Single machine batch scheduling with two non-disjoint agents and splitable jobs
We investigate the scheduling problem on a single bounded parallel-batch machine where jobs belong to two non-disjoint agents (called agent A and agent B) and are of equal length but different size. Each job’s size can be arbitrarily split into two parts and processed in the consecutive batches. It...
Gespeichert in:
| Veröffentlicht in: | Journal of combinatorial optimization Jg. 40; H. 3; S. 774 - 795 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.10.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1382-6905, 1573-2886 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We investigate the scheduling problem on a single bounded parallel-batch machine where jobs belong to two non-disjoint agents (called agent A and agent B) and are of equal length but different size. Each job’s size can be arbitrarily split into two parts and processed in the consecutive batches. It is permitted to process the jobs from different agents in a common batch. We show that it is unary NP-hard for the problem of minimizing the total weighted completion time of the jobs of agent A subject to the maximum cost of the jobs of agent B being upper bounded by a given threshold. For the case of the jobs of agent A having identical weights, we study the version of Pareto problem, and give a polynomial-time algorithm to generate all Pareto optimal points and a Pareto optimal schedule corresponding to each Pareto optimal point. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-6905 1573-2886 |
| DOI: | 10.1007/s10878-020-00626-9 |