Constraint Qualifications and Optimality Criteria for Nonsmooth Multiobjective Programming Problems on Hadamard Manifolds

This article deals with a class of constrained nonsmooth multiobjective programming problems (NMOPP) in the setting of Hadamard manifolds. The generalized Guignard constraint qualification (GGCQ), Abadie constraint qualification (ACQ), and the generalized ACQ (GACQ) are introduced in the framework o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications Vol. 200; no. 2; pp. 794 - 819
Main Authors: Upadhyay, Balendu Bhooshan, Ghosh, Arnav, Treanţă, Savin
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2024
Springer Nature B.V
Subjects:
ISSN:0022-3239, 1573-2878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article deals with a class of constrained nonsmooth multiobjective programming problems (NMOPP) in the setting of Hadamard manifolds. The generalized Guignard constraint qualification (GGCQ), Abadie constraint qualification (ACQ), and the generalized ACQ (GACQ) are introduced in the framework of Hadamard manifolds for NMOPP using the notion of Clarke subdifferentials. Subsequently, by employing GGCQ and geodesic quasiconvexity assumptions, we establish Karush–Kuhn–Tucker (abbreviated as, KKT)-type necessary criteria of Pareto efficiency for NMOPP. Moreover, we establish that ACQ and GACQ are sufficient criteria for satisfaction of GGCQ. Several nontrivial numerical examples are furnished in manifold settings to demonstrate the validity of the derived results. To the best of our knowledge, this is the first time that ACQ, GACQ, GGCQ, and KKT-type necessary criteria of Pareto efficiency for NMOPP have been studied in manifold setting using Clarke subdifferentials.
AbstractList This article deals with a class of constrained nonsmooth multiobjective programming problems (NMOPP) in the setting of Hadamard manifolds. The generalized Guignard constraint qualification (GGCQ), Abadie constraint qualification (ACQ), and the generalized ACQ (GACQ) are introduced in the framework of Hadamard manifolds for NMOPP using the notion of Clarke subdifferentials. Subsequently, by employing GGCQ and geodesic quasiconvexity assumptions, we establish Karush–Kuhn–Tucker (abbreviated as, KKT)-type necessary criteria of Pareto efficiency for NMOPP. Moreover, we establish that ACQ and GACQ are sufficient criteria for satisfaction of GGCQ. Several nontrivial numerical examples are furnished in manifold settings to demonstrate the validity of the derived results. To the best of our knowledge, this is the first time that ACQ, GACQ, GGCQ, and KKT-type necessary criteria of Pareto efficiency for NMOPP have been studied in manifold setting using Clarke subdifferentials.
Author Upadhyay, Balendu Bhooshan
Treanţă, Savin
Ghosh, Arnav
Author_xml – sequence: 1
  givenname: Balendu Bhooshan
  surname: Upadhyay
  fullname: Upadhyay, Balendu Bhooshan
  organization: Department of Mathematics, Indian Institute of Technology Patna
– sequence: 2
  givenname: Arnav
  surname: Ghosh
  fullname: Ghosh, Arnav
  organization: Department of Mathematics, Indian Institute of Technology Patna
– sequence: 3
  givenname: Savin
  orcidid: 0000-0001-8209-3869
  surname: Treanţă
  fullname: Treanţă, Savin
  email: savin.treanta@upb.ro
  organization: Department of Applied Mathematics, University Politehnica of Bucharest, Academy of Romanian Scientists, 54 Splaiul Independentei, Fundamental Sciences Applied in Engineering Research Center (SFAI), University Politehnica of Bucharest
BookMark eNp9kE9LAzEQxYNUsK1-AU8Bz6tJdrN_jrKoFVqroOeQzSY1ZTepSVbotzfbCoKHHoYMw3szeb8ZmBhrJADXGN1ihIo7j1FFiwSRdCyEE3oGppgWaULKopyAKUKEJClJqwsw836LEKrKIpuCfW2ND45rE-DbwDuttOBBxyHkpoXrXdB9nIY9rJ0O0mkOlXXwJQp6a8MnXA1dlDdbKYL-lvDV2Y3jfa_NZuybTvYeWgMXvOU9dy1ccaOV7Vp_Cc4V77y8-n3n4OPx4b1eJMv103N9v0xEiquQSFEgWuRlmxHEcQwjScbTJq9EE0M0Ki9xK_Jc0ZYr3gopFaGNbChWmKdFrDm4Oe7dOfs1SB_Y1g7OxJOMVARnlNKIbA7IUSWc9d5JxXYuJnd7hhEbEbMjYha17ICY0Wgq_5mEDgd6I9HutDU9Wn28YzbS_f3qhOsHcWSVng
CitedBy_id crossref_primary_10_3390_math12193047
crossref_primary_10_1007_s11075_024_01967_w
crossref_primary_10_1016_j_jmaa_2024_128873
crossref_primary_10_3390_math12203202
crossref_primary_10_1016_j_ins_2024_121153
crossref_primary_10_1007_s11075_025_02177_8
crossref_primary_10_1007_s11117_024_01065_0
crossref_primary_10_1080_02331934_2024_2437795
crossref_primary_10_1007_s10898_024_01367_3
crossref_primary_10_1007_s12597_025_00913_1
Cites_doi 10.1137/15M101988X
10.1051/ro:2004023
10.1016/B978-0-12-814725-2.00010-8
10.1515/9783110361629
10.3390/math10193516
10.1007/s10957-022-02107-x
10.1007/s41980-021-00646-z
10.1016/j.na.2011.02.023
10.1007/978-1-4419-9640-4_11
10.1080/02331934.2012.679939
10.1007/s10957-023-02207-2
10.2298/FIL1703781G
10.1016/j.jmaa.2004.08.036
10.1142/S0217595923500197
10.1007/s10898-020-00889-w
10.1016/j.na.2006.04.019
10.1051/ro/2022098
10.1023/B:MACH.0000033120.25363.1e
10.1137/18M1181602
10.1515/9781400830244
10.1525/9780520411586-036
10.1023/A:1004607615343
10.1023/A:1021794505701
10.1016/S0022-247X(03)00535-3
10.1007/s10107-019-01380-5
10.1051/cocv/2011102
10.1007/s10957-019-01539-2
10.1090/S0002-9947-07-04075-5
10.1137/1.9781611971255
10.3390/sym11081037
10.1007/978-3-662-47044-2_6
10.1007/BF02193099
10.1007/s41980-023-00791-7
10.1080/02331939608844241
10.1007/s10444-015-9426-z
10.1007/BF02207776
10.1137/18M1180633
10.1080/02331930410001661505
10.1007/s10957-020-01725-7
10.1016/j.jmaa.2005.08.049
10.1016/j.jmaa.2007.10.010
10.1007/s40879-021-00469-6
10.1007/s11750-008-0058-z
10.1080/02331934.2016.1235161
10.11650/tjm/180501
10.1016/j.jfa.2004.10.008
10.1080/02331939508844093
10.1080/02331934.2022.2088369
10.1007/978-3-642-22300-6_33
10.1023/B:JOTA.0000037607.48762.45
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10957-023-02301-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection (ProQuest)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Research Library (ProQuest)
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
EndPage 819
ExternalDocumentID 10_1007_s10957_023_02301_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-ec705768d420a1878e24a3b69cb000bf681dc66f5dafadceef25beb51f1a371a3
IEDL.DBID M2P
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072826900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3239
IngestDate Wed Nov 05 03:12:23 EST 2025
Tue Nov 18 22:43:27 EST 2025
Sat Nov 29 06:02:33 EST 2025
Fri Feb 21 02:40:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Optimality conditions
90C30
90C46
Constraint qualifications
Hadamard manifolds
90C29
90C48
Mathematical programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ec705768d420a1878e24a3b69cb000bf681dc66f5dafadceef25beb51f1a371a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8209-3869
PQID 2921455502
PQPubID 48247
PageCount 26
ParticipantIDs proquest_journals_2921455502
crossref_primary_10_1007_s10957_023_02301_5
crossref_citationtrail_10_1007_s10957_023_02301_5
springer_journals_10_1007_s10957_023_02301_5
PublicationCentury 2000
PublicationDate 20240200
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References UpadhyayBBGhoshAStancu-MinasianIMSecond-order optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifoldsAsia Pac. J. Oper. Res.202310.1142/S0217595923500197
YangWHZhangL-HSongROptimality conditions for the nonlinear programming problems on Riemannian manifoldsPac. J. Optim.2014104154343235056
TungLTTamDHOptimality conditions and duality for multiobjective semi-infinite programming on Hadamard manifoldsBull. Iran. Math. Soc.202248219122194487705
PennecXPennecXSommerSFletcherTManifold-valued image processing with SPD matricesRiemannian Geometric Statistics in Medical Image Analysis2020AmsterdamElsevier75134
Ruiz-GarzónGOsuna-GómezRRuiz-ZapateroJNecessary and sufficient optimality conditions for vector equilibrium problems on Hadamard manifoldsSymmetry2019111037
AbsilP-AMahonyRSepulchreROptimization Algorithms on Matrix Manifolds2008PrincetonPrinceton University Press
LiXFConstraint qualifications in nonsmooth multiobjective optimizationJ. Optim. Theory Appl.20001063733981788930
PredaVChiescuIOn constraint qualification in multiobjective optimization problems: semidifferentiable caseJ. Optim. Theory Appl.19991004174331673442
FerreiraOPLouzeiroMSPrudenteLGradient method for optimization on Riemannian manifolds with lower bounded curvatureSIAM J. Optim.2019294251725414018420
Papa QuirozEABaygorrea CusihuallpaNMaculanNInexact proximal point methods for multiobjective quasiconvex minimization on Hadamard manifoldsJ. Optim. Theory Appl.202018638798984142932
Upadhyay, B.B., Ghosh, A., Treanţă, S.: Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds. Submitted in J. Glob. Optim. (2022)
MaedaTConstraint qualifications in multiobjective optimization problems: differentiable caseJ. Optim. Theory Appl.19948034835001265172
MishraSKLagrange multipliers saddle points and scalarizations in composite multiobjective nonsmooth programmingOptimization1996382931051410216
UdrişteCConvex Functions and Optimization Methods on Riemannian Manifolds2013BerlinSpringer
Mangasarian, O.L.: Nonlinear Programming. SIAM Classics in Applied Mathematics, vol. 10. McGraw-Hill, New York (1969). Reprint Philadelphia (1994)
DuttaJChandraSConvexificators, generalized convexity and vector optimizationOptimization20045377942040636
FarrokhiniyaMBaraniALimiting subdifferential calculus and perturbed distance function in Riemannian manifoldsJ. Glob. Optim.2020776616854102430
Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. Berkeley (1950)
MishraSKWangSYLaiKKOptimality and duality for multiple objective optimization under generalized type I univexityJ. Math. Anal. Appl.20053033153262113884
LimYHiaiFLawsonJNonhomogeneous Karcher equations with vector fields on positive definite matricesEur. J. Math.202173129113284289869
Ruiz-GarzónGOsuna-GómezRRufián-LizanaAHernández-JiménezBOptimality and duality on Riemannian manifoldsTaiwan J. Math.201822124512593859374
BergmannRHerzogRIntrinsic formulation of KKT conditions and constraint qualifications on smooth manifoldsSIAM J. Optim.2019294242324444014790
GolestaniMNobakhtianSNonsmooth multiobjective programming and constraint qualificationsOptimization20136267837953060962
Fletcher, P.T., Moeller, J., Phillips, J.M., Venkatasubramanian, S.: Horoball hulls and extents in positive definite space. In: Algorithms and Data Structures, pp. 386–398 (2011)
BaraniAGeneralized monotonicity and convexity for locally Lipschitz functions on Hadamard manifoldsDiffer. Geom. Dyn. Syst.20131526373073069
BacákMBergmannRSteidlGWeinmannAA second order nonsmooth variational model for restoring manifold-valued imagesSIAM J. Sci. Comput.201638A567A5973463052
RapcsákTSmooth Nonlinear Optimization in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} }^n$$\end{document}2013BerlinSpringer
ChenS-IHuangN-JO’ReganDGeodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifoldsJ. Appl. Math.20142014Art. ID 524698, 12 pp.3191123
SteinOOn constraint qualifications in nonsmooth optimizationJ. Optim. Theory Appl.20041216476712084347
BergmannRHerzogROrtiz LópezJSchielaAFirst-and second-order analysis for optimization problems with manifold-valued constraintsJ. Optim. Theory Appl.202219525966234504979
FerreiraOPProximal subgradient and a characterization of Lipschitz function on Riemannian manifoldsJ. Math. Anal. Appl.20063135875972183321
HamdiAMishraSKMishraSKDecomposition methods based on augmented Lagrangians: a surveyTopics in Nonconvex Optimization2011New YorkSpringer175203
Papa QuirozEAOliveiraPRFull convergence of the proximal point method for quasiconvex functions on Hadamard manifoldsESAIM Control Optim. Cal. Var.20121824835002954635
MishraSKSinghVLahaVMohapatraRNXuHWangSWuSYOn constraint qualifications for multiobjective optimization problems with vanishing constraintsOptimization Methods, Theory and Applications2015HeidelbergSpringer95135
JouraniAConstraint qualifications and Lagrange multipliers in nondifferentiable programming problemsJ. Optim. Theory Appl.1994815335481281737
GiorgiGJimenezBNovoVStrong Kuhn–Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problemsTop20091722883042576424
GuptaRSrivastavaMConstraint qualifications in nonsmooth multiobjective optimization problemFilomat20173137817973628821
UpadhyayBBGhoshATreanţăSOptimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems on Hadamard manifoldsBull. Iran. Math. Soc.20234945460551410.1007/s41980-023-00791-7
ChenS-IFangC-JVector variational inequality with pseudoconvexity on Hadamard manifoldsOptimization201665206720803564905
GiorgiGJimenezBNovoVOn constraint qualification in directionally differentiable multiobjective optimization problemsRAIRO-Oper. Res.2004382552742091756
KarkhaneeiMMMahdavi-AmiriNNonconvex weak sharp minima on Riemannian manifoldsJ. Optim. Theory Appl.2019183851043989298
HosseiniSPouryayevaliMRGeneralized gradients and characterization of epi-Lipschitz sets in Riemannian manifoldsNonlinear Anal.201174388438952802974
AzagraDFerreraJLópez-MesasFNonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifoldsJ. Funct. Anal.20052203043612119282
BoumalNMishraBAbsilP-ASepulchreRManopt, a Matlab toolbox for optimization on manifoldsJ. Mach. Learn. Res.201415114551459
BelkinMNiyogiPSemi-supervised learning on Riemannian manifoldsMach. Learn.2004561209239
UpadhyayBBGhoshAMishraPTreanţăSOptimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds using generalized geodesic convexityRAIRO Oper. Res.2022564203720654450251
BačákMConvex Analysis and Optimization in Hadamard Spaces2014BerlinDe Gruyter
GrohsPHosseiniSϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-subgradient algorithms for locally Lipschitz functions on Riemannian manifoldsAdv. Comput. Math.20164223333603477792
BaraniAOn pseudoconvex functions in Riemannian manifoldsJ. Finsler Geom. Appl.20212214224596892
LedyaevYSZhuQJNonsmooth analysis on smooth manifoldsTrans. Am. Math. Soc.2007359368737322302512
MishraSKMukherjeeRNGeneralized convex composite multiobjective nonsmooth programming and conditional proper efficiencyOptimization19953453661337615
ChryssochoosIVinterRBOptimal control problems on manifolds: a dynamic programming approachJ. Math. Anal. Appl.20032871181402010261
UpadhyayBBGhoshAOn constraint qualifications for mathematical programming problems with vanishing constraints on Hadamard manifoldsJ. Optim. Theory Appl.2023465105810.1007/s10957-023-02207-2
Papa QuirozEAQuispeEMOliveiraPRSteepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifoldsJ. Math. Anal. Appl.200934114674772394099
UpadhyayBBTreanţăSMishraPOn Minty variational principle for nonsmooth multiobjective optimization problems on Hadamard manifoldsOptimization202210.1080/02331934.2022.2088369
AzagraDFerreraJApplications of proximal calculus to fixed point theory on Riemannian manifoldsNonlinear Anal.2007671541742313886
Papa QuirozEAOliveiraPRProximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifoldsJ. Convex Anal.20091649692531192
TreanSUpadhyayBBGhoshANonlaoponKOptimality conditions for multiobjective mathematical programming problems with equilibrium constraints on Hadamard manifoldsMathematics2022103516
MehlitzPStationarity conditions and constraint qualifications for mathematical programs with switching constraintsMath. Program.202018111491864095903
MishraSKUpadhyayBBPseudolinear Functions and Optimization2019LondonChapman and Hall/CRC
EA Papa Quiroz (2301_CR45) 2012; 18
V Preda (2301_CR41) 1999; 100
WH Yang (2301_CR60) 2014; 10
EA Papa Quiroz (2301_CR43) 2009; 341
Y Lim (2301_CR32) 2021; 7
A Barani (2301_CR5) 2021; 2
M Belkin (2301_CR8) 2004; 56
SK Mishra (2301_CR39) 2019
C Udrişte (2301_CR53) 2013
S-I Chen (2301_CR12) 2016; 65
P Grohs (2301_CR23) 2016; 42
BB Upadhyay (2301_CR54) 2023
OP Ferreira (2301_CR18) 2019; 29
2301_CR19
G Giorgi (2301_CR21) 2009; 17
A Jourani (2301_CR27) 1994; 81
S Trean (2301_CR51) 2022; 10
EA Papa Quiroz (2301_CR42) 2020; 186
S-I Chen (2301_CR13) 2014; 2014
J Dutta (2301_CR15) 2004; 53
A Hamdi (2301_CR25) 2011
SK Mishra (2301_CR37) 1995; 34
2301_CR57
R Bergmann (2301_CR10) 2022; 195
S Hosseini (2301_CR26) 2011; 74
SK Mishra (2301_CR40) 2005; 303
YS Ledyaev (2301_CR30) 2007; 359
G Ruiz-Garzón (2301_CR49) 2019; 11
OP Ferreira (2301_CR17) 2006; 313
X Pennec (2301_CR46) 2020
LT Tung (2301_CR52) 2022; 48
T Maeda (2301_CR33) 1994; 80
SK Mishra (2301_CR38) 2015
BB Upadhyay (2301_CR55) 2022; 56
2301_CR29
P-A Absil (2301_CR1) 2008
BB Upadhyay (2301_CR58) 2023; 49
O Stein (2301_CR50) 2004; 121
R Gupta (2301_CR24) 2017; 31
N Boumal (2301_CR11) 2014; 15
M Golestani (2301_CR22) 2013; 62
D Azagra (2301_CR3) 2007; 67
SK Mishra (2301_CR36) 1996; 38
EA Papa Quiroz (2301_CR44) 2009; 16
D Azagra (2301_CR2) 2005; 220
MM Karkhaneei (2301_CR28) 2019; 183
P Mehlitz (2301_CR35) 2020; 181
BB Upadhyay (2301_CR59) 2022
I Chryssochoos (2301_CR14) 2003; 287
BB Upadhyay (2301_CR56) 2023
A Barani (2301_CR4) 2013; 15
M Bačák (2301_CR7) 2014
XF Li (2301_CR31) 2000; 106
T Rapcsák (2301_CR47) 2013
2301_CR34
R Bergmann (2301_CR9) 2019; 29
M Bacák (2301_CR6) 2016; 38
G Ruiz-Garzón (2301_CR48) 2018; 22
M Farrokhiniya (2301_CR16) 2020; 77
G Giorgi (2301_CR20) 2004; 38
References_xml – reference: KarkhaneeiMMMahdavi-AmiriNNonconvex weak sharp minima on Riemannian manifoldsJ. Optim. Theory Appl.2019183851043989298
– reference: BaraniAGeneralized monotonicity and convexity for locally Lipschitz functions on Hadamard manifoldsDiffer. Geom. Dyn. Syst.20131526373073069
– reference: LiXFConstraint qualifications in nonsmooth multiobjective optimizationJ. Optim. Theory Appl.20001063733981788930
– reference: DuttaJChandraSConvexificators, generalized convexity and vector optimizationOptimization20045377942040636
– reference: Ruiz-GarzónGOsuna-GómezRRuiz-ZapateroJNecessary and sufficient optimality conditions for vector equilibrium problems on Hadamard manifoldsSymmetry2019111037
– reference: FerreiraOPProximal subgradient and a characterization of Lipschitz function on Riemannian manifoldsJ. Math. Anal. Appl.20063135875972183321
– reference: Mangasarian, O.L.: Nonlinear Programming. SIAM Classics in Applied Mathematics, vol. 10. McGraw-Hill, New York (1969). Reprint Philadelphia (1994)
– reference: FarrokhiniyaMBaraniALimiting subdifferential calculus and perturbed distance function in Riemannian manifoldsJ. Glob. Optim.2020776616854102430
– reference: GiorgiGJimenezBNovoVStrong Kuhn–Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problemsTop20091722883042576424
– reference: BacákMBergmannRSteidlGWeinmannAA second order nonsmooth variational model for restoring manifold-valued imagesSIAM J. Sci. Comput.201638A567A5973463052
– reference: ChenS-IHuangN-JO’ReganDGeodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifoldsJ. Appl. Math.20142014Art. ID 524698, 12 pp.3191123
– reference: UpadhyayBBGhoshAStancu-MinasianIMSecond-order optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifoldsAsia Pac. J. Oper. Res.202310.1142/S0217595923500197
– reference: YangWHZhangL-HSongROptimality conditions for the nonlinear programming problems on Riemannian manifoldsPac. J. Optim.2014104154343235056
– reference: MehlitzPStationarity conditions and constraint qualifications for mathematical programs with switching constraintsMath. Program.202018111491864095903
– reference: GiorgiGJimenezBNovoVOn constraint qualification in directionally differentiable multiobjective optimization problemsRAIRO-Oper. Res.2004382552742091756
– reference: LimYHiaiFLawsonJNonhomogeneous Karcher equations with vector fields on positive definite matricesEur. J. Math.202173129113284289869
– reference: Papa QuirozEAOliveiraPRProximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifoldsJ. Convex Anal.20091649692531192
– reference: Papa QuirozEAOliveiraPRFull convergence of the proximal point method for quasiconvex functions on Hadamard manifoldsESAIM Control Optim. Cal. Var.20121824835002954635
– reference: AzagraDFerreraJLópez-MesasFNonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifoldsJ. Funct. Anal.20052203043612119282
– reference: BergmannRHerzogROrtiz LópezJSchielaAFirst-and second-order analysis for optimization problems with manifold-valued constraintsJ. Optim. Theory Appl.202219525966234504979
– reference: UpadhyayBBGhoshAMishraPTreanţăSOptimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds using generalized geodesic convexityRAIRO Oper. Res.2022564203720654450251
– reference: AzagraDFerreraJApplications of proximal calculus to fixed point theory on Riemannian manifoldsNonlinear Anal.2007671541742313886
– reference: BačákMConvex Analysis and Optimization in Hadamard Spaces2014BerlinDe Gruyter
– reference: GuptaRSrivastavaMConstraint qualifications in nonsmooth multiobjective optimization problemFilomat20173137817973628821
– reference: HosseiniSPouryayevaliMRGeneralized gradients and characterization of epi-Lipschitz sets in Riemannian manifoldsNonlinear Anal.201174388438952802974
– reference: UpadhyayBBGhoshATreanţăSOptimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems on Hadamard manifoldsBull. Iran. Math. Soc.20234945460551410.1007/s41980-023-00791-7
– reference: HamdiAMishraSKMishraSKDecomposition methods based on augmented Lagrangians: a surveyTopics in Nonconvex Optimization2011New YorkSpringer175203
– reference: MishraSKUpadhyayBBPseudolinear Functions and Optimization2019LondonChapman and Hall/CRC
– reference: Upadhyay, B.B., Ghosh, A., Treanţă, S.: Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds. Submitted in J. Glob. Optim. (2022)
– reference: MishraSKSinghVLahaVMohapatraRNXuHWangSWuSYOn constraint qualifications for multiobjective optimization problems with vanishing constraintsOptimization Methods, Theory and Applications2015HeidelbergSpringer95135
– reference: BoumalNMishraBAbsilP-ASepulchreRManopt, a Matlab toolbox for optimization on manifoldsJ. Mach. Learn. Res.201415114551459
– reference: TreanSUpadhyayBBGhoshANonlaoponKOptimality conditions for multiobjective mathematical programming problems with equilibrium constraints on Hadamard manifoldsMathematics2022103516
– reference: PennecXPennecXSommerSFletcherTManifold-valued image processing with SPD matricesRiemannian Geometric Statistics in Medical Image Analysis2020AmsterdamElsevier75134
– reference: BelkinMNiyogiPSemi-supervised learning on Riemannian manifoldsMach. Learn.2004561209239
– reference: MishraSKLagrange multipliers saddle points and scalarizations in composite multiobjective nonsmooth programmingOptimization1996382931051410216
– reference: Ruiz-GarzónGOsuna-GómezRRufián-LizanaAHernández-JiménezBOptimality and duality on Riemannian manifoldsTaiwan J. Math.201822124512593859374
– reference: Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. Berkeley (1950)
– reference: BaraniAOn pseudoconvex functions in Riemannian manifoldsJ. Finsler Geom. Appl.20212214224596892
– reference: FerreiraOPLouzeiroMSPrudenteLGradient method for optimization on Riemannian manifolds with lower bounded curvatureSIAM J. Optim.2019294251725414018420
– reference: UdrişteCConvex Functions and Optimization Methods on Riemannian Manifolds2013BerlinSpringer
– reference: JouraniAConstraint qualifications and Lagrange multipliers in nondifferentiable programming problemsJ. Optim. Theory Appl.1994815335481281737
– reference: RapcsákTSmooth Nonlinear Optimization in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} }^n$$\end{document}2013BerlinSpringer
– reference: Fletcher, P.T., Moeller, J., Phillips, J.M., Venkatasubramanian, S.: Horoball hulls and extents in positive definite space. In: Algorithms and Data Structures, pp. 386–398 (2011)
– reference: LedyaevYSZhuQJNonsmooth analysis on smooth manifoldsTrans. Am. Math. Soc.2007359368737322302512
– reference: UpadhyayBBTreanţăSMishraPOn Minty variational principle for nonsmooth multiobjective optimization problems on Hadamard manifoldsOptimization202210.1080/02331934.2022.2088369
– reference: UpadhyayBBGhoshAOn constraint qualifications for mathematical programming problems with vanishing constraints on Hadamard manifoldsJ. Optim. Theory Appl.2023465105810.1007/s10957-023-02207-2
– reference: TungLTTamDHOptimality conditions and duality for multiobjective semi-infinite programming on Hadamard manifoldsBull. Iran. Math. Soc.202248219122194487705
– reference: GrohsPHosseiniSϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-subgradient algorithms for locally Lipschitz functions on Riemannian manifoldsAdv. Comput. Math.20164223333603477792
– reference: MaedaTConstraint qualifications in multiobjective optimization problems: differentiable caseJ. Optim. Theory Appl.19948034835001265172
– reference: PredaVChiescuIOn constraint qualification in multiobjective optimization problems: semidifferentiable caseJ. Optim. Theory Appl.19991004174331673442
– reference: MishraSKMukherjeeRNGeneralized convex composite multiobjective nonsmooth programming and conditional proper efficiencyOptimization19953453661337615
– reference: MishraSKWangSYLaiKKOptimality and duality for multiple objective optimization under generalized type I univexityJ. Math. Anal. Appl.20053033153262113884
– reference: SteinOOn constraint qualifications in nonsmooth optimizationJ. Optim. Theory Appl.20041216476712084347
– reference: AbsilP-AMahonyRSepulchreROptimization Algorithms on Matrix Manifolds2008PrincetonPrinceton University Press
– reference: ChryssochoosIVinterRBOptimal control problems on manifolds: a dynamic programming approachJ. Math. Anal. Appl.20032871181402010261
– reference: Papa QuirozEAQuispeEMOliveiraPRSteepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifoldsJ. Math. Anal. Appl.200934114674772394099
– reference: BergmannRHerzogRIntrinsic formulation of KKT conditions and constraint qualifications on smooth manifoldsSIAM J. Optim.2019294242324444014790
– reference: ChenS-IFangC-JVector variational inequality with pseudoconvexity on Hadamard manifoldsOptimization201665206720803564905
– reference: Papa QuirozEABaygorrea CusihuallpaNMaculanNInexact proximal point methods for multiobjective quasiconvex minimization on Hadamard manifoldsJ. Optim. Theory Appl.202018638798984142932
– reference: GolestaniMNobakhtianSNonsmooth multiobjective programming and constraint qualificationsOptimization20136267837953060962
– volume: 38
  start-page: A567
  year: 2016
  ident: 2301_CR6
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M101988X
– volume: 38
  start-page: 255
  year: 2004
  ident: 2301_CR20
  publication-title: RAIRO-Oper. Res.
  doi: 10.1051/ro:2004023
– start-page: 75
  volume-title: Riemannian Geometric Statistics in Medical Image Analysis
  year: 2020
  ident: 2301_CR46
  doi: 10.1016/B978-0-12-814725-2.00010-8
– volume-title: Convex Analysis and Optimization in Hadamard Spaces
  year: 2014
  ident: 2301_CR7
  doi: 10.1515/9783110361629
– volume: 15
  start-page: 1455
  issue: 1
  year: 2014
  ident: 2301_CR11
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 3516
  year: 2022
  ident: 2301_CR51
  publication-title: Mathematics
  doi: 10.3390/math10193516
– volume: 195
  start-page: 596
  issue: 2
  year: 2022
  ident: 2301_CR10
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-022-02107-x
– volume: 48
  start-page: 2191
  year: 2022
  ident: 2301_CR52
  publication-title: Bull. Iran. Math. Soc.
  doi: 10.1007/s41980-021-00646-z
– volume: 74
  start-page: 3884
  year: 2011
  ident: 2301_CR26
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.02.023
– start-page: 175
  volume-title: Topics in Nonconvex Optimization
  year: 2011
  ident: 2301_CR25
  doi: 10.1007/978-1-4419-9640-4_11
– volume: 62
  start-page: 783
  issue: 6
  year: 2013
  ident: 2301_CR22
  publication-title: Optimization
  doi: 10.1080/02331934.2012.679939
– year: 2023
  ident: 2301_CR54
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-023-02207-2
– volume: 16
  start-page: 49
  year: 2009
  ident: 2301_CR44
  publication-title: J. Convex Anal.
– volume: 31
  start-page: 781
  issue: 3
  year: 2017
  ident: 2301_CR24
  publication-title: Filomat
  doi: 10.2298/FIL1703781G
– volume: 303
  start-page: 315
  year: 2005
  ident: 2301_CR40
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.08.036
– year: 2023
  ident: 2301_CR56
  publication-title: Asia Pac. J. Oper. Res.
  doi: 10.1142/S0217595923500197
– volume: 77
  start-page: 661
  year: 2020
  ident: 2301_CR16
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-020-00889-w
– volume: 67
  start-page: 154
  year: 2007
  ident: 2301_CR3
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2006.04.019
– volume: 56
  start-page: 2037
  issue: 4
  year: 2022
  ident: 2301_CR55
  publication-title: RAIRO Oper. Res.
  doi: 10.1051/ro/2022098
– volume: 56
  start-page: 209
  issue: 1
  year: 2004
  ident: 2301_CR8
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000033120.25363.1e
– volume: 29
  start-page: 2423
  issue: 4
  year: 2019
  ident: 2301_CR9
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1181602
– volume-title: Optimization Algorithms on Matrix Manifolds
  year: 2008
  ident: 2301_CR1
  doi: 10.1515/9781400830244
– ident: 2301_CR29
  doi: 10.1525/9780520411586-036
– volume: 106
  start-page: 373
  year: 2000
  ident: 2301_CR31
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1004607615343
– volume: 100
  start-page: 417
  year: 1999
  ident: 2301_CR41
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021794505701
– volume: 2014
  start-page: Art. ID 524698,
  year: 2014
  ident: 2301_CR13
  publication-title: J. Appl. Math.
– volume: 287
  start-page: 118
  year: 2003
  ident: 2301_CR14
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(03)00535-3
– volume: 181
  start-page: 149
  issue: 1
  year: 2020
  ident: 2301_CR35
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01380-5
– volume: 18
  start-page: 483
  issue: 2
  year: 2012
  ident: 2301_CR45
  publication-title: ESAIM Control Optim. Cal. Var.
  doi: 10.1051/cocv/2011102
– volume: 183
  start-page: 85
  year: 2019
  ident: 2301_CR28
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01539-2
– volume: 359
  start-page: 3687
  year: 2007
  ident: 2301_CR30
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-07-04075-5
– ident: 2301_CR34
  doi: 10.1137/1.9781611971255
– volume: 11
  start-page: 1037
  year: 2019
  ident: 2301_CR49
  publication-title: Symmetry
  doi: 10.3390/sym11081037
– volume-title: Smooth Nonlinear Optimization in $${\mathbb{R} }^n$$
  year: 2013
  ident: 2301_CR47
– start-page: 95
  volume-title: Optimization Methods, Theory and Applications
  year: 2015
  ident: 2301_CR38
  doi: 10.1007/978-3-662-47044-2_6
– volume: 81
  start-page: 533
  year: 1994
  ident: 2301_CR27
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF02193099
– volume: 49
  start-page: 45
  year: 2023
  ident: 2301_CR58
  publication-title: Bull. Iran. Math. Soc.
  doi: 10.1007/s41980-023-00791-7
– volume: 38
  start-page: 93
  issue: 2
  year: 1996
  ident: 2301_CR36
  publication-title: Optimization
  doi: 10.1080/02331939608844241
– volume-title: Convex Functions and Optimization Methods on Riemannian Manifolds
  year: 2013
  ident: 2301_CR53
– volume: 10
  start-page: 415
  year: 2014
  ident: 2301_CR60
  publication-title: Pac. J. Optim.
– volume: 42
  start-page: 333
  issue: 2
  year: 2016
  ident: 2301_CR23
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-015-9426-z
– volume: 80
  start-page: 483
  issue: 3
  year: 1994
  ident: 2301_CR33
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF02207776
– ident: 2301_CR57
  doi: 10.1142/S0217595923500197
– volume: 29
  start-page: 2517
  issue: 4
  year: 2019
  ident: 2301_CR18
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1180633
– volume: 53
  start-page: 77
  year: 2004
  ident: 2301_CR15
  publication-title: Optimization
  doi: 10.1080/02331930410001661505
– volume: 186
  start-page: 879
  issue: 3
  year: 2020
  ident: 2301_CR42
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-020-01725-7
– volume: 2
  start-page: 14
  issue: 2
  year: 2021
  ident: 2301_CR5
  publication-title: J. Finsler Geom. Appl.
– volume: 313
  start-page: 587
  year: 2006
  ident: 2301_CR17
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.08.049
– volume: 341
  start-page: 467
  issue: 1
  year: 2009
  ident: 2301_CR43
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.10.010
– volume: 15
  start-page: 26
  year: 2013
  ident: 2301_CR4
  publication-title: Differ. Geom. Dyn. Syst.
– volume: 7
  start-page: 1291
  issue: 3
  year: 2021
  ident: 2301_CR32
  publication-title: Eur. J. Math.
  doi: 10.1007/s40879-021-00469-6
– volume: 17
  start-page: 288
  issue: 2
  year: 2009
  ident: 2301_CR21
  publication-title: Top
  doi: 10.1007/s11750-008-0058-z
– volume: 65
  start-page: 2067
  year: 2016
  ident: 2301_CR12
  publication-title: Optimization
  doi: 10.1080/02331934.2016.1235161
– volume: 22
  start-page: 1245
  year: 2018
  ident: 2301_CR48
  publication-title: Taiwan J. Math.
  doi: 10.11650/tjm/180501
– volume-title: Pseudolinear Functions and Optimization
  year: 2019
  ident: 2301_CR39
– volume: 220
  start-page: 304
  year: 2005
  ident: 2301_CR2
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2004.10.008
– volume: 34
  start-page: 53
  year: 1995
  ident: 2301_CR37
  publication-title: Optimization
  doi: 10.1080/02331939508844093
– year: 2022
  ident: 2301_CR59
  publication-title: Optimization
  doi: 10.1080/02331934.2022.2088369
– ident: 2301_CR19
  doi: 10.1007/978-3-642-22300-6_33
– volume: 121
  start-page: 647
  year: 2004
  ident: 2301_CR50
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/B:JOTA.0000037607.48762.45
SSID ssj0009874
Score 2.4636266
Snippet This article deals with a class of constrained nonsmooth multiobjective programming problems (NMOPP) in the setting of Hadamard manifolds. The generalized...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 794
SubjectTerms Applications of Mathematics
Applied mathematics
Banach spaces
Calculus of Variations and Optimal Control; Optimization
Constraints
Convex analysis
Engineering
Euclidean space
Geometry
Manifolds
Mathematical programming
Mathematics
Mathematics and Statistics
Multiple objective analysis
Operations Research/Decision Theory
Optimality criteria
Optimization
Pareto optimum
Qualifications
Theory of Computation
SummonAdditionalLinks – databaseName: Springer Nature Link Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3E6JQdvGujSpk2OIg4vzuEXu5W0SWCytbJOwf_el7Rdp6igh0BL0w_ee8n7pXnv9xA6NcrzEyoNoVwxEkjtEREaSqgObYxC6OmwLDYR9ft8OBSDKimsqKPd6y1JN1MvJLsJFhHwMbbBIpgtoxVwd9wWbLi7f2qodnnNvUyJT31Rpcp8_4zP7qjBmF-2RZ236W3-7zu30EaFLvFFaQ7baElnO2h9gXMQzm7mRK3FLnq3BTtdmYgZdnQapv6Hh2Wm8C1MKBOH1LGtiWCtFQPKxX3oMMlBydgl8ObJczlv4kEZ7jWBV9ljW6umwHmGYYKTEzBGfCOzkcnHqthDj72rh8trUlVjICkM0xnRaeTZxYkKqCe7POKaBtJPQpFaIJGYEJBvGoaGKWmkAt9rKEt0wrqmK_0I2j5qZXmmDxAGlCOMYVpz7QMg8qRUsE5jXpAKxUXK26hbKyVOK6pyK4px3JAsWyHHIODYCTlmbXQ2v-elJOr4tXen1nVcDdoipsLRtjOPttF5rdvm8s9PO_xb9yO0RgEalbHfHdSaTV_1MVpN32ajYnrijPkDFvnwKg
  priority: 102
  providerName: Springer Nature
Title Constraint Qualifications and Optimality Criteria for Nonsmooth Multiobjective Programming Problems on Hadamard Manifolds
URI https://link.springer.com/article/10.1007/s10957-023-02301-5
https://www.proquest.com/docview/2921455502
Volume 200
WOSCitedRecordID wos001072826900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71wQEOvBFLH_KBG1g4zjqJT1WpWiGh3UYtj8IlcvyQirpJ22yR-PcdO05TkOilB49ixXGijD3-bI-_AXjrDEtrrhzlhRF0qiyjMnOccpt5H4WM2awPNpHP58XJiSzjglsX3SoHmxgMtWm1XyP_wGXg1BaM75xfUB81yu-uxhAaq7COyCbxLl0zXo6ku8XAwsxpylMZD83Eo3NS5BRHLJ9wSi3-HphGtPnPBmkYdw6e3PeLn8LjiDjJbt9EnsGKbZ7Do1s8hJib3ZC3di_gjw_iGUJHLEmg2HDDuh5RjSGHaGQWAb0THyfBt2CCyJfMscCiRcWTcKi3rX_1tpSUvQvYAl_lr338mo60DUGjpxbYQMlMNaeuPTPdS_h6sP9l7xONERqoxq67pFbnzE9YzJQzlRR5YflUpXUmtQcXtcsQDessc8IopwyOx46L2tYicYlKc0yvYK1pG_saCCIf6ZywtrApgiSmlMG5m2BTLU0hdTGBZFBPpSN9uf8VZ9VIvOxVWqE6q6DSSkzg3c0z5z15x52lNwc9VrEjd9WoxAm8H1rCePv_tb25u7YNeMgRHvX-35uwtry8slvwQP9ennaX27Caf_-xDesf9-flEeY-5xTljO15yQ-DLL3Mj1GW4ifKo-Nv19-vAow
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFolyaPlUF1rwAU5g4XXiJD6gCtFWrdpd9lCk3oIT21JRNynNAuqf4jcy4yQNRaK3HjhYShTHkZznmbE9fg_glbciKqTxXGZW8dg4wXXiJZcuoRyFRLikFZtIp9Ps5ETPluBXfxaG0ip7mxgMta1LWiN_J3Xg1FZCbp9_46QaRburvYRGC4tDd_kTp2zN-4Md_L-vpdzbPf64zztVAV4i3BbclamgINvGUphxlmZOxiYqEk1a9aLwCUZwZZJ4ZY03Fn2Il6pwhRr7sYlSLNjuHViJiVmMUgXlbCD5zXrWZ8kjGenukE53VE-rlKOHpIJTeHXdEQ7R7V8bssHP7a3_bz30ANa6iJp9aIfAQ1hy1SO4_wfPIt5Nrshpm8dwSSKlQRpjwQKFiO_XLZmpLPuERnQeZieMdCBohDKM7NkUK8xrBDYLh5br4mvrK9isTXGb46fomvR5GlZXDI26meMAZBNTnfr6zDZP4POt9MRTWK7qym0Aw8hOe6-cy1yEQaAwxuLcVIm41DbTZTaCcQ-HvOzo2akrzvKBWJoglCN88gChXI3gzdU75y05yY21N3vc5J2havIBNCN42yNvePzv1p7d3NpLuLd_PDnKjw6mh89hVWIo2Oa6b8Ly4uK724K75Y_FaXPxIgwhBl9uG5G_ASdXWW0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aA6FxgAGb1jGYD3ACq65TJ_FhQmijWrWt9ADSxCU4sS11apOuKaD9a_vr9uwkzUBitx04WEoUx5Gcz-9H8vx9AG-tZkHKlaU81oL2lWFUhpZTbkJXoxAyE1ZiE9FoFJ-fy_EaXDd7YVxZZWMTvaHWRea-kXe59JzagvGurcsixkeDj_NL6hSk3J_WRk6jgsiJufqN6Vt5MDzCd_2O88Hnr4fHtFYYoBlCb0lNFjEXcOs-Z6oXR7HhfRWkoXS69Sy1IUZzWRhaoZVVGv2J5SI1qejZngoibDjuA3gYYY7pygnH4ntL-Bs3DNCcBjyQ9YadetueFBFFb-kapvPiT6fYRrp__Zz1Pm_w7H-erU14Wkfa5FO1NJ7DmslfwJNb_It4drYirS1fwpUTL_WSGUviqUVs8z2TqFyTL2hcZz5rIU4fwq1cghE_GWGHWYGAJ34zc5FeVD6EjKvStxk-yh073Z6SFDlBY69muDDJmcontpjqcgu-3ctMbMN6XuRmBwhGfNJaYUxsAgwOmVIac1bB-pnUscziDvQaaCRZTdvupmKatITTDk4JQinxcEpEB96v7plXpCV39t5rMJTUBqxMWgB14EODwvbyv0fbvXu0fXiMQExOh6OTV7DBMUKsSuD3YH25-Glew6Ps13JSLt741UTgx30D8gYzXGJZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraint+Qualifications+and+Optimality+Criteria+for+Nonsmooth+Multiobjective+Programming+Problems+on+Hadamard+Manifolds&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Upadhyay%2C+Balendu+Bhooshan&rft.au=Ghosh%2C+Arnav&rft.au=Trean%C5%A3%C4%83%2C+Savin&rft.date=2024-02-01&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=200&rft.issue=2&rft.spage=794&rft.epage=819&rft_id=info:doi/10.1007%2Fs10957-023-02301-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10957_023_02301_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon