Materials Design Through Batch Bayesian Optimization with Multisource Information Fusion

Integrated computational materials engineering (ICME) calls for the integration of simulation tools and experiments to accelerate the development of materials. ICME approaches tend to be computationally costly, and recently, Bayesian optimization (BO) has been proposed as a way to make ICME more res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) Jg. 72; H. 12; S. 4431 - 4443
Hauptverfasser: Couperthwaite, Richard, Molkeri, Abhilash, Khatamsaz, Danial, Srivastava, Ankit, Allaire, Douglas, Arròyave, Raymundo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2020
Springer Nature B.V
Schlagworte:
ISSN:1047-4838, 1543-1851
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Integrated computational materials engineering (ICME) calls for the integration of simulation tools and experiments to accelerate the development of materials. ICME approaches tend to be computationally costly, and recently, Bayesian optimization (BO) has been proposed as a way to make ICME more resource efficient. Conventional BO, however, is sequential (i.e., one-at-a-time) in nature, which makes it very time-consuming when the evaluation of a materials design choice is costly. While conventional high-throughput approaches enable the synthesis and characterization (or simulation) of materials in a parallel manner, they tend to be “open loop” and are unable to provide recommendations of what to try next once the parallel experiment/simulation has been carried out and analyzed. Here, we address this problem by introducing a batch BO framework that enables the exploration of the material’s design space in a parallel fashion. We augment this approach by incorporating information fusion frameworks capable of integrating multiple information sources. Demonstrating the proposed approach in the computational design of dual-phase steel, we show that batch BO can result in a significant reduction in the time and resources needed to carry out the design task. The proposed approach has wider applicability, well beyond the ICME example used to demonstrate it.
AbstractList Integrated computational materials engineering (ICME) calls for the integration of simulation tools and experiments to accelerate the development of materials. ICME approaches tend to be computationally costly, and recently, Bayesian optimization (BO) has been proposed as a way to make ICME more resource efficient. Conventional BO, however, is sequential (i.e., one-at-a-time) in nature, which makes it very time-consuming when the evaluation of a materials design choice is costly. While conventional high-throughput approaches enable the synthesis and characterization (or simulation) of materials in a parallel manner, they tend to be "open loop" and are unable to provide recommendations of what to try next once the parallel experiment/ simulation has been carried out and analyzed. Here, we address this problem by introducing a batch BO framework that enables the exploration of the material's design space in a parallel fashion. We augment this approach by incorporating information fusion frameworks capable of integrating multiple information sources. Demonstrating the proposed approach in the computational design of dual-phase steel, we show that batch BO can result in a significant reduction in the time and resources needed to carry out the design task. The proposed approach has wider applicability, well beyond the ICME example used to demonstrate it.
Author Khatamsaz, Danial
Arròyave, Raymundo
Couperthwaite, Richard
Allaire, Douglas
Srivastava, Ankit
Molkeri, Abhilash
Author_xml – sequence: 1
  givenname: Richard
  orcidid: 0000-0003-4039-5775
  surname: Couperthwaite
  fullname: Couperthwaite, Richard
  email: richardcouperthwaite@tamu.edu
  organization: Materials Science and Engineering Department, Texas A&M University
– sequence: 2
  givenname: Abhilash
  surname: Molkeri
  fullname: Molkeri, Abhilash
  organization: Materials Science and Engineering Department, Texas A&M University
– sequence: 3
  givenname: Danial
  surname: Khatamsaz
  fullname: Khatamsaz, Danial
  organization: J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University
– sequence: 4
  givenname: Ankit
  surname: Srivastava
  fullname: Srivastava, Ankit
  organization: Materials Science and Engineering Department, Texas A&M University
– sequence: 5
  givenname: Douglas
  surname: Allaire
  fullname: Allaire, Douglas
  organization: J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University
– sequence: 6
  givenname: Raymundo
  surname: Arròyave
  fullname: Arròyave, Raymundo
  organization: Materials Science and Engineering Department, Texas A&M University, J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University
BookMark eNp9kE9PAjEQxRuDiYB-AU-beK723-52j4qiJBAuHLw13dJCCXSx7Ubw01tYExMPXmYm7fvNvLwB6LnGaQBuMbrHCJUPAWNOS4gIgojRqoCHC9DHOaMQ8xz30oxYCRmn_AoMQtigBLEK98H7TEbtrdyG7FkHu3LZYu2bdrXOnmRUp3pMz9Jl8320O_slo21c9mnjOpu122hD03qls4kzjd91n-M2pHYNLk3aqm9--hAsxi-L0Ruczl8no8cpVBRXEWqZk5pLzFTBl4SVulQFqpdyKYnhuZG8znWlWElzTg0ukEJ5bQySGHEuJaJDcNet3fvmo9Uhik1y5NJFQViFSFkRUiUV71TKNyF4bYSy8ew2emm3AiNxilF0MYoUozjHKA4JJX_Qvbc76Y__Q7SDQhK7lfa_rv6hvgH-5olz
CitedBy_id crossref_primary_10_1016_j_actamat_2024_120651
crossref_primary_10_1016_j_commatsci_2022_111590
crossref_primary_10_1016_j_actamat_2025_120820
crossref_primary_10_1016_j_mtla_2024_102332
crossref_primary_10_1016_j_actamat_2025_121173
crossref_primary_10_1061_JENMDT_EMENG_7033
crossref_primary_10_1002_aidi_202500140
crossref_primary_10_1155_2022_1143624
crossref_primary_10_1016_j_swevo_2025_101986
crossref_primary_10_1038_s41524_023_01173_7
crossref_primary_10_1016_j_coche_2021_100728
crossref_primary_10_1080_24725854_2022_2089785
crossref_primary_10_1016_j_actamat_2021_117471
crossref_primary_10_1016_j_matdes_2021_110001
crossref_primary_10_1557_s43579_022_00288_0
Cites_doi 10.1137/070693424
10.1023/A:1008306431147
10.1002/9781118309858
10.1007/978-3-662-40293-1
10.1016/j.mtphys.2020.100180
10.1146/annurev-matsci-070218-125955
10.1016/j.jmat.2017.08.001
10.1016/j.jmat.2017.07.002
10.1007/3-540-07165-2_55
10.1016/j.actamat.2019.09.009
10.1115/1.3653121
10.1051/metal:2002182
10.1007/s11837-006-0223-5
10.3389/fmats.2019.00082
10.1007/978-3-642-10701-6_6
10.1016/j.apmt.2020.100560
10.1103/PhysRevMaterials.2.113803
10.1115/1.4041034
10.1016/j.cossms.2014.02.003
10.1007/978-1-4612-1494-6
10.1287/mnsc.27.4.479
10.1002/andp.18892741206
10.1016/j.jmat.2017.07.004
10.1016/j.knosys.2019.06.026
ContentType Journal Article
Copyright The Minerals, Metals & Materials Society 2020
Copyright Springer Nature B.V. Dec 2020
Copyright_xml – notice: The Minerals, Metals & Materials Society 2020
– notice: Copyright Springer Nature B.V. Dec 2020
DBID AAYXX
CITATION
3V.
4T-
4U-
7SR
7TA
7WY
7XB
883
88I
8BQ
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
GNUQQ
HCIFZ
JG9
K60
K6~
KB.
L.-
M0F
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
DOI 10.1007/s11837-020-04396-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Docstoc
University Readers
Engineered Materials Abstracts
Materials Business File
ABI/INFORM Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Business Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Trade & Industry
Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
University Readers
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
Materials Business File
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Trade & Industry (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
METADEX
ProQuest One Academic UKI Edition
Docstoc
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ABI/INFORM Trade & Industry
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1543-1851
EndPage 4443
ExternalDocumentID 10_1007_s11837_020_04396_x
GrantInformation_xml – fundername: National Science Foundation
  grantid: NSF-1835690; NSF-DGE-1545403
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: National Science Foundation
  grantid: NSF-CMMI-1663130; NSF-S&AS-1849085
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-15-1-0038
  funderid: http://dx.doi.org/10.13039/100000181
– fundername: National Science Foundation
  grantid: NSF-DGE-1545403
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -58
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.4S
.86
.DC
06C
06D
0R~
0VY
199
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
7WY
883
88I
8FE
8FG
8FL
8FW
8R4
8R5
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAEWM
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMXK
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FAC
FAL
FERAY
FFXSO
FIGPU
FINBP
FJD
FJW
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HZ~
H~9
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KB.
KDC
KOV
LLZTM
M0F
M2P
M4Y
MA-
MK~
MQGED
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9N
PDBOC
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
RXW
S0X
S16
S1Z
S27
S3B
SAP
SCG
SCLPG
SCM
SCV
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TSG
TSK
TSV
TUC
TUS
U2A
UAO
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKWF
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
4T-
4U-
7SR
7TA
7XB
8BQ
8FD
8FK
JG9
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-ea52b8a14c68d247e7c60bdada2f85fa8b5e9c473583f160c05bff0a1088aa03
IEDL.DBID M2P
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578249900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1047-4838
IngestDate Wed Nov 05 08:26:28 EST 2025
Sat Nov 29 01:51:07 EST 2025
Tue Nov 18 21:57:22 EST 2025
Fri Feb 21 02:31:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords model fusion
Computational materials science and engineering
knowledge gradient
reification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ea52b8a14c68d247e7c60bdada2f85fa8b5e9c473583f160c05bff0a1088aa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4039-5775
PQID 2490279229
PQPubID 42295
PageCount 13
ParticipantIDs proquest_journals_2490279229
crossref_citationtrail_10_1007_s11837_020_04396_x
crossref_primary_10_1007_s11837_020_04396_x
springer_journals_10_1007_s11837_020_04396_x
PublicationCentury 2000
PublicationDate 20201200
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of The Minerals, Metals & Materials Society (TMS)
PublicationTitle JOM (1989)
PublicationTitleAbbrev JOM
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References D. Ginsbourger, R. Le Riche, L. Carraro, in Computational Intelligence in Expensive Optimization Problems, ed. by Y. Tenne, C.K. Goh (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010), pp. 131–162.
LiuPGuoBAnTFangHZhuGJiangCJiangXJ. Materiomics2017320210.1016/j.jmat.2017.07.004
W.D. Thomison, D.L. Allaire, in 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech Forum (American Institute of Aeronautics and Astronautics, 2017)
AllisonJBackmanDChristodoulouLJOM200658112510.1007/s11837-006-0223-5
VoigtWAnn. Phys. Chem.188927457310.1002/andp.18892741206
BouazizOBuesslerPRev. Metall.2002997110.1051/metal:2002182
WangTXiongYWangYQiuPSongQZhaoKYangJXiaoJShiXChenLMater. Today Phys.20201210018010.1016/j.mtphys.2020.100180
P. Ludwik, Elemente der technologischen Mechanik. 57 p. 20 illus., III fold. diagr. (J. Springer, Berlin, 1909).
TalapatraABolukiSHonarmandiPSolomouAZhaoGGhoreishiSFMolkeriAAllaireDSrivastavaAQianXFront. Mater.201968210.3389/fmats.2019.00082
KushnerHJJ. Basic Eng.1964869710.1115/1.3653121
J. Gonzalez, Z. Dai, P. Hennig, N. Lawrence, in Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 51, ed. by A. Gretton, C.C. Robert (PMLR, Cadiz, Spain, 2016), Proceedings of Machine Learning Research, vol. 51, pp. 648–657.
LyuYLiuYChengTGuoBJ. Materiomics2017322110.1016/j.jmat.2017.08.001
J. Močkus, in Optimization Techniques IFIP Technical Conference Novosibirsk, July 1-7, 1974, ed. by G.I. Marchuk (Springer Berlin Heidelberg, Berlin, Heidelberg, 1975), pp. 400–404
GhoreishiSFMolkeriAArróyaveRAllaireDSrivastavaAActa Mater.201918026010.1016/j.actamat.2019.09.009
FrazierPIPowellWBDayanikSSIAM J. Control Optim.20084752410244846710.1137/070693424
de PabloJJJonesBKovacsCLOzolinsVRamirezAPCurr. Opin. Solid State Mater. Sci.2014189910.1016/j.cossms.2014.02.003
A. Aspuru-Guzik, K. Persson, Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-throughput Methods and Artificial Intelligence, Mission Innovation (2018)
SteinMInterpolation of Spatial Data1999New YorkSpringer-Verlag10.1007/978-1-4612-1494-6
ArróyaveRMcDowellDLAnnu. Rev. Mater. Res.20194910310.1146/annurev-matsci-070218-125955
RasmussenCEWilliamsCKGaussian Processes for Machine Learning2006OxfordThe MIT Press1177.68165
N.M. Al Hasan, H. Hou, S. Sarkar, S. Thienhaus, A. Mehta, A. Ludwig, I. Takeuchi, Engineering (2020).
JoyTTRanaSGuptaSVenkateshSKnowl.-Based Syst.202018710481810.1016/j.knosys.2019.06.026
GhoreishiSFMolkeriASrivastavaAArroyaveRAllaireDJ. Mech. Des.20181401110.1115/1.4041034
MeliaMAWhettenSRPuckettRJonesMHeidenMJArgibayNKustasABAppl. Mater. Today20201910056010.1016/j.apmt.2020.100560
N. Srinivas, A. Krause, S. Kakade, M. Seeger, in Proceedings of the 27th ICML (Omnipress, Madison, WI, USA, 2010), ICML’10, pp. 1015–1022. Haifa, Israel.
J. Azimi, A. Jalali, X. Fern, Hybrid Batch Bayesian Optimization (2012).
DesautelsTKrauseABurdickJWJ. Mach. Learn. Res.2014151194053
WinklerRLManage. Sci.19812747910.1287/mnsc.27.4.479INFORMS
E. Contal, D. Buffoni, A. Robicquet, N. Vayatis, in Machine Learning and Knowledge Discovery in Databases, ed. by H. Blockeel, K. Kersting, S. Nijssen, F. Železný (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013), pp. 225–240.
JonesDRSchonlauMWelchWJJ. Global Optim.199813455167346010.1023/A:1008306431147
ZhangXXiangYJ. Materiomics20173320910.1016/j.jmat.2017.07.002
P.I. Frazier, A tutorial on bayesian optimization, arXiv preprint arXiv:1807.02811 (2018).
TalapatraABolukiSDuongTQianXDoughertyEArróyaveRAutonomous efficient experiment design for materials discovery with bayesian model averagingPhys. Rev. Mater.2018211380310.1103/PhysRevMaterials.2.113803
ReussAJ. Appl. Math. Mech.1929949
PowellWBRyzhovIOOptimal Learning2012New YorkWiley10.1002/9781118309858
SF Ghoreishi (4396_CR5) 2019; 180
4396_CR7
Y Lyu (4396_CR9) 2017; 3
TT Joy (4396_CR20) 2020; 187
DR Jones (4396_CR28) 1998; 13
O Bouaziz (4396_CR34) 2002; 99
PI Frazier (4396_CR30) 2008; 47
T Desautels (4396_CR18) 2014; 15
4396_CR13
CE Rasmussen (4396_CR22) 2006
4396_CR35
4396_CR16
4396_CR15
W Voigt (4396_CR32) 1889; 274
SF Ghoreishi (4396_CR4) 2018; 140
WB Powell (4396_CR31) 2012
A Reuss (4396_CR33) 1929; 9
P Liu (4396_CR10) 2017; 3
4396_CR17
4396_CR19
JJ de Pablo (4396_CR6) 2014; 18
X Zhang (4396_CR12) 2017; 3
RL Winkler (4396_CR25) 1981; 27
MA Melia (4396_CR8) 2020; 19
M Stein (4396_CR23) 1999
J Allison (4396_CR1) 2006; 58
A Talapatra (4396_CR2) 2019; 6
4396_CR24
4396_CR27
R Arróyave (4396_CR3) 2019; 49
4396_CR21
HJ Kushner (4396_CR26) 1964; 86
T Wang (4396_CR11) 2020; 12
4396_CR29
A Talapatra (4396_CR14) 2018; 2
References_xml – reference: BouazizOBuesslerPRev. Metall.2002997110.1051/metal:2002182
– reference: N. Srinivas, A. Krause, S. Kakade, M. Seeger, in Proceedings of the 27th ICML (Omnipress, Madison, WI, USA, 2010), ICML’10, pp. 1015–1022. Haifa, Israel.
– reference: JoyTTRanaSGuptaSVenkateshSKnowl.-Based Syst.202018710481810.1016/j.knosys.2019.06.026
– reference: TalapatraABolukiSHonarmandiPSolomouAZhaoGGhoreishiSFMolkeriAAllaireDSrivastavaAQianXFront. Mater.201968210.3389/fmats.2019.00082
– reference: RasmussenCEWilliamsCKGaussian Processes for Machine Learning2006OxfordThe MIT Press1177.68165
– reference: J. Močkus, in Optimization Techniques IFIP Technical Conference Novosibirsk, July 1-7, 1974, ed. by G.I. Marchuk (Springer Berlin Heidelberg, Berlin, Heidelberg, 1975), pp. 400–404
– reference: PowellWBRyzhovIOOptimal Learning2012New YorkWiley10.1002/9781118309858
– reference: WinklerRLManage. Sci.19812747910.1287/mnsc.27.4.479INFORMS
– reference: E. Contal, D. Buffoni, A. Robicquet, N. Vayatis, in Machine Learning and Knowledge Discovery in Databases, ed. by H. Blockeel, K. Kersting, S. Nijssen, F. Železný (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013), pp. 225–240.
– reference: DesautelsTKrauseABurdickJWJ. Mach. Learn. Res.2014151194053
– reference: KushnerHJJ. Basic Eng.1964869710.1115/1.3653121
– reference: GhoreishiSFMolkeriASrivastavaAArroyaveRAllaireDJ. Mech. Des.20181401110.1115/1.4041034
– reference: LiuPGuoBAnTFangHZhuGJiangCJiangXJ. Materiomics2017320210.1016/j.jmat.2017.07.004
– reference: LyuYLiuYChengTGuoBJ. Materiomics2017322110.1016/j.jmat.2017.08.001
– reference: JonesDRSchonlauMWelchWJJ. Global Optim.199813455167346010.1023/A:1008306431147
– reference: P. Ludwik, Elemente der technologischen Mechanik. 57 p. 20 illus., III fold. diagr. (J. Springer, Berlin, 1909).
– reference: J. Azimi, A. Jalali, X. Fern, Hybrid Batch Bayesian Optimization (2012).
– reference: ReussAJ. Appl. Math. Mech.1929949
– reference: de PabloJJJonesBKovacsCLOzolinsVRamirezAPCurr. Opin. Solid State Mater. Sci.2014189910.1016/j.cossms.2014.02.003
– reference: J. Gonzalez, Z. Dai, P. Hennig, N. Lawrence, in Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 51, ed. by A. Gretton, C.C. Robert (PMLR, Cadiz, Spain, 2016), Proceedings of Machine Learning Research, vol. 51, pp. 648–657.
– reference: W.D. Thomison, D.L. Allaire, in 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech Forum (American Institute of Aeronautics and Astronautics, 2017)
– reference: TalapatraABolukiSDuongTQianXDoughertyEArróyaveRAutonomous efficient experiment design for materials discovery with bayesian model averagingPhys. Rev. Mater.2018211380310.1103/PhysRevMaterials.2.113803
– reference: SteinMInterpolation of Spatial Data1999New YorkSpringer-Verlag10.1007/978-1-4612-1494-6
– reference: P.I. Frazier, A tutorial on bayesian optimization, arXiv preprint arXiv:1807.02811 (2018).
– reference: GhoreishiSFMolkeriAArróyaveRAllaireDSrivastavaAActa Mater.201918026010.1016/j.actamat.2019.09.009
– reference: ZhangXXiangYJ. Materiomics20173320910.1016/j.jmat.2017.07.002
– reference: ArróyaveRMcDowellDLAnnu. Rev. Mater. Res.20194910310.1146/annurev-matsci-070218-125955
– reference: AllisonJBackmanDChristodoulouLJOM200658112510.1007/s11837-006-0223-5
– reference: WangTXiongYWangYQiuPSongQZhaoKYangJXiaoJShiXChenLMater. Today Phys.20201210018010.1016/j.mtphys.2020.100180
– reference: MeliaMAWhettenSRPuckettRJonesMHeidenMJArgibayNKustasABAppl. Mater. Today20201910056010.1016/j.apmt.2020.100560
– reference: FrazierPIPowellWBDayanikSSIAM J. Control Optim.20084752410244846710.1137/070693424
– reference: A. Aspuru-Guzik, K. Persson, Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-throughput Methods and Artificial Intelligence, Mission Innovation (2018)
– reference: D. Ginsbourger, R. Le Riche, L. Carraro, in Computational Intelligence in Expensive Optimization Problems, ed. by Y. Tenne, C.K. Goh (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010), pp. 131–162.
– reference: N.M. Al Hasan, H. Hou, S. Sarkar, S. Thienhaus, A. Mehta, A. Ludwig, I. Takeuchi, Engineering (2020).
– reference: VoigtWAnn. Phys. Chem.188927457310.1002/andp.18892741206
– ident: 4396_CR16
– volume: 47
  start-page: 2410
  issue: 5
  year: 2008
  ident: 4396_CR30
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/070693424
– volume: 13
  start-page: 455
  year: 1998
  ident: 4396_CR28
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume-title: Optimal Learning
  year: 2012
  ident: 4396_CR31
  doi: 10.1002/9781118309858
– ident: 4396_CR35
  doi: 10.1007/978-3-662-40293-1
– ident: 4396_CR24
– volume: 12
  start-page: 100180
  year: 2020
  ident: 4396_CR11
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2020.100180
– volume: 49
  start-page: 103
  year: 2019
  ident: 4396_CR3
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070218-125955
– ident: 4396_CR29
– volume: 3
  start-page: 221
  year: 2017
  ident: 4396_CR9
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2017.08.001
– volume: 3
  start-page: 209
  issue: 3
  year: 2017
  ident: 4396_CR12
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2017.07.002
– ident: 4396_CR27
  doi: 10.1007/3-540-07165-2_55
– ident: 4396_CR13
– volume: 180
  start-page: 260
  year: 2019
  ident: 4396_CR5
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.09.009
– volume: 86
  start-page: 97
  year: 1964
  ident: 4396_CR26
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3653121
– volume: 99
  start-page: 71
  year: 2002
  ident: 4396_CR34
  publication-title: Rev. Metall.
  doi: 10.1051/metal:2002182
– volume: 58
  start-page: 25
  issue: 11
  year: 2006
  ident: 4396_CR1
  publication-title: JOM
  doi: 10.1007/s11837-006-0223-5
– volume: 6
  start-page: 82
  year: 2019
  ident: 4396_CR2
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2019.00082
– ident: 4396_CR15
  doi: 10.1007/978-3-642-10701-6_6
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: 4396_CR22
– ident: 4396_CR17
– ident: 4396_CR19
– volume: 19
  start-page: 100560
  year: 2020
  ident: 4396_CR8
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2020.100560
– volume: 2
  start-page: 113803
  year: 2018
  ident: 4396_CR14
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.113803
– volume: 140
  start-page: 11
  year: 2018
  ident: 4396_CR4
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4041034
– volume: 18
  start-page: 99
  year: 2014
  ident: 4396_CR6
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2014.02.003
– volume-title: Interpolation of Spatial Data
  year: 1999
  ident: 4396_CR23
  doi: 10.1007/978-1-4612-1494-6
– ident: 4396_CR21
– volume: 27
  start-page: 479
  year: 1981
  ident: 4396_CR25
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.27.4.479
– volume: 15
  start-page: 4053
  issue: 119
  year: 2014
  ident: 4396_CR18
  publication-title: J. Mach. Learn. Res.
– volume: 274
  start-page: 573
  year: 1889
  ident: 4396_CR32
  publication-title: Ann. Phys. Chem.
  doi: 10.1002/andp.18892741206
– ident: 4396_CR7
– volume: 9
  start-page: 49
  year: 1929
  ident: 4396_CR33
  publication-title: J. Appl. Math. Mech.
– volume: 3
  start-page: 202
  year: 2017
  ident: 4396_CR10
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2017.07.004
– volume: 187
  start-page: 104818
  year: 2020
  ident: 4396_CR20
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.06.026
SSID ssj0007491
Score 2.3880544
Snippet Integrated computational materials engineering (ICME) calls for the integration of simulation tools and experiments to accelerate the development of materials....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4431
SubjectTerms Alloys
Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification
Bayesian analysis
Case studies
Chemistry/Food Science
Data integration
Design optimization
Dual phase steels
Ductility
Earth Sciences
Engineering
Environment
Experiments
Fashion models
Information sources
Materials engineering
Materials science
Materials selection
Optimization
Physics
Simulation
Stochastic models
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hAhIMPAqIQkEe2MBSHo7jjLwqBigIKtQtsh17goKaFsG_x3acBhAgwZLFD0V35_PZvu87gAMiskxmWmBecIXtAQJzWiicJlworeIkFo5n9jLt99lwmN14UFhZZ7vXT5LOUzdgN2N9KbbHHQvnpNhEjvNmu2O2YMPt3f3M_6bE1clzHASExcxDZb6f4_N21MSYX55F3W7TW_3ff67Bio8u0XFlDuswp0ZtWP7AOdiGRZfzKcsNGF7xSWV_6MzlcaBBVbQHnRj_bL9vykIs0bVxK48er4nsxS1ysN3q3h95QJNr7E3t5dsmDHrng9ML7AstYGlW4AQrnkSC8ZBIyoqIpCqVNBCFUV-kWaI5E4nKpC1SzGId0kAGidA64KFxUZwH8Ra0Rk8jtQ3IkgEVVJJCckpkQngRqIinJoagRGex7kBYizuXnoTc1sJ4yBv6ZCu-3Igvd-LLXztwOBvzXFFw_Nq7W2sx98uxzM0ZM7BMiVHWgaNaa03zz7Pt_K37LixFVvEu3aULrcl4qvZgQb4YnYz3nZm-A2Qn498
  priority: 102
  providerName: Springer Nature
Title Materials Design Through Batch Bayesian Optimization with Multisource Information Fusion
URI https://link.springer.com/article/10.1007/s11837-020-04396-x
https://www.proquest.com/docview/2490279229
Volume 72
WOSCitedRecordID wos000578249900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: 7WY
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Trade & Industry
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: M0F
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abitrade
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: KB.
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: BENPR
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: M2P
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6JQKg9sYMjDeU2IAhUStFRQQZkix7EnKKUUVP49PsehgEQXFkuREyvydz6fz3ffAeyxLElEojLKcy4pHiAoD3NJo4BnUkk_8DPDM3sVtdtxr5d0rMPt1YZVljrRKOr8WaCP_EgfExwku_OS48ELxapReLtqS2jMwpy2bFwM6Wp5nS9NHDFTMc-wEbDYj23STJE6p2U5onh4wuTQkI5_bkwTa_PXBanZd5rL__3jFViyFic5KURkFWZkfw0Wv_EQrkOvxUeFJJIzE9FBukX5HtLQmhrbD4nJluRaK5gnm7lJ0IVLTAJvcQNAbGqT6Wy-oRtuA7rN8-7pBbUlF6jQa3FEJQ-8LOYuE2GceyySkQidLNdAeioOFI-zQCYCyxXHvnJDRzhBppTDXa2sOHf8Taj0n_tyCwjSAuWhYLngIRMB47kjPR5payJkKvFVFdxyulNh6cixKsZjOiFSRohSDVFqIErHVdj_-mZQkHFMfbtW4pLahfmaTkCpwkGJ7KT779G2p4-2AwseCpMJdKlBZTR8k7swL941BsM6zEb3D3WYa5y3Ozf66bJxqNuW06wbgdXtze3dJ3pk75Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsQwEB0thwQU3IjldAEVWCSOcxUIca1ALAvFFttZjmNXsMuxXB_FP-JxEhaQoNuCJo0TK4nfjD32vDcAWzxLU5WajMpcaooBBJVRrmkcykwbHYRB5nRmm3GrlXQ66XUN3isuDKZVVj7ROeq8p3CPfM-GCR6K3bH04O6eYtUoPF2tSmgUsLjQby82ZHvcPz-x47vNWOO0fXxGy6oCVFm49amWIcsS6XMVJTnjsY5V5GW5fVdmktDIJAt1qrAibxIYP_KUF2bGeNK39iilF9huR2CMo7AYZgqy60_HH3NXoM-JH_AkSEqOTsHUs6YTU4zVkIsa0dfv8-BgcfvjPNZNc42Zf_aDZmG6XE-Tw8IA5qCmu_Mw9UVlcQE6l7Jf2Bk5cfkqpF0UJyJHdh7C65tGKim5su7ztuSlEtygJo6eXJxvkJK45RobT7jJuAjtYXzZEox2e129DARFj_JI8VzJiKuQy9zTTMZ2rRRxkwamDn41ukKVYutY8-NGDGSiERHCIkI4RIjXOux8PnNXSI38efdaBQNRup1HMcBAHXYrIA2af-9t5e_eNmHirH3ZFM3z1sUqTDLEsUvpWYPR_sOTXodx9WzH42HDWQQBMWSAfQDYLkej
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V05T8MwFH6CghAM3IhyeoAJLNLEuQaEgFKBgFKhDt0sx7EnaDnK0Z_Gv8PPcSggwcbAksWJlcTfu-z3vQewxbI0lanOqMiFohhAUBHlisahyJRWQRhkts7sRdxsJp1O2hqBt5ILg2mVpU60ijrvSdwj3zNhgofF7vx0T7u0iFa9cXB3T7GDFJ60lu00Coicq8GLCd8e98_qZq23fb9x0j4-pa7DAJUGen2qROhniagxGSW5z2IVy8jLcvPevk5CLZIsVKnE7rxJoGuRJ70w09oTNSObQniBmXYUxmLjY7AKjB2dNFvXH2YgZrZdny2FwJIgcYydgrdnBCmmGLkhMzWir1-t4tDV_XY6a41eY-Yf_65ZmHaeNjksRGMORlR3HqY-1V9cgM6l6BcSSOo2k4W0i7ZF5MhYKLwOFJJMyZVRrLeOsUpw65pY4nJx8kEcpcsONp5w-3ER2n_xZUtQ6fa6ahkIlkPKI8lyKSImQyZyT_kiNl5UxHQa6CrUypXm0pVhx24gN3xYQBrRwQ06uEUHf63Czsczd0URkl_vXishwZ1CeuRDPFRhtwTVcPjn2VZ-n20TJgyu-MVZ83wVJn2EtM31WYNK_-FJrcO4fDbL8bDhxIMA_2OEvQNyaFG9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Materials+Design+Through+Batch+Bayesian+Optimization+with+Multisource+Information+Fusion&rft.jtitle=JOM+%281989%29&rft.au=Couperthwaite%2C+Richard&rft.au=Molkeri%2C+Abhilash&rft.au=Khatamsaz%2C+Danial&rft.au=Srivastava%2C+Ankit&rft.date=2020-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1047-4838&rft.volume=72&rft.issue=12&rft.spage=4431&rft.epage=4443&rft_id=info:doi/10.1007%2Fs11837-020-04396-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-4838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-4838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-4838&client=summon