Intuitionistic fuzzy c-means clustering algorithm based on a novel weighted proximity measure and genetic algorithm
In the era of big data, the research on clustering technologies is a popular topic because they can discover the structure of complex data sets with minimal prior knowledge. Among the existing soft clustering technologies, as an extension of fuzzy c-means (FCM) algorithm, the intuitionistic FCM (IFC...
Uloženo v:
| Vydáno v: | International journal of machine learning and cybernetics Ročník 12; číslo 3; s. 859 - 875 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1868-8071, 1868-808X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the era of big data, the research on clustering technologies is a popular topic because they can discover the structure of complex data sets with minimal prior knowledge. Among the existing soft clustering technologies, as an extension of fuzzy c-means (FCM) algorithm, the intuitionistic FCM (IFCM) algorithm has been widely used due to its superiority in reducing the effects of outliers/noise and improving the clustering accuracy. In the existing IFCM algorithm, the measurement of proximity degree between a pair of objects and the determination of parameters are two critical problems, which have considerable effects on the clustering results. Therefore, we propose an improved IFCM clustering technique in this paper. Firstly, a novel weighted proximity measure, which aggregates weighted similarity and correlation measures, is proposed to evaluate not only the closeness degree but also the linear relationship between two objects. Subsequently, genetic algorithms are utilized for identifying the optimal parameters. Lastly, experiments on the proposed IFCM technique are conducted on synthetic and UCI data sets. Comparisons with other approaches in cluster evaluation indexes indicate the effectiveness and superiority of our method. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1868-8071 1868-808X |
| DOI: | 10.1007/s13042-020-01206-3 |