Single machine batch scheduling with two non-disjoint agents and splitable jobs
We investigate the scheduling problem on a single bounded parallel-batch machine where jobs belong to two non-disjoint agents (called agent A and agent B) and are of equal length but different size. Each job’s size can be arbitrarily split into two parts and processed in the consecutive batches. It...
Saved in:
| Published in: | Journal of combinatorial optimization Vol. 40; no. 3; pp. 774 - 795 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.10.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1382-6905, 1573-2886 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We investigate the scheduling problem on a single bounded parallel-batch machine where jobs belong to two non-disjoint agents (called agent A and agent B) and are of equal length but different size. Each job’s size can be arbitrarily split into two parts and processed in the consecutive batches. It is permitted to process the jobs from different agents in a common batch. We show that it is unary NP-hard for the problem of minimizing the total weighted completion time of the jobs of agent A subject to the maximum cost of the jobs of agent B being upper bounded by a given threshold. For the case of the jobs of agent A having identical weights, we study the version of Pareto problem, and give a polynomial-time algorithm to generate all Pareto optimal points and a Pareto optimal schedule corresponding to each Pareto optimal point. |
|---|---|
| AbstractList | We investigate the scheduling problem on a single bounded parallel-batch machine where jobs belong to two non-disjoint agents (called agent A and agent B) and are of equal length but different size. Each job’s size can be arbitrarily split into two parts and processed in the consecutive batches. It is permitted to process the jobs from different agents in a common batch. We show that it is unary NP-hard for the problem of minimizing the total weighted completion time of the jobs of agent A subject to the maximum cost of the jobs of agent B being upper bounded by a given threshold. For the case of the jobs of agent A having identical weights, we study the version of Pareto problem, and give a polynomial-time algorithm to generate all Pareto optimal points and a Pareto optimal schedule corresponding to each Pareto optimal point. |
| Author | Geng, Zhichao Liu, Jiayu |
| Author_xml | – sequence: 1 givenname: Zhichao orcidid: 0000-0002-1443-9554 surname: Geng fullname: Geng, Zhichao email: zcgeng@zzu.edu.cn organization: School of Mathematics and Statistics, Zhengzhou University – sequence: 2 givenname: Jiayu surname: Liu fullname: Liu, Jiayu organization: Henan College of Transportation |
| BookMark | eNp9kEtLAzEUhYNUsK3-AVcB19GbZB6ZpRRfUOhCXYfMTNLJME3qJKX4742OILjo6l645zvnchZo5rzTCF1TuKUA5V2gIEpBgAEBKFhBqjM0p3nJCROimKWdC0aKCvILtAihB4C0Z3O0ebVuO2i8U01nnca1ik2HQ9Pp9jCkEz7a2OF49DglktaG3lsXsdpqFwNWrsVhP9io6uTR-zpconOjhqCvfucSvT8-vK2eyXrz9LK6X5OG0yoS3YAAzhUz2pStqfPCMMibtgJT6syIQmvRihoqqitWAFdUlOmW80xnrRGcL9HN5Lsf_cdBhyh7fxhdipQsy4GVohJFUolJ1Yw-hFEb2aRfo_UujsoOkoL8rk9O9clUn_ypT1YJZf_Q_Wh3avw8DfEJCknstnr8--oE9QWi7IS3 |
| CitedBy_id | crossref_primary_10_1007_s10100_024_00954_9 crossref_primary_10_1016_j_cam_2024_116380 |
| Cites_doi | 10.1023/A:1022231419049 10.1016/j.ejor.2016.10.024 10.1016/j.ipl.2018.10.002 10.1016/j.tcs.2014.12.020 10.1007/978-3-642-41880-8 10.1016/0167-6377(95)00023-D 10.1287/mnsc.32.4.464 10.1016/j.ipl.2014.06.016 10.1287/mnsc.19.5.544 10.1016/0167-6377(85)90011-2 10.1007/s10951-019-00623-9 10.1002/nav.4 10.1006/jagm.1996.0051 10.1287/opre.40.4.764 10.1287/opre.1030.0092 10.1016/j.ejor.2004.07.011 10.1016/j.cor.2016.10.004 10.1007/s10951-011-0253-x 10.1016/j.ipl.2012.06.020 10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10878-020-00626-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2886 |
| EndPage | 795 |
| ExternalDocumentID | 10_1007_s10878_020_00626_9 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11671368; 11771406 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c319t-ec08033a2fef7dfb56f205cd90f7e4f86ee8d8b091e92603a18790f534e4df833 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549219700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-6905 |
| IngestDate | Thu Sep 18 00:00:10 EDT 2025 Tue Nov 18 22:24:11 EST 2025 Sat Nov 29 04:54:34 EST 2025 Fri Feb 21 02:33:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Splitable jobs Polynomial-time algorithm Parallel-batch Pareto optimal |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ec08033a2fef7dfb56f205cd90f7e4f86ee8d8b091e92603a18790f534e4df833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1443-9554 |
| PQID | 2450278986 |
| PQPubID | 2043856 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2450278986 crossref_citationtrail_10_1007_s10878_020_00626_9 crossref_primary_10_1007_s10878_020_00626_9 springer_journals_10_1007_s10878_020_00626_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Journal of combinatorial optimization |
| PublicationTitleAbbrev | J Comb Optim |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | YangDHouYKuoWA note on a single-machine lot scheduling problem with indivisible ordersCompu Oper Res2017793438359581410.1016/j.cor.2016.10.004 LiSYuanJUnbounded parallel-batching scheduling with two competitive agentsJ Sched201215629640297165610.1007/s10951-011-0253-x AgnetisAMirchandaniPBPacciarelliDPacificiAScheduling problems with two competing agentsOper Res200452229242206639810.1287/opre.1030.0092 HoogeveenJAVan de VeldeSLMinimizing total completion time and maximum cost simultaneously is solvable in polynomial timeOper Res Lett199517205208135707610.1016/0167-6377(95)00023-D HouYYangDKuoWLot scheduling on a single machineInf Process Lett2014114718722324718510.1016/j.ipl.2014.06.016 LawlerELOptimal sequencing of a single machine subject to precedence constraintsManag Sci19731954454610.1287/mnsc.19.5.544 GengZYuanJPareto optimization scheduling of family jobs on a p-batch machine to minimize makespan and maximum latenessTheor Comput20155702229330294610.1016/j.tcs.2014.12.020 SantosCMagazineMBatching in single operation manufacturing systemsOper Res Lett198549910310.1016/0167-6377(85)90011-2 ZhangGCaiXLeeCWongCMinimizing makespan on a single batch processing machine with nonidentical job sizesNav Res Log200148226240181765110.1002/nav.4 WangJFanGZhangYZhangCLeungJYTTwo-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizesEur J Oper Res2017258478490358235810.1016/j.ejor.2016.10.024 WangJFanGLinZMixed batch scheduling on identical machinesJ Sched201910.1007/s10951-019-00623-9 ZhangELiuMZhengFXuYSingle machine lot scheduling to minimize the total weighted (discounted) completion timeInf Process Lett20191424651387296010.1016/j.ipl.2018.10.002 BakerKRSmithJCA multiple-criterion model for machine schedulingJ Sched20036716199998710.1023/A:1022231419049 GareyMJohnsonDComputers and Intractability: a guide to the theory of NP-completeness1979New YorkW. H. Freeman0411.68039 BruckerPGladkyAHoogeveenHKovalyovMYPottsCNTautenhahnTScheduling a batching machineJ Sched199813154164226110.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R LeeCUzsoyRMartin-VegaLAEfficient algorithms for scheduling semiconductor burn-in operationsOper Res199240764775117980210.1287/opre.40.4.764 HoogeveenHMulticriteria schedulingEur J Oper Res2005167592623215706110.1016/j.ejor.2004.07.011 LawlerELA pseudopolynomial algorithm for sequencing jobs to minimize total tardniessAnn Discrete Math19771313420353.68071 MorBMosheiovGBatch scheduling of identical jobs on parallel identical machinesInf Process Lett2012112762766295520910.1016/j.ipl.2012.06.020 NelsonRTSarinRKDanielsRLScheduling with multiple performance measures: the one-machine caseManag Sci19863246447910.1287/mnsc.32.4.464 AgnetisABillautJCGawiejnowiczSPacciarelliDSoukhalAMultiagent scheduling: models and algorithms2014BerlinSpringer10.1007/978-3-642-41880-8 HoogeveenJASingle-machine scheduling to minimize a function of two or three maximum cost criteriaJ Algorithms199621415433140568710.1006/jagm.1996.0051 KR Baker (626_CR4) 2003; 6 JA Hoogeveen (626_CR9) 1995; 17 S Li (626_CR14) 2012; 15 A Agnetis (626_CR2) 2004; 52 M Garey (626_CR5) 1979 Y Hou (626_CR10) 2014; 114 C Lee (626_CR11) 1992; 40 EL Lawler (626_CR12) 1973; 19 B Mor (626_CR15) 2012; 112 P Brucker (626_CR3) 1998; 1 RT Nelson (626_CR17) 1986; 32 J Wang (626_CR19) 2019 Z Geng (626_CR6) 2015; 570 EL Lawler (626_CR13) 1977; 1 JA Hoogeveen (626_CR7) 1996; 21 J Wang (626_CR18) 2017; 258 G Zhang (626_CR22) 2001; 48 A Agnetis (626_CR1) 2014 C Santos (626_CR16) 1985; 4 E Zhang (626_CR21) 2019; 142 H Hoogeveen (626_CR8) 2005; 167 D Yang (626_CR20) 2017; 79 |
| References_xml | – reference: WangJFanGZhangYZhangCLeungJYTTwo-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizesEur J Oper Res2017258478490358235810.1016/j.ejor.2016.10.024 – reference: LiSYuanJUnbounded parallel-batching scheduling with two competitive agentsJ Sched201215629640297165610.1007/s10951-011-0253-x – reference: YangDHouYKuoWA note on a single-machine lot scheduling problem with indivisible ordersCompu Oper Res2017793438359581410.1016/j.cor.2016.10.004 – reference: BruckerPGladkyAHoogeveenHKovalyovMYPottsCNTautenhahnTScheduling a batching machineJ Sched199813154164226110.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R – reference: LawlerELOptimal sequencing of a single machine subject to precedence constraintsManag Sci19731954454610.1287/mnsc.19.5.544 – reference: SantosCMagazineMBatching in single operation manufacturing systemsOper Res Lett198549910310.1016/0167-6377(85)90011-2 – reference: AgnetisABillautJCGawiejnowiczSPacciarelliDSoukhalAMultiagent scheduling: models and algorithms2014BerlinSpringer10.1007/978-3-642-41880-8 – reference: HoogeveenJASingle-machine scheduling to minimize a function of two or three maximum cost criteriaJ Algorithms199621415433140568710.1006/jagm.1996.0051 – reference: LeeCUzsoyRMartin-VegaLAEfficient algorithms for scheduling semiconductor burn-in operationsOper Res199240764775117980210.1287/opre.40.4.764 – reference: BakerKRSmithJCA multiple-criterion model for machine schedulingJ Sched20036716199998710.1023/A:1022231419049 – reference: LawlerELA pseudopolynomial algorithm for sequencing jobs to minimize total tardniessAnn Discrete Math19771313420353.68071 – reference: AgnetisAMirchandaniPBPacciarelliDPacificiAScheduling problems with two competing agentsOper Res200452229242206639810.1287/opre.1030.0092 – reference: ZhangGCaiXLeeCWongCMinimizing makespan on a single batch processing machine with nonidentical job sizesNav Res Log200148226240181765110.1002/nav.4 – reference: GengZYuanJPareto optimization scheduling of family jobs on a p-batch machine to minimize makespan and maximum latenessTheor Comput20155702229330294610.1016/j.tcs.2014.12.020 – reference: MorBMosheiovGBatch scheduling of identical jobs on parallel identical machinesInf Process Lett2012112762766295520910.1016/j.ipl.2012.06.020 – reference: HoogeveenJAVan de VeldeSLMinimizing total completion time and maximum cost simultaneously is solvable in polynomial timeOper Res Lett199517205208135707610.1016/0167-6377(95)00023-D – reference: WangJFanGLinZMixed batch scheduling on identical machinesJ Sched201910.1007/s10951-019-00623-9 – reference: NelsonRTSarinRKDanielsRLScheduling with multiple performance measures: the one-machine caseManag Sci19863246447910.1287/mnsc.32.4.464 – reference: HouYYangDKuoWLot scheduling on a single machineInf Process Lett2014114718722324718510.1016/j.ipl.2014.06.016 – reference: HoogeveenHMulticriteria schedulingEur J Oper Res2005167592623215706110.1016/j.ejor.2004.07.011 – reference: ZhangELiuMZhengFXuYSingle machine lot scheduling to minimize the total weighted (discounted) completion timeInf Process Lett20191424651387296010.1016/j.ipl.2018.10.002 – reference: GareyMJohnsonDComputers and Intractability: a guide to the theory of NP-completeness1979New YorkW. H. Freeman0411.68039 – volume: 6 start-page: 7 year: 2003 ident: 626_CR4 publication-title: J Sched doi: 10.1023/A:1022231419049 – volume: 258 start-page: 478 year: 2017 ident: 626_CR18 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2016.10.024 – volume: 142 start-page: 46 year: 2019 ident: 626_CR21 publication-title: Inf Process Lett doi: 10.1016/j.ipl.2018.10.002 – volume: 570 start-page: 22 year: 2015 ident: 626_CR6 publication-title: Theor Comput doi: 10.1016/j.tcs.2014.12.020 – volume-title: Multiagent scheduling: models and algorithms year: 2014 ident: 626_CR1 doi: 10.1007/978-3-642-41880-8 – volume: 17 start-page: 205 year: 1995 ident: 626_CR9 publication-title: Oper Res Lett doi: 10.1016/0167-6377(95)00023-D – volume: 32 start-page: 464 year: 1986 ident: 626_CR17 publication-title: Manag Sci doi: 10.1287/mnsc.32.4.464 – volume: 1 start-page: 31 year: 1977 ident: 626_CR13 publication-title: Ann Discrete Math – volume: 114 start-page: 718 year: 2014 ident: 626_CR10 publication-title: Inf Process Lett doi: 10.1016/j.ipl.2014.06.016 – volume: 19 start-page: 544 year: 1973 ident: 626_CR12 publication-title: Manag Sci doi: 10.1287/mnsc.19.5.544 – volume: 4 start-page: 99 year: 1985 ident: 626_CR16 publication-title: Oper Res Lett doi: 10.1016/0167-6377(85)90011-2 – year: 2019 ident: 626_CR19 publication-title: J Sched doi: 10.1007/s10951-019-00623-9 – volume: 48 start-page: 226 year: 2001 ident: 626_CR22 publication-title: Nav Res Log doi: 10.1002/nav.4 – volume-title: Computers and Intractability: a guide to the theory of NP-completeness year: 1979 ident: 626_CR5 – volume: 21 start-page: 415 year: 1996 ident: 626_CR7 publication-title: J Algorithms doi: 10.1006/jagm.1996.0051 – volume: 40 start-page: 764 year: 1992 ident: 626_CR11 publication-title: Oper Res doi: 10.1287/opre.40.4.764 – volume: 52 start-page: 229 year: 2004 ident: 626_CR2 publication-title: Oper Res doi: 10.1287/opre.1030.0092 – volume: 167 start-page: 592 year: 2005 ident: 626_CR8 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2004.07.011 – volume: 79 start-page: 34 year: 2017 ident: 626_CR20 publication-title: Compu Oper Res doi: 10.1016/j.cor.2016.10.004 – volume: 15 start-page: 629 year: 2012 ident: 626_CR14 publication-title: J Sched doi: 10.1007/s10951-011-0253-x – volume: 112 start-page: 762 year: 2012 ident: 626_CR15 publication-title: Inf Process Lett doi: 10.1016/j.ipl.2012.06.020 – volume: 1 start-page: 31 year: 1998 ident: 626_CR3 publication-title: J Sched doi: 10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R |
| SSID | ssj0009054 |
| Score | 2.2277982 |
| Snippet | We investigate the scheduling problem on a single bounded parallel-batch machine where jobs belong to two non-disjoint agents (called agent A and agent B) and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 774 |
| SubjectTerms | Algorithms Combinatorics Completion time Convex and Discrete Geometry Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Pareto optimum Polynomials Schedules Scheduling Theory of Computation |
| Title | Single machine batch scheduling with two non-disjoint agents and splitable jobs |
| URI | https://link.springer.com/article/10.1007/s10878-020-00626-9 https://www.proquest.com/docview/2450278986 |
| Volume | 40 |
| WOSCitedRecordID | wos000549219700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2886 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWMrDTuwRISoWCqKAukWxY4tWJamaAH-fc5o0BQESjEkcyzo_7jvf3XcIndrIGTjkKImlcAhlkhGhQ5eA5aATE4LSiFVZbCLs9fhgIO6qpLC8jnavXZLlSb2Q7MYtG6xnM6EBhhOxjFZA3XG7He_7Tw3VrsNmpWwBO4Ltx6pUme_7-KyOGoz5xS1aapvu5v_GuYU2KnSJL2bLYRst6XQHrS9wDsLTzZyoNd9Ft314Odb4pYyp1FjCyfyMweIFDWQT1bG9p8XFe4bTLCXJMB9lw7TAsU3IynGcJjifWJpvCX2MMpnvocfu1cPlNalqLBAFm68g2jKN-37sGW3CxEgWGM9hKhGOCTU1PNCaJ1wCqtACTB8_ttXJHcN8qmliuO_voxYMQB8grAD60kS62qGKCldy48tAy1CxEECFMm3k1qKOVEVAbutgjKOGOtmKLgLRRaXoItFGZ_N_JjP6jV9bd-oZjKqtmEceZda7KnjQRuf1jDWff-7t8G_Nj9CaZye9DPTroFYxfdXHaFW9FcN8elIu0Q_vct7G |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIAEH3ojxzIEbROraZG2OCDENAQPx0m5VkyZi02gRLfD3cbqWAgIkOLZNo8h5-HNsfwbYs5EzeMgxGknhUMYlp0L7LYqWg46Nj0ojUkWxCb_XC_p9cVkmhWVVtHvlkixO6g_JboFlg3VtJjTCcComYYqhxrKBfFfXdzXVrsPHpWwRO6Ltx8tUme_7-KyOaoz5xS1aaJvOwv_GuQjzJbokh-PlsAQTOlmGuQ-cg_h0_k7Umq3AxTW-HGnyUMRUaiLxZL4naPGiBrKJ6sTe05L8NSVJmtB4kA3TQZKTyCZkZSRKYpI9WppviX0MU5mtwm3n-OaoS8saC1Th5suptkzjnhe5Rhs_NpK3jetwFQvH-JqZoK11EAcSUYUWaPp4ka1O7hjuMc1iE3jeGjRwAHodiELoy2LZ0g5TTLRkYDzZ1tJX3EdQoUwTWpWoQ1USkNs6GKOwpk62ogtRdGEhulA0Yf_9n8cx_cavrbeqGQzLrZiFLuPWuyqCdhMOqhmrP__c28bfmu_CTPfm_Cw8O-mdbsKsaxdAEfS3BY386Vlvw7R6yQfZ006xXN8Aabrhqg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IXrwLVar7sGbLk2T3SZ7FLUoahWq0lvIvrCiaTFR_76zaWqrqCAek2yWMPuYb7LzfQOw5zJncJNjNJHCo4xLToUJ6xQjB6NtiE4jUUWxibDVijodcT3G4i-y3YdHkgNOg1NpSvNaX9vaGPEtcsqwvmNFIySnYhKmmSsa5OL19t1Idtfjg7K2iCMxDuQlbeb7Pj67phHe_HJEWnie5uL_v3kJFkrUSQ4H02QZJky6AvNjWoR4dfkh4JqtwlUbbz4a8lTkWhoicce-JxgJo2dyBHbi_t-S_K1H0l5KdTd76HXTnCSOqJWRJNUk6zv5b4l9PPRktga3zZObo1Na1l6gChdlTo1TIA-CxLfGhtpK3rC-x5UWng0Ns1HDmEhHEtGGERgSBYmrWu5ZHjDDtI2CYB2m8APMBhCFkJhpWTceU0zUZWQD2TAyVDxEsKFsBepDs8eqFCZ39TEe45GksjNdjKaLC9PFogL7H-_0B7Icv7auDkczLpdoFvuMu1NXETUqcDAcvdHjn3vb_FvzXZi9Pm7GF2et8y2Y8934F7mAVZjKn1_MNsyo17ybPe8UM_cdEOzqjg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+machine+batch+scheduling+with+two+non-disjoint+agents+and+splitable+jobs&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Geng+Zhichao&rft.au=Liu%2C+Jiayu&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=40&rft.issue=3&rft.spage=774&rft.epage=795&rft_id=info:doi/10.1007%2Fs10878-020-00626-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |