDPZeQDsCl_ETBiK6uJl1Gauj2uOm7SBjhvSO_MNnlXXb3udDuv1_G4F3spcGB1WWerETFHLQaT_kdfRsneQuy3LrMdFWES32Tp-eKS6g5TeaS3baeQQuVSjV3TfhkcXTZT1nmW1Tq9OzmnRYYBGCL2UKulIW0nXiLSOdnVmeKyYyfXRZlwhuRocHR4ZS1dZwjZsT_rS5aZyY_ws1cBxJ2DSQx9ThxN2nZsPFkDmz5095lLTdnpFwk6etoeTYFBkS6q3QQxqfyXFsaX7bXM247zW_H-erQWYKyxtEuRLYxEqKlmC2U_1F5fBOws6QfOQBARPqCZ0SfKW2gRteZLkIfKEJ4N73h8RqdIscC1Zges_efNVqCaDRK0BsYQjuOLMdyQqP-GxhhmzSHCBtrHiXNbALEUZRkWZdd3tox-OC0Rr8Yco_jATf2jXYP_jmYe8yMivd2-WMg8LhTMMxwKvwUGJmvHln0db_320HZhG4ITti87lBsxYGWZ1gN0mVNOnZ7UFU9FLejd82s7QT-D2rwH0DnMIPzc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GANAD%3A+A+GAN-based+method+for+network+anomaly+detection&rft.jtitle=World+wide+web+%28Bussum%29&rft.au=Fu%2C+Jie&rft.au=Wang%2C+Lina&rft.au=Ke%2C+Jianpeng&rft.au=Yang%2C+Kang&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-145X&rft.eissn=1573-1413&rft.volume=26&rft.issue=5&rft.spage=2727&rft.epage=2748&rft_id=info:doi/10.1007%2Fs11280-023-01160-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-145X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-145X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-145X&client=summon