Single machine batch scheduling with two non-disjoint agents and splitable jobs

We investigate the scheduling problem on a single bounded parallel-batch machine where jobs belong to two non-disjoint agents (called agent A and agent B) and are of equal length but different size. Each job’s size can be arbitrarily split into two parts and processed in the consecutive batches. It...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial optimization Vol. 40; no. 3; pp. 774 - 795
Main Authors: Geng, Zhichao, Liu, Jiayu
Format: Journal Article
Language:English
Published: New York Springer US 01.10.2020
Springer Nature B.V
Subjects:
ISSN:1382-6905, 1573-2886
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We investigate the scheduling problem on a single bounded parallel-batch machine where jobs belong to two non-disjoint agents (called agent A and agent B) and are of equal length but different size. Each job’s size can be arbitrarily split into two parts and processed in the consecutive batches. It is permitted to process the jobs from different agents in a common batch. We show that it is unary NP-hard for the problem of minimizing the total weighted completion time of the jobs of agent A subject to the maximum cost of the jobs of agent B being upper bounded by a given threshold. For the case of the jobs of agent A having identical weights, we study the version of Pareto problem, and give a polynomial-time algorithm to generate all Pareto optimal points and a Pareto optimal schedule corresponding to each Pareto optimal point.
AbstractList We investigate the scheduling problem on a single bounded parallel-batch machine where jobs belong to two non-disjoint agents (called agent A and agent B) and are of equal length but different size. Each job’s size can be arbitrarily split into two parts and processed in the consecutive batches. It is permitted to process the jobs from different agents in a common batch. We show that it is unary NP-hard for the problem of minimizing the total weighted completion time of the jobs of agent A subject to the maximum cost of the jobs of agent B being upper bounded by a given threshold. For the case of the jobs of agent A having identical weights, we study the version of Pareto problem, and give a polynomial-time algorithm to generate all Pareto optimal points and a Pareto optimal schedule corresponding to each Pareto optimal point.
Author Geng, Zhichao
Liu, Jiayu
Author_xml – sequence: 1
  givenname: Zhichao
  orcidid: 0000-0002-1443-9554
  surname: Geng
  fullname: Geng, Zhichao
  email: zcgeng@zzu.edu.cn
  organization: School of Mathematics and Statistics, Zhengzhou University
– sequence: 2
  givenname: Jiayu
  surname: Liu
  fullname: Liu, Jiayu
  organization: Henan College of Transportation
BookMark eNp9kEtLAzEUhYNUsK3-AVcB19GbZB6ZpRRfUOhCXYfMTNLJME3qJKX4742OILjo6l645zvnchZo5rzTCF1TuKUA5V2gIEpBgAEBKFhBqjM0p3nJCROimKWdC0aKCvILtAihB4C0Z3O0ebVuO2i8U01nnca1ik2HQ9Pp9jCkEz7a2OF49DglktaG3lsXsdpqFwNWrsVhP9io6uTR-zpconOjhqCvfucSvT8-vK2eyXrz9LK6X5OG0yoS3YAAzhUz2pStqfPCMMibtgJT6syIQmvRihoqqitWAFdUlOmW80xnrRGcL9HN5Lsf_cdBhyh7fxhdipQsy4GVohJFUolJ1Yw-hFEb2aRfo_UujsoOkoL8rk9O9clUn_ypT1YJZf_Q_Wh3avw8DfEJCknstnr8--oE9QWi7IS3
CitedBy_id crossref_primary_10_1007_s10100_024_00954_9
crossref_primary_10_1016_j_cam_2024_116380
Cites_doi 10.1023/A:1022231419049
10.1016/j.ejor.2016.10.024
10.1016/j.ipl.2018.10.002
10.1016/j.tcs.2014.12.020
10.1007/978-3-642-41880-8
10.1016/0167-6377(95)00023-D
10.1287/mnsc.32.4.464
10.1016/j.ipl.2014.06.016
10.1287/mnsc.19.5.544
10.1016/0167-6377(85)90011-2
10.1007/s10951-019-00623-9
10.1002/nav.4
10.1006/jagm.1996.0051
10.1287/opre.40.4.764
10.1287/opre.1030.0092
10.1016/j.ejor.2004.07.011
10.1016/j.cor.2016.10.004
10.1007/s10951-011-0253-x
10.1016/j.ipl.2012.06.020
10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s10878-020-00626-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 795
ExternalDocumentID 10_1007_s10878_020_00626_9
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11671368; 11771406
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c319t-ec08033a2fef7dfb56f205cd90f7e4f86ee8d8b091e92603a18790f534e4df833
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549219700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Thu Sep 18 00:00:10 EDT 2025
Tue Nov 18 22:24:11 EST 2025
Sat Nov 29 04:54:34 EST 2025
Fri Feb 21 02:33:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Splitable jobs
Polynomial-time algorithm
Parallel-batch
Pareto optimal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ec08033a2fef7dfb56f205cd90f7e4f86ee8d8b091e92603a18790f534e4df833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1443-9554
PQID 2450278986
PQPubID 2043856
PageCount 22
ParticipantIDs proquest_journals_2450278986
crossref_citationtrail_10_1007_s10878_020_00626_9
crossref_primary_10_1007_s10878_020_00626_9
springer_journals_10_1007_s10878_020_00626_9
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References YangDHouYKuoWA note on a single-machine lot scheduling problem with indivisible ordersCompu Oper Res2017793438359581410.1016/j.cor.2016.10.004
LiSYuanJUnbounded parallel-batching scheduling with two competitive agentsJ Sched201215629640297165610.1007/s10951-011-0253-x
AgnetisAMirchandaniPBPacciarelliDPacificiAScheduling problems with two competing agentsOper Res200452229242206639810.1287/opre.1030.0092
HoogeveenJAVan de VeldeSLMinimizing total completion time and maximum cost simultaneously is solvable in polynomial timeOper Res Lett199517205208135707610.1016/0167-6377(95)00023-D
HouYYangDKuoWLot scheduling on a single machineInf Process Lett2014114718722324718510.1016/j.ipl.2014.06.016
LawlerELOptimal sequencing of a single machine subject to precedence constraintsManag Sci19731954454610.1287/mnsc.19.5.544
GengZYuanJPareto optimization scheduling of family jobs on a p-batch machine to minimize makespan and maximum latenessTheor Comput20155702229330294610.1016/j.tcs.2014.12.020
SantosCMagazineMBatching in single operation manufacturing systemsOper Res Lett198549910310.1016/0167-6377(85)90011-2
ZhangGCaiXLeeCWongCMinimizing makespan on a single batch processing machine with nonidentical job sizesNav Res Log200148226240181765110.1002/nav.4
WangJFanGZhangYZhangCLeungJYTTwo-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizesEur J Oper Res2017258478490358235810.1016/j.ejor.2016.10.024
WangJFanGLinZMixed batch scheduling on identical machinesJ Sched201910.1007/s10951-019-00623-9
ZhangELiuMZhengFXuYSingle machine lot scheduling to minimize the total weighted (discounted) completion timeInf Process Lett20191424651387296010.1016/j.ipl.2018.10.002
BakerKRSmithJCA multiple-criterion model for machine schedulingJ Sched20036716199998710.1023/A:1022231419049
GareyMJohnsonDComputers and Intractability: a guide to the theory of NP-completeness1979New YorkW. H. Freeman0411.68039
BruckerPGladkyAHoogeveenHKovalyovMYPottsCNTautenhahnTScheduling a batching machineJ Sched199813154164226110.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R
LeeCUzsoyRMartin-VegaLAEfficient algorithms for scheduling semiconductor burn-in operationsOper Res199240764775117980210.1287/opre.40.4.764
HoogeveenHMulticriteria schedulingEur J Oper Res2005167592623215706110.1016/j.ejor.2004.07.011
LawlerELA pseudopolynomial algorithm for sequencing jobs to minimize total tardniessAnn Discrete Math19771313420353.68071
MorBMosheiovGBatch scheduling of identical jobs on parallel identical machinesInf Process Lett2012112762766295520910.1016/j.ipl.2012.06.020
NelsonRTSarinRKDanielsRLScheduling with multiple performance measures: the one-machine caseManag Sci19863246447910.1287/mnsc.32.4.464
AgnetisABillautJCGawiejnowiczSPacciarelliDSoukhalAMultiagent scheduling: models and algorithms2014BerlinSpringer10.1007/978-3-642-41880-8
HoogeveenJASingle-machine scheduling to minimize a function of two or three maximum cost criteriaJ Algorithms199621415433140568710.1006/jagm.1996.0051
KR Baker (626_CR4) 2003; 6
JA Hoogeveen (626_CR9) 1995; 17
S Li (626_CR14) 2012; 15
A Agnetis (626_CR2) 2004; 52
M Garey (626_CR5) 1979
Y Hou (626_CR10) 2014; 114
C Lee (626_CR11) 1992; 40
EL Lawler (626_CR12) 1973; 19
B Mor (626_CR15) 2012; 112
P Brucker (626_CR3) 1998; 1
RT Nelson (626_CR17) 1986; 32
J Wang (626_CR19) 2019
Z Geng (626_CR6) 2015; 570
EL Lawler (626_CR13) 1977; 1
JA Hoogeveen (626_CR7) 1996; 21
J Wang (626_CR18) 2017; 258
G Zhang (626_CR22) 2001; 48
A Agnetis (626_CR1) 2014
C Santos (626_CR16) 1985; 4
E Zhang (626_CR21) 2019; 142
H Hoogeveen (626_CR8) 2005; 167
D Yang (626_CR20) 2017; 79
References_xml – reference: WangJFanGZhangYZhangCLeungJYTTwo-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizesEur J Oper Res2017258478490358235810.1016/j.ejor.2016.10.024
– reference: LiSYuanJUnbounded parallel-batching scheduling with two competitive agentsJ Sched201215629640297165610.1007/s10951-011-0253-x
– reference: YangDHouYKuoWA note on a single-machine lot scheduling problem with indivisible ordersCompu Oper Res2017793438359581410.1016/j.cor.2016.10.004
– reference: BruckerPGladkyAHoogeveenHKovalyovMYPottsCNTautenhahnTScheduling a batching machineJ Sched199813154164226110.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R
– reference: LawlerELOptimal sequencing of a single machine subject to precedence constraintsManag Sci19731954454610.1287/mnsc.19.5.544
– reference: SantosCMagazineMBatching in single operation manufacturing systemsOper Res Lett198549910310.1016/0167-6377(85)90011-2
– reference: AgnetisABillautJCGawiejnowiczSPacciarelliDSoukhalAMultiagent scheduling: models and algorithms2014BerlinSpringer10.1007/978-3-642-41880-8
– reference: HoogeveenJASingle-machine scheduling to minimize a function of two or three maximum cost criteriaJ Algorithms199621415433140568710.1006/jagm.1996.0051
– reference: LeeCUzsoyRMartin-VegaLAEfficient algorithms for scheduling semiconductor burn-in operationsOper Res199240764775117980210.1287/opre.40.4.764
– reference: BakerKRSmithJCA multiple-criterion model for machine schedulingJ Sched20036716199998710.1023/A:1022231419049
– reference: LawlerELA pseudopolynomial algorithm for sequencing jobs to minimize total tardniessAnn Discrete Math19771313420353.68071
– reference: AgnetisAMirchandaniPBPacciarelliDPacificiAScheduling problems with two competing agentsOper Res200452229242206639810.1287/opre.1030.0092
– reference: ZhangGCaiXLeeCWongCMinimizing makespan on a single batch processing machine with nonidentical job sizesNav Res Log200148226240181765110.1002/nav.4
– reference: GengZYuanJPareto optimization scheduling of family jobs on a p-batch machine to minimize makespan and maximum latenessTheor Comput20155702229330294610.1016/j.tcs.2014.12.020
– reference: MorBMosheiovGBatch scheduling of identical jobs on parallel identical machinesInf Process Lett2012112762766295520910.1016/j.ipl.2012.06.020
– reference: HoogeveenJAVan de VeldeSLMinimizing total completion time and maximum cost simultaneously is solvable in polynomial timeOper Res Lett199517205208135707610.1016/0167-6377(95)00023-D
– reference: WangJFanGLinZMixed batch scheduling on identical machinesJ Sched201910.1007/s10951-019-00623-9
– reference: NelsonRTSarinRKDanielsRLScheduling with multiple performance measures: the one-machine caseManag Sci19863246447910.1287/mnsc.32.4.464
– reference: HouYYangDKuoWLot scheduling on a single machineInf Process Lett2014114718722324718510.1016/j.ipl.2014.06.016
– reference: HoogeveenHMulticriteria schedulingEur J Oper Res2005167592623215706110.1016/j.ejor.2004.07.011
– reference: ZhangELiuMZhengFXuYSingle machine lot scheduling to minimize the total weighted (discounted) completion timeInf Process Lett20191424651387296010.1016/j.ipl.2018.10.002
– reference: GareyMJohnsonDComputers and Intractability: a guide to the theory of NP-completeness1979New YorkW. H. Freeman0411.68039
– volume: 6
  start-page: 7
  year: 2003
  ident: 626_CR4
  publication-title: J Sched
  doi: 10.1023/A:1022231419049
– volume: 258
  start-page: 478
  year: 2017
  ident: 626_CR18
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2016.10.024
– volume: 142
  start-page: 46
  year: 2019
  ident: 626_CR21
  publication-title: Inf Process Lett
  doi: 10.1016/j.ipl.2018.10.002
– volume: 570
  start-page: 22
  year: 2015
  ident: 626_CR6
  publication-title: Theor Comput
  doi: 10.1016/j.tcs.2014.12.020
– volume-title: Multiagent scheduling: models and algorithms
  year: 2014
  ident: 626_CR1
  doi: 10.1007/978-3-642-41880-8
– volume: 17
  start-page: 205
  year: 1995
  ident: 626_CR9
  publication-title: Oper Res Lett
  doi: 10.1016/0167-6377(95)00023-D
– volume: 32
  start-page: 464
  year: 1986
  ident: 626_CR17
  publication-title: Manag Sci
  doi: 10.1287/mnsc.32.4.464
– volume: 1
  start-page: 31
  year: 1977
  ident: 626_CR13
  publication-title: Ann Discrete Math
– volume: 114
  start-page: 718
  year: 2014
  ident: 626_CR10
  publication-title: Inf Process Lett
  doi: 10.1016/j.ipl.2014.06.016
– volume: 19
  start-page: 544
  year: 1973
  ident: 626_CR12
  publication-title: Manag Sci
  doi: 10.1287/mnsc.19.5.544
– volume: 4
  start-page: 99
  year: 1985
  ident: 626_CR16
  publication-title: Oper Res Lett
  doi: 10.1016/0167-6377(85)90011-2
– year: 2019
  ident: 626_CR19
  publication-title: J Sched
  doi: 10.1007/s10951-019-00623-9
– volume: 48
  start-page: 226
  year: 2001
  ident: 626_CR22
  publication-title: Nav Res Log
  doi: 10.1002/nav.4
– volume-title: Computers and Intractability: a guide to the theory of NP-completeness
  year: 1979
  ident: 626_CR5
– volume: 21
  start-page: 415
  year: 1996
  ident: 626_CR7
  publication-title: J Algorithms
  doi: 10.1006/jagm.1996.0051
– volume: 40
  start-page: 764
  year: 1992
  ident: 626_CR11
  publication-title: Oper Res
  doi: 10.1287/opre.40.4.764
– volume: 52
  start-page: 229
  year: 2004
  ident: 626_CR2
  publication-title: Oper Res
  doi: 10.1287/opre.1030.0092
– volume: 167
  start-page: 592
  year: 2005
  ident: 626_CR8
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2004.07.011
– volume: 79
  start-page: 34
  year: 2017
  ident: 626_CR20
  publication-title: Compu Oper Res
  doi: 10.1016/j.cor.2016.10.004
– volume: 15
  start-page: 629
  year: 2012
  ident: 626_CR14
  publication-title: J Sched
  doi: 10.1007/s10951-011-0253-x
– volume: 112
  start-page: 762
  year: 2012
  ident: 626_CR15
  publication-title: Inf Process Lett
  doi: 10.1016/j.ipl.2012.06.020
– volume: 1
  start-page: 31
  year: 1998
  ident: 626_CR3
  publication-title: J Sched
  doi: 10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R
SSID ssj0009054
Score 2.2277982
Snippet We investigate the scheduling problem on a single bounded parallel-batch machine where jobs belong to two non-disjoint agents (called agent A and agent B) and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 774
SubjectTerms Algorithms
Combinatorics
Completion time
Convex and Discrete Geometry
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Pareto optimum
Polynomials
Schedules
Scheduling
Theory of Computation
Title Single machine batch scheduling with two non-disjoint agents and splitable jobs
URI https://link.springer.com/article/10.1007/s10878-020-00626-9
https://www.proquest.com/docview/2450278986
Volume 40
WOSCitedRecordID wos000549219700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbRErjOLFHhKhYKIgC6hbFL9GqJFUT4O9zzqMpCJBgTOJY1tn38t19h9Cp6UpiQI87sTLU8YUKndiAs8JJIDhzA0ll2Wwi7PfZcMjvqqKwrM52r0OShaReKHZjFg3Ws5XQYIY7fBmtgLpjlh3vB08N1K5Ly1a2YDuC70erUpnv5_isjhob80tYtNA2vc3_rXMLbVTWJb4oj8M2WtLJDlpfwByEp5s5UGu2i24H8HKi8UuRU6mxAMn8jMHjBQ1kC9WxvafF-XuKkzRx1Cgbp6Mkx7EtyMpwnCicTS3Mt4A5xqnI9tBj7-rh8tqpeiw4Epgvd7RFGick9ow2oTKCBsZzqVTcNaH2DQu0ZooJsCo0B9eHxLY7uWso8bWvDCNkH7VgAfoAYdENmRKCaMICkAxEGEldJTxt_K4bh7KNujWpI1kBkNs-GJOogU62pIuAdFFBuoi30dn8n2kJv_Hr6E69g1HFilnk-dRGVzkL2ui83rHm88-zHf5t-BFa88DgsZkFHumgVj571cdoVb7lo2x2UhzRDwQk33A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIAEH3ojBgBy4QaWuadr0iBDTEDAQL-1WNS8xBN20Fvj7OF27AQIkOLZNo8hx_IjtzwD7pimpQT3uJMowxxcqdBKDzkpEAxFxN5BMjppNhJ0O73ajq7IoLKuy3auQZCGpPxS7cYsG69lKaDTDnWgaZnzUWDaR7_rmfgK167JRK1u0HdH3Y2WpzPdzfFZHExvzS1i00Datpf-tcxkWS-uSHI3YYQWmdLoKCx8wB_HpYgzUmq3B5Q2-fNLkucip1ESgZH4g6PGiBrKF6sTe05L8rU_SfuqoXvbY76U5SWxBVkaSVJFsYGG-Bc7x2BfZOty1Tm6P207ZY8GRePhyR1ukcUoTz2gTKiNYYDyXSRW5JtS-4YHWXHGBVoWO0PWhie1O7hpGfe0rwyndgBouQG8CEc2QKyGopjxAyUCFkcxVwtPGb7pJKOvQrEgdyxKA3PbBeIon0MmWdDGSLi5IF0d1OBj_MxjBb_w6ulHtYFwexSz2fGajqxEP6nBY7djk88-zbf1t-B7MtW8vzuPz087ZNsx7lgGKpL8G1PLhi96BWfma97LhbsGu74SM4kg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CcGBN2IwIAduUK1rmjY9ImACAQNpgHarmpcYgm6iBf4-TtuxgQAJcWybRpGdxHac7zPAnmlKatCOO4kyzPGFCp3EYLAS0UBE3A0kk2WxibDd5t1udD2G4i9uuw9TkiWmwbI0pXljoExjDPjGLTOsZ1HR6JI70SRM-7ZokI3XO3cj2l2XlWVt0Y_EOJBVsJnv-_hsmkb-5pcUaWF5Wov_H_MSLFReJzksp8kyTOh0BebHuAjx6fKDwDVbhasOvnzU5Km4a6mJwB37nmAkjJbJAtiJPb8l-VufpP3UUb3sod9Lc5JYoFZGklSRbGDpvwX28dAX2Rrctk5ujk6dqvaCI3FR5o62DOSUJp7RJlRGsMB4LpMqck2ofcMDrbniAr0NHWFIRBNbtdw1jPraV4ZTug5TOAC9AUQ0Q66EoJryAHcMKoxkrhKeNqixJJQ1aA7FHsuKmNzWx3iMR5TKVnQxii4uRBdHNdj_-GdQ0nL82ro-1GZcLdEs9nxms64RD2pwMNTe6PPPvW3-rfkuzF4ft-KLs_b5Fsx5Vv_FXcA6TOXPL3obZuRr3sued4qZ-w476Oss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+machine+batch+scheduling+with+two+non-disjoint+agents+and+splitable+jobs&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Geng%2C+Zhichao&rft.au=Liu%2C+Jiayu&rft.date=2020-10-01&rft.pub=Springer+US&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=40&rft.issue=3&rft.spage=774&rft.epage=795&rft_id=info:doi/10.1007%2Fs10878-020-00626-9&rft.externalDocID=10_1007_s10878_020_00626_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon