A difference-of-convex functions approach for sparse PDE optimal control problems with nonconvex costs

We propose a local regularization of elliptic optimal control problems which involves the nonconvex L q quasi-norm penalization in the cost function. The proposed Huber type regularization allows us to formulate the PDE constrained optimization instance as a DC programming problem (difference of con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 74; číslo 1; s. 225 - 258
Hlavní autor: Merino, Pedro
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2019
Springer Nature B.V
Témata:
ISSN:0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose a local regularization of elliptic optimal control problems which involves the nonconvex L q quasi-norm penalization in the cost function. The proposed Huber type regularization allows us to formulate the PDE constrained optimization instance as a DC programming problem (difference of convex functions) that is useful to obtain necessary optimality conditions and tackle its numerical solution by applying the well known DC algorithm used in nonconvex optimization problems. By this procedure we approximate the original problem in terms of a consistent family of parameterized nonsmooth problems for which there are efficient numerical methods available. Finally, we present numerical experiments to illustrate our theory with different configurations associated to the parameters of the problem.
AbstractList We propose a local regularization of elliptic optimal control problems which involves the nonconvex L q quasi-norm penalization in the cost function. The proposed Huber type regularization allows us to formulate the PDE constrained optimization instance as a DC programming problem (difference of convex functions) that is useful to obtain necessary optimality conditions and tackle its numerical solution by applying the well known DC algorithm used in nonconvex optimization problems. By this procedure we approximate the original problem in terms of a consistent family of parameterized nonsmooth problems for which there are efficient numerical methods available. Finally, we present numerical experiments to illustrate our theory with different configurations associated to the parameters of the problem.
We propose a local regularization of elliptic optimal control problems which involves the nonconvex \[L^q\] quasi-norm penalization in the cost function. The proposed Huber type regularization allows us to formulate the PDE constrained optimization instance as a DC programming problem (difference of convex functions) that is useful to obtain necessary optimality conditions and tackle its numerical solution by applying the well known DC algorithm used in nonconvex optimization problems. By this procedure we approximate the original problem in terms of a consistent family of parameterized nonsmooth problems for which there are efficient numerical methods available. Finally, we present numerical experiments to illustrate our theory with different configurations associated to the parameters of the problem.
Author Merino, Pedro
Author_xml – sequence: 1
  givenname: Pedro
  orcidid: 0000-0002-8178-8834
  surname: Merino
  fullname: Merino, Pedro
  email: pedro.merino@epn.edu.ec
  organization: Research Center of Mathematical Modeling (MODEMAT) and Department of Mathematics, Escuela Politécnica Nacional
BookMark eNp9kE1PAyEURYnRxFr9A65IXKMPmGGGpan1I2miC10ThgE7zTiMQP3491LbxMRFF8Dmnsd95wQdDn6wCJ1TuKQA1VWkUNaSAM0HKFACB2hCy4oTVsviEE1AMkEEAD9GJzGuAEBWnE2Qu8Zt55wNdjCWeEeMHz7sF3brwaTODxHrcQxemyV2PuA46hAtfrqZYz-m7k33OAMp-B7nVNPbt4g_u7TEud9ukvExxVN05HQf7dnunaKX2_nz7J4sHu8eZtcLYjiViVjT8qYWYKXQwnFWlTJXbkEDA8e4gLZuZCnqoih1YU3joHK6YkXLBWdN2_AputjOzW3e1zYmtfLrMOQvFWNU1vkSVU7V25QJPsZgnTJd0pt1U9BdryiojVW1taqyVfVrVUFG2T90DFlD-N4P8S0Uc3h4teGv1R7qB-Q-jM8
CitedBy_id crossref_primary_10_1080_10556788_2025_2477629
crossref_primary_10_1137_21M1435173
Cites_doi 10.1007/s10589-007-9150-9
10.1137/120872395
10.1051/cocv/2015008
10.1007/s10589-017-9891-z
10.3934/mcrf.2017014
10.1016/0022-0396(83)90085-2
10.1007/978-1-4757-6019-4_13
10.1080/01630568908816302
10.1007/978-0-8176-4948-7
10.1023/A:1017535424813
10.1007/s40324-017-0121-5
10.1137/110854746
10.1137/120896529
10.1007/978-3-319-13395-9_3
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Computational Optimization and Applications is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Computational Optimization and Applications is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-019-00101-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 258
ExternalDocumentID 10_1007_s10589_019_00101_0
GrantInformation_xml – fundername: Escuela Politécnica Nacional
  grantid: PIJ-15-26
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
~8M
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADRFC
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZD
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
VH1
ZWQNP
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-ecd3b860e96a6f32759003d0a020f2360d8b9568445a4ecbf07fa724d3632bdb3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000476600200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Wed Nov 26 14:52:00 EST 2025
Sat Nov 29 01:51:29 EST 2025
Tue Nov 18 20:55:33 EST 2025
Fri Feb 21 02:36:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DCA
Elliptic PDE
49K20
90C46
49J20
Optimal control
DC programming
90C26
Nonconvex
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ecd3b860e96a6f32759003d0a020f2360d8b9568445a4ecbf07fa724d3632bdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8178-8834
PQID 2219822167
PQPubID 30811
PageCount 34
ParticipantIDs proquest_journals_2219822167
crossref_citationtrail_10_1007_s10589_019_00101_0
crossref_primary_10_1007_s10589_019_00101_0
springer_journals_10_1007_s10589_019_00101_0
PublicationCentury 2000
PublicationDate 20190901
2019-9-00
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 9
  year: 2019
  text: 20190901
  day: 1
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Flores-BazánFOettliWSimplified optimality conditions for minimizing the difference of vector-valued functionsJ. Optim. Theory Appl.20011083571586182867310.1023/A:10175354248130984.90053
Hiriart-UrrutyJ-BClarkeFHDem’yanovVFGiannessiFFrom convex optimization to nonconvex optimization. Necessary and sufficient conditions for global optimalityNonsmooth Optimization and Related Topics1989BerlinSpringer21923910.1007/978-1-4757-6019-4_13
Hiriart-UrrutyJ-BLemaréchalCFundamentals of Convex Analysis2012BerlinSpringer0998.49001
Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. North Holland & Hermann, Mathematical Studies, vol. 29 (1975)
CasasEA review on sparse solutions in optimal control of partial differential equationsSeMA J.2017743319344374594210.1007/s40324-017-0121-51391.35124
CasasEMateosMRoschAFinite element approximation of sparse parabolic control problemsAm. Inst. Math. Sci.20177339341736696631369.49006
WrightSNowozinSSraSOptimization for Machine Learning2012CambridgeMIT Press
De Los ReyesJCLoayzaEMerinoPSecond-order orthan–based methods with enriched hessian information for sparse ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-optimizationComput. Optim. Appl.2017672225258363657810.1007/s10589-017-9891-z1368.90183
AuchmutyGDuality for non-convex variational principlesJ. Differ. Equ.1983508014571786910.1016/0022-0396(83)90085-20533.49007
RamlauRZarzerCAOn the minimization of a Tikhonov functional with a non-convex sparsity constraintElectron. Trans. Numer. Anal.20123947650729993251287.65044
Ioffe, A.D., Tihomirov, V.M., Luderer, B.: Theorie der Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften (1979)
HinzeMPinnauRUlbrichMUlbrichSOptimization with PDE Constraints2008BerlinSpringer1167.49001
De los Reyes, J.C.: Theory of PDE-constrained optimization. In: Pardalos, P.M., Pintér, J.D., Robinson, S., Terlaky, T., Thai, M.T. (eds.) Numerical PDE-Constrained Optimization, pp. 25–41. Springer, Berlin (2015)
HintermüllerMTaoWNonconvex TVq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$TV^{q}$$\end{document}-models in image restoration: analysis and a trust-region regularization-based superlinearly convergent solverSIAM J. Imaging Sci.20136313851415308099510.1137/1108547461281.65033
CasasEClasonCKunischKParabolic control problems in measure spaces with sparse solutionsSIAM J. Control Optim.20135112863303286610.1137/1208723951266.49037
ItoKKunischKLagrange multiplier approach to variational problems and applicationsSIAM Adv. Des. Control20145221251127510.1137/120896529
Ito, K., Kunisch, K.: Optimal control with Lp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathit{L}^{p}({\Omega })$$\end{document}, p∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in [0,1)$$\end{document}, control cost. SIAM J. Control Optim. (2008
RockafellarRTConvex Analysis2015PrincetonPrinceton University Press
DinhTPLe ThiHANguyenNTLe ThiHARecent advances in DC programming and DCATransactions on Computational Intelligence XIII2014BerlinSpringer137
Dal MasoGAn Introduction to Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-Convergence2012BerlinSpringer
AuchmutyGDuality algorithms for nonconvex variational principlesNumer. Func. Anal. Optim.1989103–421126498953410.1080/016305689088163020646.49023
CiarletPGLinear and nonlinear functional analysis with applicationsSIAM2013130472
StadlerGElliptic optimal control problems with L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-control cost and applications for the placement of control devicesComput. Optim. Appl.2009442159181255684910.1007/s10589-007-9150-91185.49031
JahnJIntroduction to the Theory of Nonlinear Optimization20073BerlinSpringer1115.49001
AmbrosettiAProdiGA Primer of Nonlinear Analysis1995CambridgeCambridge University Press0818.47059
CasasEKunischKParabolic control problems in space-time measure spacesESAIM Control Optim. Calc. Var.2016222355370349177410.1051/cocv/20150081343.49036
FoucartSRauhutHA Mathematical Introduction to Compressive Sensing2013BaselBirkhäuser10.1007/978-0-8176-4948-71315.94002
101_CR12
RT Rockafellar (101_CR25) 2015
E Casas (101_CR5) 2016; 22
JC De Los Reyes (101_CR11) 2017; 67
K Ito (101_CR21) 2014; 52
101_CR10
R Ramlau (101_CR24) 2012; 39
S Wright (101_CR27) 2012
E Casas (101_CR6) 2017; 74
J-B Hiriart-Urruty (101_CR18) 1989
G Dal Maso (101_CR9) 2012
M Hintermüller (101_CR16) 2013; 6
TP Dinh (101_CR13) 2014
G Auchmuty (101_CR2) 1989; 10
M Hinze (101_CR17) 2008
G Auchmuty (101_CR3) 1983; 50
101_CR22
J Jahn (101_CR23) 2007
J-B Hiriart-Urruty (101_CR19) 2012
A Ambrosetti (101_CR1) 1995
PG Ciarlet (101_CR8) 2013; 130
101_CR20
E Casas (101_CR4) 2013; 51
G Stadler (101_CR26) 2009; 44
E Casas (101_CR7) 2017; 7
S Foucart (101_CR15) 2013
F Flores-Bazán (101_CR14) 2001; 108
References_xml – reference: CasasEMateosMRoschAFinite element approximation of sparse parabolic control problemsAm. Inst. Math. Sci.20177339341736696631369.49006
– reference: Ioffe, A.D., Tihomirov, V.M., Luderer, B.: Theorie der Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften (1979)
– reference: HinzeMPinnauRUlbrichMUlbrichSOptimization with PDE Constraints2008BerlinSpringer1167.49001
– reference: CasasEA review on sparse solutions in optimal control of partial differential equationsSeMA J.2017743319344374594210.1007/s40324-017-0121-51391.35124
– reference: Ito, K., Kunisch, K.: Optimal control with Lp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathit{L}^{p}({\Omega })$$\end{document}, p∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in [0,1)$$\end{document}, control cost. SIAM J. Control Optim. (2008)
– reference: AmbrosettiAProdiGA Primer of Nonlinear Analysis1995CambridgeCambridge University Press0818.47059
– reference: JahnJIntroduction to the Theory of Nonlinear Optimization20073BerlinSpringer1115.49001
– reference: FoucartSRauhutHA Mathematical Introduction to Compressive Sensing2013BaselBirkhäuser10.1007/978-0-8176-4948-71315.94002
– reference: WrightSNowozinSSraSOptimization for Machine Learning2012CambridgeMIT Press
– reference: Hiriart-UrrutyJ-BLemaréchalCFundamentals of Convex Analysis2012BerlinSpringer0998.49001
– reference: CasasEKunischKParabolic control problems in space-time measure spacesESAIM Control Optim. Calc. Var.2016222355370349177410.1051/cocv/20150081343.49036
– reference: RamlauRZarzerCAOn the minimization of a Tikhonov functional with a non-convex sparsity constraintElectron. Trans. Numer. Anal.20123947650729993251287.65044
– reference: DinhTPLe ThiHANguyenNTLe ThiHARecent advances in DC programming and DCATransactions on Computational Intelligence XIII2014BerlinSpringer137
– reference: Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. North Holland & Hermann, Mathematical Studies, vol. 29 (1975)
– reference: ItoKKunischKLagrange multiplier approach to variational problems and applicationsSIAM Adv. Des. Control20145221251127510.1137/120896529
– reference: CiarletPGLinear and nonlinear functional analysis with applicationsSIAM2013130472
– reference: De los Reyes, J.C.: Theory of PDE-constrained optimization. In: Pardalos, P.M., Pintér, J.D., Robinson, S., Terlaky, T., Thai, M.T. (eds.) Numerical PDE-Constrained Optimization, pp. 25–41. Springer, Berlin (2015)
– reference: Hiriart-UrrutyJ-BClarkeFHDem’yanovVFGiannessiFFrom convex optimization to nonconvex optimization. Necessary and sufficient conditions for global optimalityNonsmooth Optimization and Related Topics1989BerlinSpringer21923910.1007/978-1-4757-6019-4_13
– reference: De Los ReyesJCLoayzaEMerinoPSecond-order orthan–based methods with enriched hessian information for sparse ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-optimizationComput. Optim. Appl.2017672225258363657810.1007/s10589-017-9891-z1368.90183
– reference: Flores-BazánFOettliWSimplified optimality conditions for minimizing the difference of vector-valued functionsJ. Optim. Theory Appl.20011083571586182867310.1023/A:10175354248130984.90053
– reference: HintermüllerMTaoWNonconvex TVq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$TV^{q}$$\end{document}-models in image restoration: analysis and a trust-region regularization-based superlinearly convergent solverSIAM J. Imaging Sci.20136313851415308099510.1137/1108547461281.65033
– reference: RockafellarRTConvex Analysis2015PrincetonPrinceton University Press
– reference: AuchmutyGDuality algorithms for nonconvex variational principlesNumer. Func. Anal. Optim.1989103–421126498953410.1080/016305689088163020646.49023
– reference: AuchmutyGDuality for non-convex variational principlesJ. Differ. Equ.1983508014571786910.1016/0022-0396(83)90085-20533.49007
– reference: StadlerGElliptic optimal control problems with L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-control cost and applications for the placement of control devicesComput. Optim. Appl.2009442159181255684910.1007/s10589-007-9150-91185.49031
– reference: Dal MasoGAn Introduction to Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-Convergence2012BerlinSpringer
– reference: CasasEClasonCKunischKParabolic control problems in measure spaces with sparse solutionsSIAM J. Control Optim.20135112863303286610.1137/1208723951266.49037
– volume: 44
  start-page: 159
  issue: 2
  year: 2009
  ident: 101_CR26
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9150-9
– volume-title: Optimization with PDE Constraints
  year: 2008
  ident: 101_CR17
– volume: 51
  start-page: 28
  issue: 1
  year: 2013
  ident: 101_CR4
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/120872395
– volume: 22
  start-page: 355
  issue: 2
  year: 2016
  ident: 101_CR5
  publication-title: ESAIM Control Optim. Calc. Var.
  doi: 10.1051/cocv/2015008
– volume: 67
  start-page: 225
  issue: 2
  year: 2017
  ident: 101_CR11
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9891-z
– start-page: 1
  volume-title: Transactions on Computational Intelligence XIII
  year: 2014
  ident: 101_CR13
– volume-title: Convex Analysis
  year: 2015
  ident: 101_CR25
– volume: 7
  start-page: 393
  issue: 3
  year: 2017
  ident: 101_CR7
  publication-title: Am. Inst. Math. Sci.
  doi: 10.3934/mcrf.2017014
– volume-title: Introduction to the Theory of Nonlinear Optimization
  year: 2007
  ident: 101_CR23
– volume: 50
  start-page: 80
  year: 1983
  ident: 101_CR3
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(83)90085-2
– ident: 101_CR22
– volume-title: An Introduction to $$\Gamma $$-Convergence
  year: 2012
  ident: 101_CR9
– ident: 101_CR20
– start-page: 219
  volume-title: Nonsmooth Optimization and Related Topics
  year: 1989
  ident: 101_CR18
  doi: 10.1007/978-1-4757-6019-4_13
– volume: 10
  start-page: 211
  issue: 3–4
  year: 1989
  ident: 101_CR2
  publication-title: Numer. Func. Anal. Optim.
  doi: 10.1080/01630568908816302
– volume-title: Fundamentals of Convex Analysis
  year: 2012
  ident: 101_CR19
– volume-title: A Primer of Nonlinear Analysis
  year: 1995
  ident: 101_CR1
– volume: 130
  start-page: 472
  year: 2013
  ident: 101_CR8
  publication-title: SIAM
– ident: 101_CR12
– volume-title: A Mathematical Introduction to Compressive Sensing
  year: 2013
  ident: 101_CR15
  doi: 10.1007/978-0-8176-4948-7
– volume: 108
  start-page: 571
  issue: 3
  year: 2001
  ident: 101_CR14
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1017535424813
– volume: 39
  start-page: 476
  year: 2012
  ident: 101_CR24
  publication-title: Electron. Trans. Numer. Anal.
– volume-title: Optimization for Machine Learning
  year: 2012
  ident: 101_CR27
– volume: 74
  start-page: 319
  issue: 3
  year: 2017
  ident: 101_CR6
  publication-title: SeMA J.
  doi: 10.1007/s40324-017-0121-5
– volume: 6
  start-page: 1385
  issue: 3
  year: 2013
  ident: 101_CR16
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/110854746
– volume: 52
  start-page: 1251
  issue: 2
  year: 2014
  ident: 101_CR21
  publication-title: SIAM Adv. Des. Control
  doi: 10.1137/120896529
– ident: 101_CR10
  doi: 10.1007/978-3-319-13395-9_3
SSID ssj0009732
Score 2.2507021
Snippet We propose a local regularization of elliptic optimal control problems which involves the nonconvex L q quasi-norm penalization in the cost function. The...
We propose a local regularization of elliptic optimal control problems which involves the nonconvex \[L^q\] quasi-norm penalization in the cost function. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 225
SubjectTerms Algorithms
Convex analysis
Convex and Discrete Geometry
Economic models
Management Science
Mathematics
Mathematics and Statistics
Nonlinear programming
Numerical methods
Operations Research
Operations Research/Decision Theory
Optimal control
Optimization
Regularization
Statistics
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAG1EoyAMbWCRxYicTqqAVC1UHkLpFjh8SEjSlCYifz9l1CCDRhTnxJcqd7y6-u-9D6FxRaiCShUSYGH5QLPisSFJFuGSQXaeiSELlyCb4aJROJtnYH7hVvq2y8YnOUatS2jPyqwi2FgSzkPHr2SuxrFG2uuopNFbRGmQ2oW3puo_GLegudwRlQRYxAoGd-qEZPzqX2GYhO8JjYdZI8DMwtdnmrwKpizvD7f--8Q7a8hkn7i9MZBet6Oke2vyGQ7iPTB83RClSk9IQ14v-gW3Qc3aJG-hxDDkuBic0rzQe3w5wCR7nBaT7jnfs-WkqbM938bScekmyrOrqAD0OBw83d8QTMBAJO7MmWipapCzQGRPM0IhbilGqAgE5pokoC1Ra2HHDOE5ErGVhAm4Ej2JFGY0KVdBD1IEn6SOEM5kUylY1Baex0alQMcjjJs0UrKC8i8Lm6-fSo5NbkoznvMVVthrLQWO501gedNHF15rZAptj6d29Rk2536dV3uqoiy4bRbeX_5Z2vFzaCdqInG1ZE-uhTj1_06doXb7XT9X8zFnpJ8BH7AA
  priority: 102
  providerName: ProQuest
Title A difference-of-convex functions approach for sparse PDE optimal control problems with nonconvex costs
URI https://link.springer.com/article/10.1007/s10589-019-00101-0
https://www.proquest.com/docview/2219822167
Volume 74
WOSCitedRecordID wos000476600200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HeDAGzEYUw7cIFLXtE17hDGEhJgq3nCp0jxOsKF1IH4-TpYyQIAEl0hREyeKndhp7M8Au4oxg5qsTYWJ8IJiwWdFnCrKZYLWdSrKuK1csgne66W3t1nug8Kq2tu9fpJ0J_WHYLfYuvfYoBsLjEbxoj6L6i61CRvOL64nULvcpSULsjChqM6ZD5X5nsZndTSxMb88izptc7z0v3kuw6K3LsnBWBxWYEr3V2HhA-Yg1s7egVqrVZi3xuYYq3kNzAGp86VITQeGOpf0V2J1nxNPUiOQEzR1CZ5Fw0qT_KhLBnjwPOLA3vGd-DQ1FbG_eUl_0PeU5KAaVetwddy97JxQn4eBStygI6qlYmWaBDpLRGJYyG2mUaYCgaamCVkSqLS0UYdRFItIy9IE3AgeRoolLCxVyTZgBkfSm0AyGZfKPm4KziKjU6EipMdNminswXgD2jU7CulBym2ujIdiAq9sl7fA5S3c8hZBA_be-zyNITp-bd2suVz47VoVIZ7baCm1E5zAfs3VyeefqW39rfk2zIdOMKx8NGFmNHzWOzAnX5DTwxZM85u7Fswednv5OdZOOcXyLOjYMsxtyS-wzOP7lhP5NxWm8fw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BRaI9tJS26lIKPpQTtZq1kzg5VBXiIRB0tQeQuAXHD6lSu6Gb7etP9Tcy43VIW6ncOHBOMlHizzNje-b7AN5YKT1GsiHXPsUFCpHP6qywXJkcs-tC19nQBrEJNRoVFxfleAF-d70wVFbZ-cTgqG1jaI_8ncCphcFsmKsPV185qUbR6WonoTGHxYn79QOXbO37430c320hDg_O9o54VBXgBuE2485YWRd54spc514KRbqZ0iYaEycvZJ7YoqYeujTNdOpM7RPltRKplbkUta0l2l2EBykxi1GpoBj3JL8qCKIlpcg5JhIyNunEVr2MipOoZYho3XjydyDss9t_DmRDnDt8ct_-0Co8jhk1251Pgaew4CZr8OgPnsVn4HdZJwRjHG88D7X2PxkF9TDvWEetzjCHZ-hkp61j4_0D1qBH_YLWY0U_i_o7LaP9azZpJtGSadpZ-xzO7-RDX8ASvsm9BFaarLZ0aquVTL0rtE3RnvJFafEJqQYw7Ea7MpF9nURAPlc9bzQhpEKEVAEhVTKAnZtnrubcI7fevdHBoop-qK16TAzgbQes_vL_ra3fbm0LVo7OPp5Wp8ejk1fwUARcE7w3YGk2_eZew7L5PvvUTjfDDGFwedeAuwZnkEfv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFqH2QMtHxUJLfYATWM3aSZwcEKrYrqiKVnsAqeISHH9ISO2mbBYKf41fx4zXIVCpvfXQc5KJEj_PjO2Z9wBeWCk9RrIh1z7FBQqRz-qssFyZHLPrQtfZ0AaxCTWZFCcn5XQFfne9MFRW2fnE4KhtY2iPfF_g1MJgNszVvo9lEdPR-O35N04KUnTS2slpLCFy7H5d4PKtfXM0wrF-KcT48OO79zwqDHCD0FtwZ6ysizxxZa5zL4UiDU1pE41JlBcyT2xRUz9dmmY6dab2ifJaidTKXIra1hLt3oE1hWtMKiecZp97wl8VxNGSUuQckwoZG3Zi215GhUrUPkQUbzz5Pyj2me6lw9kQ88abt_lvbcH9mGmzg-XUeAArbvYQNv7hX3wE_oB1AjHG8cbzUIP_k1GwD_ORdZTrDHN7hs533jo2HR2yBj3tGVqPlf4s6vK0jPa12ayZRUumaRftY_h0Ix-6Dav4JvcEWGmy2tJprlYy9a7QNkV7yhelxSekGsCwG_nKRFZ2Egc5rXo-aUJLhWipAlqqZACv_j5zvuQkufbunQ4iVfRPbdXjYwCvO5D1l6-29vR6a3twD3FWfTiaHD-DdREgTkjfgdXF_Lvbhbvmx-JrO38eJguDLzeNtz8yHlDb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+difference-of-convex+functions+approach+for+sparse+PDE+optimal+control+problems+with+nonconvex+costs&rft.jtitle=Computational+optimization+and+applications&rft.au=Merino%2C+Pedro&rft.date=2019-09-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=74&rft.issue=1&rft.spage=225&rft.epage=258&rft_id=info:doi/10.1007%2Fs10589-019-00101-0&rft.externalDocID=10_1007_s10589_019_00101_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon