Constraint Qualifications and Optimality Criteria for Nonsmooth Multiobjective Programming Problems on Hadamard Manifolds
This article deals with a class of constrained nonsmooth multiobjective programming problems (NMOPP) in the setting of Hadamard manifolds. The generalized Guignard constraint qualification (GGCQ), Abadie constraint qualification (ACQ), and the generalized ACQ (GACQ) are introduced in the framework o...
Uložené v:
| Vydané v: | Journal of optimization theory and applications Ročník 200; číslo 2; s. 794 - 819 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.02.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This article deals with a class of constrained nonsmooth multiobjective programming problems (NMOPP) in the setting of Hadamard manifolds. The generalized Guignard constraint qualification (GGCQ), Abadie constraint qualification (ACQ), and the generalized ACQ (GACQ) are introduced in the framework of Hadamard manifolds for NMOPP using the notion of Clarke subdifferentials. Subsequently, by employing GGCQ and geodesic quasiconvexity assumptions, we establish Karush–Kuhn–Tucker (abbreviated as, KKT)-type necessary criteria of Pareto efficiency for NMOPP. Moreover, we establish that ACQ and GACQ are sufficient criteria for satisfaction of GGCQ. Several nontrivial numerical examples are furnished in manifold settings to demonstrate the validity of the derived results. To the best of our knowledge, this is the first time that ACQ, GACQ, GGCQ, and KKT-type necessary criteria of Pareto efficiency for NMOPP have been studied in manifold setting using Clarke subdifferentials. |
|---|---|
| AbstractList | This article deals with a class of constrained nonsmooth multiobjective programming problems (NMOPP) in the setting of Hadamard manifolds. The generalized Guignard constraint qualification (GGCQ), Abadie constraint qualification (ACQ), and the generalized ACQ (GACQ) are introduced in the framework of Hadamard manifolds for NMOPP using the notion of Clarke subdifferentials. Subsequently, by employing GGCQ and geodesic quasiconvexity assumptions, we establish Karush–Kuhn–Tucker (abbreviated as, KKT)-type necessary criteria of Pareto efficiency for NMOPP. Moreover, we establish that ACQ and GACQ are sufficient criteria for satisfaction of GGCQ. Several nontrivial numerical examples are furnished in manifold settings to demonstrate the validity of the derived results. To the best of our knowledge, this is the first time that ACQ, GACQ, GGCQ, and KKT-type necessary criteria of Pareto efficiency for NMOPP have been studied in manifold setting using Clarke subdifferentials. |
| Author | Upadhyay, Balendu Bhooshan Treanţă, Savin Ghosh, Arnav |
| Author_xml | – sequence: 1 givenname: Balendu Bhooshan surname: Upadhyay fullname: Upadhyay, Balendu Bhooshan organization: Department of Mathematics, Indian Institute of Technology Patna – sequence: 2 givenname: Arnav surname: Ghosh fullname: Ghosh, Arnav organization: Department of Mathematics, Indian Institute of Technology Patna – sequence: 3 givenname: Savin orcidid: 0000-0001-8209-3869 surname: Treanţă fullname: Treanţă, Savin email: savin.treanta@upb.ro organization: Department of Applied Mathematics, University Politehnica of Bucharest, Academy of Romanian Scientists, 54 Splaiul Independentei, Fundamental Sciences Applied in Engineering Research Center (SFAI), University Politehnica of Bucharest |
| BookMark | eNp9kE9LAzEQxYNUsK1-AU8Bz6tJdrN_jrKoFVqroOeQzSY1ZTepSVbotzfbCoKHHoYMw3szeb8ZmBhrJADXGN1ihIo7j1FFiwSRdCyEE3oGppgWaULKopyAKUKEJClJqwsw836LEKrKIpuCfW2ND45rE-DbwDuttOBBxyHkpoXrXdB9nIY9rJ0O0mkOlXXwJQp6a8MnXA1dlDdbKYL-lvDV2Y3jfa_NZuybTvYeWgMXvOU9dy1ccaOV7Vp_Cc4V77y8-n3n4OPx4b1eJMv103N9v0xEiquQSFEgWuRlmxHEcQwjScbTJq9EE0M0Ki9xK_Jc0ZYr3gopFaGNbChWmKdFrDm4Oe7dOfs1SB_Y1g7OxJOMVARnlNKIbA7IUSWc9d5JxXYuJnd7hhEbEbMjYha17ICY0Wgq_5mEDgd6I9HutDU9Wn28YzbS_f3qhOsHcWSVng |
| CitedBy_id | crossref_primary_10_3390_math12193047 crossref_primary_10_1007_s11075_024_01967_w crossref_primary_10_1016_j_jmaa_2024_128873 crossref_primary_10_3390_math12203202 crossref_primary_10_1016_j_ins_2024_121153 crossref_primary_10_1007_s11075_025_02177_8 crossref_primary_10_1007_s11117_024_01065_0 crossref_primary_10_1080_02331934_2024_2437795 crossref_primary_10_1007_s10898_024_01367_3 crossref_primary_10_1007_s12597_025_00913_1 |
| Cites_doi | 10.1137/15M101988X 10.1051/ro:2004023 10.1016/B978-0-12-814725-2.00010-8 10.1515/9783110361629 10.3390/math10193516 10.1007/s10957-022-02107-x 10.1007/s41980-021-00646-z 10.1016/j.na.2011.02.023 10.1007/978-1-4419-9640-4_11 10.1080/02331934.2012.679939 10.1007/s10957-023-02207-2 10.2298/FIL1703781G 10.1016/j.jmaa.2004.08.036 10.1142/S0217595923500197 10.1007/s10898-020-00889-w 10.1016/j.na.2006.04.019 10.1051/ro/2022098 10.1023/B:MACH.0000033120.25363.1e 10.1137/18M1181602 10.1515/9781400830244 10.1525/9780520411586-036 10.1023/A:1004607615343 10.1023/A:1021794505701 10.1016/S0022-247X(03)00535-3 10.1007/s10107-019-01380-5 10.1051/cocv/2011102 10.1007/s10957-019-01539-2 10.1090/S0002-9947-07-04075-5 10.1137/1.9781611971255 10.3390/sym11081037 10.1007/978-3-662-47044-2_6 10.1007/BF02193099 10.1007/s41980-023-00791-7 10.1080/02331939608844241 10.1007/s10444-015-9426-z 10.1007/BF02207776 10.1137/18M1180633 10.1080/02331930410001661505 10.1007/s10957-020-01725-7 10.1016/j.jmaa.2005.08.049 10.1016/j.jmaa.2007.10.010 10.1007/s40879-021-00469-6 10.1007/s11750-008-0058-z 10.1080/02331934.2016.1235161 10.11650/tjm/180501 10.1016/j.jfa.2004.10.008 10.1080/02331939508844093 10.1080/02331934.2022.2088369 10.1007/978-3-642-22300-6_33 10.1023/B:JOTA.0000037607.48762.45 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
| DOI | 10.1007/s10957-023-02301-5 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2878 |
| EndPage | 819 |
| ExternalDocumentID | 10_1007_s10957_023_02301_5 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PKN PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 YLTOR YQT Z45 Z7R Z7S Z7U Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZCG ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8FD 8FK FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-ec705768d420a1878e24a3b69cb000bf681dc66f5dafadceef25beb51f1a371a3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072826900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-3239 |
| IngestDate | Wed Nov 05 03:12:23 EST 2025 Tue Nov 18 22:43:27 EST 2025 Sat Nov 29 06:02:33 EST 2025 Fri Feb 21 02:40:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Optimality conditions 90C30 90C46 Constraint qualifications Hadamard manifolds 90C29 90C48 Mathematical programming |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ec705768d420a1878e24a3b69cb000bf681dc66f5dafadceef25beb51f1a371a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8209-3869 |
| PQID | 2921455502 |
| PQPubID | 48247 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2921455502 crossref_primary_10_1007_s10957_023_02301_5 crossref_citationtrail_10_1007_s10957_023_02301_5 springer_journals_10_1007_s10957_023_02301_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20240200 2024-02-00 20240201 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of optimization theory and applications |
| PublicationTitleAbbrev | J Optim Theory Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | UpadhyayBBGhoshAStancu-MinasianIMSecond-order optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifoldsAsia Pac. J. Oper. Res.202310.1142/S0217595923500197 YangWHZhangL-HSongROptimality conditions for the nonlinear programming problems on Riemannian manifoldsPac. J. Optim.2014104154343235056 TungLTTamDHOptimality conditions and duality for multiobjective semi-infinite programming on Hadamard manifoldsBull. Iran. Math. Soc.202248219122194487705 PennecXPennecXSommerSFletcherTManifold-valued image processing with SPD matricesRiemannian Geometric Statistics in Medical Image Analysis2020AmsterdamElsevier75134 Ruiz-GarzónGOsuna-GómezRRuiz-ZapateroJNecessary and sufficient optimality conditions for vector equilibrium problems on Hadamard manifoldsSymmetry2019111037 AbsilP-AMahonyRSepulchreROptimization Algorithms on Matrix Manifolds2008PrincetonPrinceton University Press LiXFConstraint qualifications in nonsmooth multiobjective optimizationJ. Optim. Theory Appl.20001063733981788930 PredaVChiescuIOn constraint qualification in multiobjective optimization problems: semidifferentiable caseJ. Optim. Theory Appl.19991004174331673442 FerreiraOPLouzeiroMSPrudenteLGradient method for optimization on Riemannian manifolds with lower bounded curvatureSIAM J. Optim.2019294251725414018420 Papa QuirozEABaygorrea CusihuallpaNMaculanNInexact proximal point methods for multiobjective quasiconvex minimization on Hadamard manifoldsJ. Optim. Theory Appl.202018638798984142932 Upadhyay, B.B., Ghosh, A., Treanţă, S.: Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds. Submitted in J. Glob. Optim. (2022) MaedaTConstraint qualifications in multiobjective optimization problems: differentiable caseJ. Optim. Theory Appl.19948034835001265172 MishraSKLagrange multipliers saddle points and scalarizations in composite multiobjective nonsmooth programmingOptimization1996382931051410216 UdrişteCConvex Functions and Optimization Methods on Riemannian Manifolds2013BerlinSpringer Mangasarian, O.L.: Nonlinear Programming. SIAM Classics in Applied Mathematics, vol. 10. McGraw-Hill, New York (1969). Reprint Philadelphia (1994) DuttaJChandraSConvexificators, generalized convexity and vector optimizationOptimization20045377942040636 FarrokhiniyaMBaraniALimiting subdifferential calculus and perturbed distance function in Riemannian manifoldsJ. Glob. Optim.2020776616854102430 Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. Berkeley (1950) MishraSKWangSYLaiKKOptimality and duality for multiple objective optimization under generalized type I univexityJ. Math. Anal. Appl.20053033153262113884 LimYHiaiFLawsonJNonhomogeneous Karcher equations with vector fields on positive definite matricesEur. J. Math.202173129113284289869 Ruiz-GarzónGOsuna-GómezRRufián-LizanaAHernández-JiménezBOptimality and duality on Riemannian manifoldsTaiwan J. Math.201822124512593859374 BergmannRHerzogRIntrinsic formulation of KKT conditions and constraint qualifications on smooth manifoldsSIAM J. Optim.2019294242324444014790 GolestaniMNobakhtianSNonsmooth multiobjective programming and constraint qualificationsOptimization20136267837953060962 Fletcher, P.T., Moeller, J., Phillips, J.M., Venkatasubramanian, S.: Horoball hulls and extents in positive definite space. In: Algorithms and Data Structures, pp. 386–398 (2011) BaraniAGeneralized monotonicity and convexity for locally Lipschitz functions on Hadamard manifoldsDiffer. Geom. Dyn. Syst.20131526373073069 BacákMBergmannRSteidlGWeinmannAA second order nonsmooth variational model for restoring manifold-valued imagesSIAM J. Sci. Comput.201638A567A5973463052 RapcsákTSmooth Nonlinear Optimization in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} }^n$$\end{document}2013BerlinSpringer ChenS-IHuangN-JO’ReganDGeodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifoldsJ. Appl. Math.20142014Art. ID 524698, 12 pp.3191123 SteinOOn constraint qualifications in nonsmooth optimizationJ. Optim. Theory Appl.20041216476712084347 BergmannRHerzogROrtiz LópezJSchielaAFirst-and second-order analysis for optimization problems with manifold-valued constraintsJ. Optim. Theory Appl.202219525966234504979 FerreiraOPProximal subgradient and a characterization of Lipschitz function on Riemannian manifoldsJ. Math. Anal. Appl.20063135875972183321 HamdiAMishraSKMishraSKDecomposition methods based on augmented Lagrangians: a surveyTopics in Nonconvex Optimization2011New YorkSpringer175203 Papa QuirozEAOliveiraPRFull convergence of the proximal point method for quasiconvex functions on Hadamard manifoldsESAIM Control Optim. Cal. Var.20121824835002954635 MishraSKSinghVLahaVMohapatraRNXuHWangSWuSYOn constraint qualifications for multiobjective optimization problems with vanishing constraintsOptimization Methods, Theory and Applications2015HeidelbergSpringer95135 JouraniAConstraint qualifications and Lagrange multipliers in nondifferentiable programming problemsJ. Optim. Theory Appl.1994815335481281737 GiorgiGJimenezBNovoVStrong Kuhn–Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problemsTop20091722883042576424 GuptaRSrivastavaMConstraint qualifications in nonsmooth multiobjective optimization problemFilomat20173137817973628821 UpadhyayBBGhoshATreanţăSOptimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems on Hadamard manifoldsBull. Iran. Math. Soc.20234945460551410.1007/s41980-023-00791-7 ChenS-IFangC-JVector variational inequality with pseudoconvexity on Hadamard manifoldsOptimization201665206720803564905 GiorgiGJimenezBNovoVOn constraint qualification in directionally differentiable multiobjective optimization problemsRAIRO-Oper. Res.2004382552742091756 KarkhaneeiMMMahdavi-AmiriNNonconvex weak sharp minima on Riemannian manifoldsJ. Optim. Theory Appl.2019183851043989298 HosseiniSPouryayevaliMRGeneralized gradients and characterization of epi-Lipschitz sets in Riemannian manifoldsNonlinear Anal.201174388438952802974 AzagraDFerreraJLópez-MesasFNonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifoldsJ. Funct. Anal.20052203043612119282 BoumalNMishraBAbsilP-ASepulchreRManopt, a Matlab toolbox for optimization on manifoldsJ. Mach. Learn. Res.201415114551459 BelkinMNiyogiPSemi-supervised learning on Riemannian manifoldsMach. Learn.2004561209239 UpadhyayBBGhoshAMishraPTreanţăSOptimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds using generalized geodesic convexityRAIRO Oper. Res.2022564203720654450251 BačákMConvex Analysis and Optimization in Hadamard Spaces2014BerlinDe Gruyter GrohsPHosseiniSϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-subgradient algorithms for locally Lipschitz functions on Riemannian manifoldsAdv. Comput. Math.20164223333603477792 BaraniAOn pseudoconvex functions in Riemannian manifoldsJ. Finsler Geom. Appl.20212214224596892 LedyaevYSZhuQJNonsmooth analysis on smooth manifoldsTrans. Am. Math. Soc.2007359368737322302512 MishraSKMukherjeeRNGeneralized convex composite multiobjective nonsmooth programming and conditional proper efficiencyOptimization19953453661337615 ChryssochoosIVinterRBOptimal control problems on manifolds: a dynamic programming approachJ. Math. Anal. Appl.20032871181402010261 UpadhyayBBGhoshAOn constraint qualifications for mathematical programming problems with vanishing constraints on Hadamard manifoldsJ. Optim. Theory Appl.2023465105810.1007/s10957-023-02207-2 Papa QuirozEAQuispeEMOliveiraPRSteepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifoldsJ. Math. Anal. Appl.200934114674772394099 UpadhyayBBTreanţăSMishraPOn Minty variational principle for nonsmooth multiobjective optimization problems on Hadamard manifoldsOptimization202210.1080/02331934.2022.2088369 AzagraDFerreraJApplications of proximal calculus to fixed point theory on Riemannian manifoldsNonlinear Anal.2007671541742313886 Papa QuirozEAOliveiraPRProximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifoldsJ. Convex Anal.20091649692531192 TreanSUpadhyayBBGhoshANonlaoponKOptimality conditions for multiobjective mathematical programming problems with equilibrium constraints on Hadamard manifoldsMathematics2022103516 MehlitzPStationarity conditions and constraint qualifications for mathematical programs with switching constraintsMath. Program.202018111491864095903 MishraSKUpadhyayBBPseudolinear Functions and Optimization2019LondonChapman and Hall/CRC EA Papa Quiroz (2301_CR45) 2012; 18 V Preda (2301_CR41) 1999; 100 WH Yang (2301_CR60) 2014; 10 EA Papa Quiroz (2301_CR43) 2009; 341 Y Lim (2301_CR32) 2021; 7 A Barani (2301_CR5) 2021; 2 M Belkin (2301_CR8) 2004; 56 SK Mishra (2301_CR39) 2019 C Udrişte (2301_CR53) 2013 S-I Chen (2301_CR12) 2016; 65 P Grohs (2301_CR23) 2016; 42 BB Upadhyay (2301_CR54) 2023 OP Ferreira (2301_CR18) 2019; 29 2301_CR19 G Giorgi (2301_CR21) 2009; 17 A Jourani (2301_CR27) 1994; 81 S Trean (2301_CR51) 2022; 10 EA Papa Quiroz (2301_CR42) 2020; 186 S-I Chen (2301_CR13) 2014; 2014 J Dutta (2301_CR15) 2004; 53 A Hamdi (2301_CR25) 2011 SK Mishra (2301_CR37) 1995; 34 2301_CR57 R Bergmann (2301_CR10) 2022; 195 S Hosseini (2301_CR26) 2011; 74 SK Mishra (2301_CR40) 2005; 303 YS Ledyaev (2301_CR30) 2007; 359 G Ruiz-Garzón (2301_CR49) 2019; 11 OP Ferreira (2301_CR17) 2006; 313 X Pennec (2301_CR46) 2020 LT Tung (2301_CR52) 2022; 48 T Maeda (2301_CR33) 1994; 80 SK Mishra (2301_CR38) 2015 BB Upadhyay (2301_CR55) 2022; 56 2301_CR29 P-A Absil (2301_CR1) 2008 BB Upadhyay (2301_CR58) 2023; 49 O Stein (2301_CR50) 2004; 121 R Gupta (2301_CR24) 2017; 31 N Boumal (2301_CR11) 2014; 15 M Golestani (2301_CR22) 2013; 62 D Azagra (2301_CR3) 2007; 67 SK Mishra (2301_CR36) 1996; 38 EA Papa Quiroz (2301_CR44) 2009; 16 D Azagra (2301_CR2) 2005; 220 MM Karkhaneei (2301_CR28) 2019; 183 P Mehlitz (2301_CR35) 2020; 181 BB Upadhyay (2301_CR59) 2022 I Chryssochoos (2301_CR14) 2003; 287 BB Upadhyay (2301_CR56) 2023 A Barani (2301_CR4) 2013; 15 M Bačák (2301_CR7) 2014 XF Li (2301_CR31) 2000; 106 T Rapcsák (2301_CR47) 2013 2301_CR34 R Bergmann (2301_CR9) 2019; 29 M Bacák (2301_CR6) 2016; 38 G Ruiz-Garzón (2301_CR48) 2018; 22 M Farrokhiniya (2301_CR16) 2020; 77 G Giorgi (2301_CR20) 2004; 38 |
| References_xml | – reference: KarkhaneeiMMMahdavi-AmiriNNonconvex weak sharp minima on Riemannian manifoldsJ. Optim. Theory Appl.2019183851043989298 – reference: BaraniAGeneralized monotonicity and convexity for locally Lipschitz functions on Hadamard manifoldsDiffer. Geom. Dyn. Syst.20131526373073069 – reference: LiXFConstraint qualifications in nonsmooth multiobjective optimizationJ. Optim. Theory Appl.20001063733981788930 – reference: DuttaJChandraSConvexificators, generalized convexity and vector optimizationOptimization20045377942040636 – reference: Ruiz-GarzónGOsuna-GómezRRuiz-ZapateroJNecessary and sufficient optimality conditions for vector equilibrium problems on Hadamard manifoldsSymmetry2019111037 – reference: FerreiraOPProximal subgradient and a characterization of Lipschitz function on Riemannian manifoldsJ. Math. Anal. Appl.20063135875972183321 – reference: Mangasarian, O.L.: Nonlinear Programming. SIAM Classics in Applied Mathematics, vol. 10. McGraw-Hill, New York (1969). Reprint Philadelphia (1994) – reference: FarrokhiniyaMBaraniALimiting subdifferential calculus and perturbed distance function in Riemannian manifoldsJ. Glob. Optim.2020776616854102430 – reference: GiorgiGJimenezBNovoVStrong Kuhn–Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problemsTop20091722883042576424 – reference: BacákMBergmannRSteidlGWeinmannAA second order nonsmooth variational model for restoring manifold-valued imagesSIAM J. Sci. Comput.201638A567A5973463052 – reference: ChenS-IHuangN-JO’ReganDGeodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifoldsJ. Appl. Math.20142014Art. ID 524698, 12 pp.3191123 – reference: UpadhyayBBGhoshAStancu-MinasianIMSecond-order optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifoldsAsia Pac. J. Oper. Res.202310.1142/S0217595923500197 – reference: YangWHZhangL-HSongROptimality conditions for the nonlinear programming problems on Riemannian manifoldsPac. J. Optim.2014104154343235056 – reference: MehlitzPStationarity conditions and constraint qualifications for mathematical programs with switching constraintsMath. Program.202018111491864095903 – reference: GiorgiGJimenezBNovoVOn constraint qualification in directionally differentiable multiobjective optimization problemsRAIRO-Oper. Res.2004382552742091756 – reference: LimYHiaiFLawsonJNonhomogeneous Karcher equations with vector fields on positive definite matricesEur. J. Math.202173129113284289869 – reference: Papa QuirozEAOliveiraPRProximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifoldsJ. Convex Anal.20091649692531192 – reference: Papa QuirozEAOliveiraPRFull convergence of the proximal point method for quasiconvex functions on Hadamard manifoldsESAIM Control Optim. Cal. Var.20121824835002954635 – reference: AzagraDFerreraJLópez-MesasFNonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifoldsJ. Funct. Anal.20052203043612119282 – reference: BergmannRHerzogROrtiz LópezJSchielaAFirst-and second-order analysis for optimization problems with manifold-valued constraintsJ. Optim. Theory Appl.202219525966234504979 – reference: UpadhyayBBGhoshAMishraPTreanţăSOptimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds using generalized geodesic convexityRAIRO Oper. Res.2022564203720654450251 – reference: AzagraDFerreraJApplications of proximal calculus to fixed point theory on Riemannian manifoldsNonlinear Anal.2007671541742313886 – reference: BačákMConvex Analysis and Optimization in Hadamard Spaces2014BerlinDe Gruyter – reference: GuptaRSrivastavaMConstraint qualifications in nonsmooth multiobjective optimization problemFilomat20173137817973628821 – reference: HosseiniSPouryayevaliMRGeneralized gradients and characterization of epi-Lipschitz sets in Riemannian manifoldsNonlinear Anal.201174388438952802974 – reference: UpadhyayBBGhoshATreanţăSOptimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems on Hadamard manifoldsBull. Iran. Math. Soc.20234945460551410.1007/s41980-023-00791-7 – reference: HamdiAMishraSKMishraSKDecomposition methods based on augmented Lagrangians: a surveyTopics in Nonconvex Optimization2011New YorkSpringer175203 – reference: MishraSKUpadhyayBBPseudolinear Functions and Optimization2019LondonChapman and Hall/CRC – reference: Upadhyay, B.B., Ghosh, A., Treanţă, S.: Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds. Submitted in J. Glob. Optim. (2022) – reference: MishraSKSinghVLahaVMohapatraRNXuHWangSWuSYOn constraint qualifications for multiobjective optimization problems with vanishing constraintsOptimization Methods, Theory and Applications2015HeidelbergSpringer95135 – reference: BoumalNMishraBAbsilP-ASepulchreRManopt, a Matlab toolbox for optimization on manifoldsJ. Mach. Learn. Res.201415114551459 – reference: TreanSUpadhyayBBGhoshANonlaoponKOptimality conditions for multiobjective mathematical programming problems with equilibrium constraints on Hadamard manifoldsMathematics2022103516 – reference: PennecXPennecXSommerSFletcherTManifold-valued image processing with SPD matricesRiemannian Geometric Statistics in Medical Image Analysis2020AmsterdamElsevier75134 – reference: BelkinMNiyogiPSemi-supervised learning on Riemannian manifoldsMach. Learn.2004561209239 – reference: MishraSKLagrange multipliers saddle points and scalarizations in composite multiobjective nonsmooth programmingOptimization1996382931051410216 – reference: Ruiz-GarzónGOsuna-GómezRRufián-LizanaAHernández-JiménezBOptimality and duality on Riemannian manifoldsTaiwan J. Math.201822124512593859374 – reference: Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. Berkeley (1950) – reference: BaraniAOn pseudoconvex functions in Riemannian manifoldsJ. Finsler Geom. Appl.20212214224596892 – reference: FerreiraOPLouzeiroMSPrudenteLGradient method for optimization on Riemannian manifolds with lower bounded curvatureSIAM J. Optim.2019294251725414018420 – reference: UdrişteCConvex Functions and Optimization Methods on Riemannian Manifolds2013BerlinSpringer – reference: JouraniAConstraint qualifications and Lagrange multipliers in nondifferentiable programming problemsJ. Optim. Theory Appl.1994815335481281737 – reference: RapcsákTSmooth Nonlinear Optimization in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} }^n$$\end{document}2013BerlinSpringer – reference: Fletcher, P.T., Moeller, J., Phillips, J.M., Venkatasubramanian, S.: Horoball hulls and extents in positive definite space. In: Algorithms and Data Structures, pp. 386–398 (2011) – reference: LedyaevYSZhuQJNonsmooth analysis on smooth manifoldsTrans. Am. Math. Soc.2007359368737322302512 – reference: UpadhyayBBTreanţăSMishraPOn Minty variational principle for nonsmooth multiobjective optimization problems on Hadamard manifoldsOptimization202210.1080/02331934.2022.2088369 – reference: UpadhyayBBGhoshAOn constraint qualifications for mathematical programming problems with vanishing constraints on Hadamard manifoldsJ. Optim. Theory Appl.2023465105810.1007/s10957-023-02207-2 – reference: TungLTTamDHOptimality conditions and duality for multiobjective semi-infinite programming on Hadamard manifoldsBull. Iran. Math. Soc.202248219122194487705 – reference: GrohsPHosseiniSϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-subgradient algorithms for locally Lipschitz functions on Riemannian manifoldsAdv. Comput. Math.20164223333603477792 – reference: MaedaTConstraint qualifications in multiobjective optimization problems: differentiable caseJ. Optim. Theory Appl.19948034835001265172 – reference: PredaVChiescuIOn constraint qualification in multiobjective optimization problems: semidifferentiable caseJ. Optim. Theory Appl.19991004174331673442 – reference: MishraSKMukherjeeRNGeneralized convex composite multiobjective nonsmooth programming and conditional proper efficiencyOptimization19953453661337615 – reference: MishraSKWangSYLaiKKOptimality and duality for multiple objective optimization under generalized type I univexityJ. Math. Anal. Appl.20053033153262113884 – reference: SteinOOn constraint qualifications in nonsmooth optimizationJ. Optim. Theory Appl.20041216476712084347 – reference: AbsilP-AMahonyRSepulchreROptimization Algorithms on Matrix Manifolds2008PrincetonPrinceton University Press – reference: ChryssochoosIVinterRBOptimal control problems on manifolds: a dynamic programming approachJ. Math. Anal. Appl.20032871181402010261 – reference: Papa QuirozEAQuispeEMOliveiraPRSteepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifoldsJ. Math. Anal. Appl.200934114674772394099 – reference: BergmannRHerzogRIntrinsic formulation of KKT conditions and constraint qualifications on smooth manifoldsSIAM J. Optim.2019294242324444014790 – reference: ChenS-IFangC-JVector variational inequality with pseudoconvexity on Hadamard manifoldsOptimization201665206720803564905 – reference: Papa QuirozEABaygorrea CusihuallpaNMaculanNInexact proximal point methods for multiobjective quasiconvex minimization on Hadamard manifoldsJ. Optim. Theory Appl.202018638798984142932 – reference: GolestaniMNobakhtianSNonsmooth multiobjective programming and constraint qualificationsOptimization20136267837953060962 – volume: 38 start-page: A567 year: 2016 ident: 2301_CR6 publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M101988X – volume: 38 start-page: 255 year: 2004 ident: 2301_CR20 publication-title: RAIRO-Oper. Res. doi: 10.1051/ro:2004023 – start-page: 75 volume-title: Riemannian Geometric Statistics in Medical Image Analysis year: 2020 ident: 2301_CR46 doi: 10.1016/B978-0-12-814725-2.00010-8 – volume-title: Convex Analysis and Optimization in Hadamard Spaces year: 2014 ident: 2301_CR7 doi: 10.1515/9783110361629 – volume: 15 start-page: 1455 issue: 1 year: 2014 ident: 2301_CR11 publication-title: J. Mach. Learn. Res. – volume: 10 start-page: 3516 year: 2022 ident: 2301_CR51 publication-title: Mathematics doi: 10.3390/math10193516 – volume: 195 start-page: 596 issue: 2 year: 2022 ident: 2301_CR10 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-022-02107-x – volume: 48 start-page: 2191 year: 2022 ident: 2301_CR52 publication-title: Bull. Iran. Math. Soc. doi: 10.1007/s41980-021-00646-z – volume: 74 start-page: 3884 year: 2011 ident: 2301_CR26 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2011.02.023 – start-page: 175 volume-title: Topics in Nonconvex Optimization year: 2011 ident: 2301_CR25 doi: 10.1007/978-1-4419-9640-4_11 – volume: 62 start-page: 783 issue: 6 year: 2013 ident: 2301_CR22 publication-title: Optimization doi: 10.1080/02331934.2012.679939 – year: 2023 ident: 2301_CR54 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-023-02207-2 – volume: 16 start-page: 49 year: 2009 ident: 2301_CR44 publication-title: J. Convex Anal. – volume: 31 start-page: 781 issue: 3 year: 2017 ident: 2301_CR24 publication-title: Filomat doi: 10.2298/FIL1703781G – volume: 303 start-page: 315 year: 2005 ident: 2301_CR40 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2004.08.036 – year: 2023 ident: 2301_CR56 publication-title: Asia Pac. J. Oper. Res. doi: 10.1142/S0217595923500197 – volume: 77 start-page: 661 year: 2020 ident: 2301_CR16 publication-title: J. Glob. Optim. doi: 10.1007/s10898-020-00889-w – volume: 67 start-page: 154 year: 2007 ident: 2301_CR3 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2006.04.019 – volume: 56 start-page: 2037 issue: 4 year: 2022 ident: 2301_CR55 publication-title: RAIRO Oper. Res. doi: 10.1051/ro/2022098 – volume: 56 start-page: 209 issue: 1 year: 2004 ident: 2301_CR8 publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000033120.25363.1e – volume: 29 start-page: 2423 issue: 4 year: 2019 ident: 2301_CR9 publication-title: SIAM J. Optim. doi: 10.1137/18M1181602 – volume-title: Optimization Algorithms on Matrix Manifolds year: 2008 ident: 2301_CR1 doi: 10.1515/9781400830244 – ident: 2301_CR29 doi: 10.1525/9780520411586-036 – volume: 106 start-page: 373 year: 2000 ident: 2301_CR31 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1004607615343 – volume: 100 start-page: 417 year: 1999 ident: 2301_CR41 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1021794505701 – volume: 2014 start-page: Art. ID 524698, year: 2014 ident: 2301_CR13 publication-title: J. Appl. Math. – volume: 287 start-page: 118 year: 2003 ident: 2301_CR14 publication-title: J. Math. Anal. Appl. doi: 10.1016/S0022-247X(03)00535-3 – volume: 181 start-page: 149 issue: 1 year: 2020 ident: 2301_CR35 publication-title: Math. Program. doi: 10.1007/s10107-019-01380-5 – volume: 18 start-page: 483 issue: 2 year: 2012 ident: 2301_CR45 publication-title: ESAIM Control Optim. Cal. Var. doi: 10.1051/cocv/2011102 – volume: 183 start-page: 85 year: 2019 ident: 2301_CR28 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-019-01539-2 – volume: 359 start-page: 3687 year: 2007 ident: 2301_CR30 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-07-04075-5 – ident: 2301_CR34 doi: 10.1137/1.9781611971255 – volume: 11 start-page: 1037 year: 2019 ident: 2301_CR49 publication-title: Symmetry doi: 10.3390/sym11081037 – volume-title: Smooth Nonlinear Optimization in $${\mathbb{R} }^n$$ year: 2013 ident: 2301_CR47 – start-page: 95 volume-title: Optimization Methods, Theory and Applications year: 2015 ident: 2301_CR38 doi: 10.1007/978-3-662-47044-2_6 – volume: 81 start-page: 533 year: 1994 ident: 2301_CR27 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF02193099 – volume: 49 start-page: 45 year: 2023 ident: 2301_CR58 publication-title: Bull. Iran. Math. Soc. doi: 10.1007/s41980-023-00791-7 – volume: 38 start-page: 93 issue: 2 year: 1996 ident: 2301_CR36 publication-title: Optimization doi: 10.1080/02331939608844241 – volume-title: Convex Functions and Optimization Methods on Riemannian Manifolds year: 2013 ident: 2301_CR53 – volume: 10 start-page: 415 year: 2014 ident: 2301_CR60 publication-title: Pac. J. Optim. – volume: 42 start-page: 333 issue: 2 year: 2016 ident: 2301_CR23 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-015-9426-z – volume: 80 start-page: 483 issue: 3 year: 1994 ident: 2301_CR33 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF02207776 – ident: 2301_CR57 doi: 10.1142/S0217595923500197 – volume: 29 start-page: 2517 issue: 4 year: 2019 ident: 2301_CR18 publication-title: SIAM J. Optim. doi: 10.1137/18M1180633 – volume: 53 start-page: 77 year: 2004 ident: 2301_CR15 publication-title: Optimization doi: 10.1080/02331930410001661505 – volume: 186 start-page: 879 issue: 3 year: 2020 ident: 2301_CR42 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-020-01725-7 – volume: 2 start-page: 14 issue: 2 year: 2021 ident: 2301_CR5 publication-title: J. Finsler Geom. Appl. – volume: 313 start-page: 587 year: 2006 ident: 2301_CR17 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.08.049 – volume: 341 start-page: 467 issue: 1 year: 2009 ident: 2301_CR43 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2007.10.010 – volume: 15 start-page: 26 year: 2013 ident: 2301_CR4 publication-title: Differ. Geom. Dyn. Syst. – volume: 7 start-page: 1291 issue: 3 year: 2021 ident: 2301_CR32 publication-title: Eur. J. Math. doi: 10.1007/s40879-021-00469-6 – volume: 17 start-page: 288 issue: 2 year: 2009 ident: 2301_CR21 publication-title: Top doi: 10.1007/s11750-008-0058-z – volume: 65 start-page: 2067 year: 2016 ident: 2301_CR12 publication-title: Optimization doi: 10.1080/02331934.2016.1235161 – volume: 22 start-page: 1245 year: 2018 ident: 2301_CR48 publication-title: Taiwan J. Math. doi: 10.11650/tjm/180501 – volume-title: Pseudolinear Functions and Optimization year: 2019 ident: 2301_CR39 – volume: 220 start-page: 304 year: 2005 ident: 2301_CR2 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2004.10.008 – volume: 34 start-page: 53 year: 1995 ident: 2301_CR37 publication-title: Optimization doi: 10.1080/02331939508844093 – year: 2022 ident: 2301_CR59 publication-title: Optimization doi: 10.1080/02331934.2022.2088369 – ident: 2301_CR19 doi: 10.1007/978-3-642-22300-6_33 – volume: 121 start-page: 647 year: 2004 ident: 2301_CR50 publication-title: J. Optim. Theory Appl. doi: 10.1023/B:JOTA.0000037607.48762.45 |
| SSID | ssj0009874 |
| Score | 2.4636266 |
| Snippet | This article deals with a class of constrained nonsmooth multiobjective programming problems (NMOPP) in the setting of Hadamard manifolds. The generalized... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 794 |
| SubjectTerms | Applications of Mathematics Applied mathematics Banach spaces Calculus of Variations and Optimal Control; Optimization Constraints Convex analysis Engineering Euclidean space Geometry Manifolds Mathematical programming Mathematics Mathematics and Statistics Multiple objective analysis Operations Research/Decision Theory Optimality criteria Optimization Pareto optimum Qualifications Theory of Computation |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-DnrwLa4vcvCmgTZtHj2KuHhxXXzhraRpAiu7rdhV8N87SdvdVVTQQ6Cl6YOZycyXJvMNQsdBZGVMY0WYoYzECc-I4tISm8mcKx6Ds7S-2ITo9eTjY9JvksKqdrd7uyTpPfVMslvCBIEY4xpMgtk8WoRwJ13BhpvbhynVrmy5lymJaJQ0qTLfP-NzOJpizC_Loj7adNf-953raLVBl_isNocNNGeKTbQywzkIZ1cTotZqC727gp2-TMQYezoN2_7Dw6rI8TU4lJFH6tjVRHDWigHl4h50GJWgZOwTeMvsqfabuF9v9xrBq9yxq1VT4bLA4ODUCIwRX6liYMthXm2j--7F3fklaaoxEA3DdEyMFoGbnOQxDVQohTSg4ijjiXZAIrMckK_m3LJcWZVD7LWUZSZjoQ1VJKDtoIWiLMwuwmGiRRhyEwU6irWwSggB8zQGcNNKY-IOClulpLqhKneiGKZTkmUn5BQEnHohp6yDTib3PNdEHb_2Pmh1nTaDtkpp4mnbWUA76LTV7fTyz0_b-1v3fbRMARrVe78P0ML45dUcoiX9Nh5UL0femD8AUErvBg priority: 102 providerName: Springer Nature |
| Title | Constraint Qualifications and Optimality Criteria for Nonsmooth Multiobjective Programming Problems on Hadamard Manifolds |
| URI | https://link.springer.com/article/10.1007/s10957-023-02301-5 https://www.proquest.com/docview/2921455502 |
| Volume | 200 |
| WOSCitedRecordID | wos001072826900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KEcCn2JbSnyobfWauLEdnJCBYGQ0C4R9EF7iRzHlqjYBMhSqf-eseOQthJcOHgUK44TZeyZz69vAN5Hic1SlirKDeM0zUVFlcgstVVWCyVSNJbWB5uQs1l2dpYXYcKtC9sqB5voDXXdajdH_onlnlObR2zn8oq6qFFudTWE0FiGVUQ2sdvSNWXFSLqbDSzMjCYsycOhmXB0LueSosdyCYfU_F_HNKLN_xZIvd85WH_sF2_As4A4yee-iTyHJdO8gLW_eAgxN70jb-1ewh8XxNOHjlgQT7Fhh3k9opqaHKORmXv0TlycBNeCCSJfMsMC8xYVT_yh3rb61dtSUvRbwOb4Knft4td0pG0IGj01xwZKpqo5t-1F3b2Crwf7X_YOaYjQQDV23QU1WkZuwFKnLFJxJjODak8qkWsHLiorEA1rISyvlVU1-mPLeGUqHttYJRLTa1hp2sZsAolzLeNYmCTSSaqlVVJKHLtxhKA2MyadQDyop9SBvtz9iotyJF52Ki1RnaVXackn8OHumcuevOPB0luDHsvQkbtyVOIEPg4tYbx9f21vHq7tLTxlCI_6_d9bsLK4vjHv4In-vTjvrrdhWX7_sQ2ru_uz4gRzR5KinEZ7TrJjLwsn5SnKgv9EeXL67Rbj7AFo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2itFLpog8oYgqlXpQVWE2c2E4WqEK0CAQzzAIkdsFxbAnEJJRMW_FTfCPXTkJaJNixYBEpURwnco7vw49zAL4GkU1iFivKDeM0TkVOlUgstXlSCCViNJbWi03I0Sg5OUnHM3DT7YVxyyo7m-gNdVFpN0b-jaWeU5sH7PvlL-pUo9zsaieh0cBi31z_xZSt3tz7gf93jbGdn0fbu7RVFaAa4TalRsvABdlFzAIVJjIx-KlRLlKnVR_kVmAEp4WwvFBWFehDLOO5yXloQxVJPLDeF_AydsxibqkgG_ckv0nH-sxoxKK03aTTbtVLuaToId2BKTz_3xH20e29CVnv53bePbcWeg9v24iabDVd4APMmHIe3vzDs4hXwzty2noBrp1IqZfGmBJPIWK7cUuiyoIcohGd-OyEOB0I10MJRvZkhAUmFQKb-E3LVX7e-Aoybpa4TfBV7tzp89SkKgkadTXBDkiGqjyz1UVRf4TjJ2mJRZgtq9IsAQlTLcNQmCjQUaylVVJKzE05htg2MSYeQNjBIdMtPbtriousJ5Z2EMoQPpmHUMYHsH73zGVDTvJo6ZUON1lrqOqsB80ANjrk9bcfru3T47V9gde7R8OD7GBvtL8McwxDwWat-wrMTq9-m8_wSv-ZntVXq74LETh9akTeAkXRWEk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9UwFD5BJAYeVFDCVdQ-wBM0bN3abg_EGPFGglzuAyaEl9F1bYLhbsAuEP41_zpOu40pibzx4MOSLdu6pft6fnSn3wewFkQ2iVmsKDeM0zgVOVUisdTmSSGUiNFYWi82IUej5OgoHc_A724tjCur7GyiN9RFpd0c-RZLPac2D9iWbcsixjvDz-cX1ClIuT-tnZxGA5E9c3uD6Vu9vbuD33qdseG3w6_faaswQDVCb0qNloELuIuYBSpMZGLwtaNcpE63PsitwGhOC2F5oawq0J9YxnOT89CGKpK4YbvP4LnEHNOVE475cU_4m3QM0IxGLErbBTvtsr2US4re0m2YzvO_nWIf6T74Oet93vDV_9xbr-FlG2mTL83QWIQZUy7Bwh_8i3i0f09aW7-BWyde6iUzpsRTi9huPpOosiAHaFwnPmshTh_CjVyCET8Z4QWTCgFP_GLmKv_V-BAybkrfJvgot-90e2pSlQSNvZrgwCT7qjy11VlRv4WfT9ITyzBbVqVZARKmWoahMFGgo1hLq6SUmLNyDL1tYkw8gLCDRqZb2nbXFWdZTzjt4JQhlDIPp4wPYOP-nvOGtOTRq1c7DGWtAauzHkAD2OxQ2J_-d2vvHm_tE7xAIGY_dkd772GeYYTYlMCvwuz08sp8gDl9PT2tLz_60UTg5KkBeQdB0mE1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraint+Qualifications+and+Optimality+Criteria+for+Nonsmooth+Multiobjective+Programming+Problems+on+Hadamard+Manifolds&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Upadhyay%2C+Balendu+Bhooshan&rft.au=Ghosh%2C+Arnav&rft.au=Trean%C5%A3%C4%83%2C+Savin&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=200&rft.issue=2&rft.spage=794&rft.epage=819&rft_id=info:doi/10.1007%2Fs10957-023-02301-5&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon |