A heuristic task scheduling algorithm in cloud computing environment: an overall cost minimization approach
With the advancement of the cloud computing environment, the users’ expectations to gain better services significantly increased. One of the most prominent parts of cloud systems is the task scheduling concept in which its improvement can increase the users’ satisfaction as a consequence. Most of th...
Gespeichert in:
| Veröffentlicht in: | Cluster computing Jg. 28; H. 2; S. 137 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1386-7857, 1573-7543 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the advancement of the cloud computing environment, the users’ expectations to gain better services significantly increased. One of the most prominent parts of cloud systems is the task scheduling concept in which its improvement can increase the users’ satisfaction as a consequence. Most of the published literature in this domain is extended to either a single-objective or bi-objective perspective. This paper presents a heuristic task scheduling algorithm for the optimization of
makespan
-cost-reliability (TSO-MCR) objectives. In addition, the users’ constraints are considered in the proposed optimization model. To this end, the task ranking approach, ignoring the unreliable processors, using Pareto dominance, and crowding distance approaches are utilized so the trade-off amongst potentially conflicting objectives is gained. To verify the effectiveness of the proposed TSO-MCR, its performance is compared with Multi-Objective Heterogeneous Earliest Finish Time (MOHEFT), Cost and Makespan Scheduling of Workflows in the Cloud (CMSWC), Hybrid Discrete Cuckoo Search Algorithm (HDCSA), and Multi-Objective Best Fit Decreasing (MOBFD) approaches. Since the comparative algorithms are bi-objectives, the multi-objective version of each is customized commensurate with the stated problem to prepare the same conditions. The simulation results prove that the proposed TSO-MCR significantly outperforms other state-of-the-art. It has 4.23, 8.93, 2.08, and 4.24% improvement against all counterparts in all 12 scenarios respectively in terms of
makespan
, total monetary cost, reliability, and the final score function incorporating all weighted objectives. It is worth mentioning that the comparison has been done on the datasets including both scientific workflow and random applications with different communication-to-computation ratio (CCR) values. |
|---|---|
| AbstractList | With the advancement of the cloud computing environment, the users’ expectations to gain better services significantly increased. One of the most prominent parts of cloud systems is the task scheduling concept in which its improvement can increase the users’ satisfaction as a consequence. Most of the published literature in this domain is extended to either a single-objective or bi-objective perspective. This paper presents a heuristic task scheduling algorithm for the optimization of makespan-cost-reliability (TSO-MCR) objectives. In addition, the users’ constraints are considered in the proposed optimization model. To this end, the task ranking approach, ignoring the unreliable processors, using Pareto dominance, and crowding distance approaches are utilized so the trade-off amongst potentially conflicting objectives is gained. To verify the effectiveness of the proposed TSO-MCR, its performance is compared with Multi-Objective Heterogeneous Earliest Finish Time (MOHEFT), Cost and Makespan Scheduling of Workflows in the Cloud (CMSWC), Hybrid Discrete Cuckoo Search Algorithm (HDCSA), and Multi-Objective Best Fit Decreasing (MOBFD) approaches. Since the comparative algorithms are bi-objectives, the multi-objective version of each is customized commensurate with the stated problem to prepare the same conditions. The simulation results prove that the proposed TSO-MCR significantly outperforms other state-of-the-art. It has 4.23, 8.93, 2.08, and 4.24% improvement against all counterparts in all 12 scenarios respectively in terms of makespan, total monetary cost, reliability, and the final score function incorporating all weighted objectives. It is worth mentioning that the comparison has been done on the datasets including both scientific workflow and random applications with different communication-to-computation ratio (CCR) values. With the advancement of the cloud computing environment, the users’ expectations to gain better services significantly increased. One of the most prominent parts of cloud systems is the task scheduling concept in which its improvement can increase the users’ satisfaction as a consequence. Most of the published literature in this domain is extended to either a single-objective or bi-objective perspective. This paper presents a heuristic task scheduling algorithm for the optimization of makespan -cost-reliability (TSO-MCR) objectives. In addition, the users’ constraints are considered in the proposed optimization model. To this end, the task ranking approach, ignoring the unreliable processors, using Pareto dominance, and crowding distance approaches are utilized so the trade-off amongst potentially conflicting objectives is gained. To verify the effectiveness of the proposed TSO-MCR, its performance is compared with Multi-Objective Heterogeneous Earliest Finish Time (MOHEFT), Cost and Makespan Scheduling of Workflows in the Cloud (CMSWC), Hybrid Discrete Cuckoo Search Algorithm (HDCSA), and Multi-Objective Best Fit Decreasing (MOBFD) approaches. Since the comparative algorithms are bi-objectives, the multi-objective version of each is customized commensurate with the stated problem to prepare the same conditions. The simulation results prove that the proposed TSO-MCR significantly outperforms other state-of-the-art. It has 4.23, 8.93, 2.08, and 4.24% improvement against all counterparts in all 12 scenarios respectively in terms of makespan , total monetary cost, reliability, and the final score function incorporating all weighted objectives. It is worth mentioning that the comparison has been done on the datasets including both scientific workflow and random applications with different communication-to-computation ratio (CCR) values. |
| ArticleNumber | 137 |
| Author | Motameni, Homayun Hosseini Shirvani, Mirsaeid Boroumand, Ali |
| Author_xml | – sequence: 1 givenname: Ali surname: Boroumand fullname: Boroumand, Ali organization: Department of Computer Engineering, Sari Branch, Islamic Azad University – sequence: 2 givenname: Mirsaeid surname: Hosseini Shirvani fullname: Hosseini Shirvani, Mirsaeid email: mirsaeid_hosseini@iau.ac.ir organization: Department of Computer Engineering, Sari Branch, Islamic Azad University – sequence: 3 givenname: Homayun surname: Motameni fullname: Motameni, Homayun organization: Department of Computer Engineering, Sari Branch, Islamic Azad University |
| BookMark | eNp9kF1LwzAUhoNMcE7_gFcBr6v5aJfUuzH8goE3eh3SNF2ztclM0oH-erNVELzYVQ6c98l5eS7BxDqrAbjB6A4jxO4DRgWfZ4jkGcp5TjN6Bqa4YDRjRU4naaZpzXjBLsBlCBuEUMlIOQXbBWz14E2IRsEowxYG1ep66IxdQ9mtnTex7aGxUHVuqKFy_W6Ih6W2e-Od7bWND1Ba6Pbay65LiRBhb6zpzbeMxlkodzvvpGqvwHkju6Cvf98Z-Hh6fF--ZKu359flYpUpisuYaUkqlVe8Jlzn1bzAKvXmvKgaqihhCjecYKwQkgpjLFlREikrTbhSvMaY0xm4Hf9NZz8HHaLYuMHbdFJQTOmckCQrpfiYUt6F4HUjlInHwtFL0wmMxEGtGNWKpFYc1QqaUPIP3XnTS_91GqIjFFLYrrX_a3WC-gGUP4_Q |
| CitedBy_id | crossref_primary_10_1016_j_suscom_2025_101209 crossref_primary_10_1016_j_jii_2025_100936 crossref_primary_10_3390_fi17020051 crossref_primary_10_1007_s11227_025_07231_9 crossref_primary_10_1007_s00607_025_01513_z crossref_primary_10_1007_s12083_025_02105_6 |
| Cites_doi | 10.1016/j.future.2018.09.014 10.1007/s00521-021-06289-9 10.1007/s11227-019-03004-3 10.1186/s13174-014-0011-3 10.1007/s11227-021-03764-x 10.1007/s00607-019-00740-5 10.1109/MCSE.2018.2873866 10.1016/j.jksuci.2016.05.003 10.1109/TCSET49122.2020.235532 10.1016/j.cosrev.2021.100398 10.1109/71.503776 10.1016/j.jksuci.2021.05.011 10.6028/NIST.SP.800-145 10.1080/03772063.2014.988757 10.1016/j.jnca.2019.06.006 10.1016/j.jnca.2015.05.001 10.1007/s10723-015-9340-0 10.1007/s40747-021-00368-z 10.1016/j.simpat.2015.07.001 10.1016/10.1109/TASE.2015.2500574 10.1109/ACCESS.2023.3318553 10.1016/j.parco.2021.102828 10.1016/j.compeleceng.2022.108458 10.1016/j.sysarc.2020.101837 10.1007/s00607-023-01215-4 10.1007/s11227-022-04703-0 10.1016/j.future.2016.10.034 10.1016/j.future.2008.12.001 10.1007/s00521-023-08682-y 10.1186/s13677-022-00374-7 10.1002/cpe.4044 10.1016/j.jpdc.2010.05.002 10.1007/s40747-021-00528-1 10.1016/j.parco.2017.01.002 10.1109/WORKS.2008.4723958 10.1109/TPDS.2013.57 10.1109/RAECS.2014.6799514 10.1016/j.comnet.2023.110161 10.1109/71.207593 10.1016/j.ins.2014.02.122 10.1016/j.asoc.2023.111142 10.1007/s10723-017-9424-0 10.1007/s10586-024-04468-6 10.1007/978-81-322-1759-6_53 10.1007/s00500-023-09201-w 10.1016/j.procs.2017.12.093 10.22094/joie.2020.1877455.1685 10.1016/j.future.2018.05.059 10.23967/j.rimni.2022.03.001 10.1016/j.procs.2021.12.137 10.1007/978-3-031-24848-1_2 10.1049/sfw2.12072 10.1007/s00607-024-01263-4 10.1109/4235.996017 10.1109/71.993206 10.1155/2023/4350615 10.1007/s10723-023-09711-9 10.1016/j.compeleceng.2017.11.018 10.1016/j.engappai.2020.103501 10.1016/j.suscom.2015.08.001 10.1109/CloudCom.2012.6427573 10.1007/s11227-023-05806-y |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10586-024-04843-3 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10_1007_s10586_024_04843_3 |
| GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9O PF0 PHGZT PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ABBRH ABRTQ ADKFA AFDZB AFFHD AFOHR AGQPQ AHPBZ ATHPR CITATION PHGZM PQGLB JQ2 |
| ID | FETCH-LOGICAL-c319t-ea2bc4b8d28e4b651c785885bf3c327c1f8211c00ac111a7592aabe28cc8d1183 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001365489600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Wed Nov 26 14:51:44 EST 2025 Sat Nov 29 08:05:16 EST 2025 Tue Nov 18 20:56:56 EST 2025 Fri Mar 28 01:22:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Task scheduling Cloud computing Multi objective heuristic algorithm Reliability |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ea2bc4b8d28e4b651c785885bf3c327c1f8211c00ac111a7592aabe28cc8d1183 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3133622058 |
| PQPubID | 2043865 |
| ParticipantIDs | proquest_journals_3133622058 crossref_citationtrail_10_1007_s10586_024_04843_3 crossref_primary_10_1007_s10586_024_04843_3 springer_journals_10_1007_s10586_024_04843_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20250400 2025-04-00 20250401 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 4843_CR35 L Zhang (4843_CR21) 2023; 21 S Gill (4843_CR43) 2019; 17 4843_CR70 H Materwala (4843_CR39) 2022; 197 YK Kwok (4843_CR23) 1996; 7 M Shojaeefard (4843_CR32) 2022; 28 A Arunarani (4843_CR13) 2019; 91 A Khalili (4843_CR34) 2017; 29 S Vobugari (4843_CR55) 2015; 61 GC Sih (4843_CR24) 1993; 4 B Sahu (4843_CR53) 2023; 4350615 T Hai (4843_CR22) 2023; 12 SM Hosseini (4843_CR10) 2020; 90 4843_CR38 M Kumar (4843_CR29) 2018; 69 4843_CR45 4843_CR47 A Arabnejad (4843_CR18) 2014; 25 M Kumar (4843_CR14) 2019; 143 A Verma (4843_CR48) 2017; 62 M Naghshnejad (4843_CR57) 2020; 76 X Li (4843_CR30) 2015; 14 T Carli (4843_CR36) 2016; 9 K Dubey (4843_CR28) 2018; 125 DM Khademi (4843_CR56) 2024; 27 4843_CR2 4843_CR3 4843_CR4 4843_CR5 JJ Durillo (4843_CR19) 2015; 58 P Banerjee (4843_CR20) 2023; 11 4843_CR6 M Tanha (4843_CR49) 2021; 33 4843_CR7 MA Nezafat Tabalvandani (4843_CR61) 2024; 25 AY Asghari (4843_CR46) 2023; 79 SM Hosseini (4843_CR54) 2024; 80 4843_CR11 M Mollajafari (4843_CR15) 2016; 32 M Hosseini Shirvani (4843_CR1) 2022; 16 R Noorian Talouki (4843_CR31) 2022 A Tchernykh (4843_CR42) 2016; 14 SM Hosseini (4843_CR58) 2022; 8 SS Mousavi Nik (4843_CR59) 2020; 102 D Ardagna (4843_CR16) 2014; 5 Z Deng (4843_CR51) 2021; 77 H Topcuoglu (4843_CR17) 2002; 13 X Yuming (4843_CR25) 2014; 270 M Mollajafari (4843_CR12) 2023; 35 4843_CR68 4843_CR67 4843_CR69 4843_CR64 KJ Javadian (4843_CR33) 2021; 2 4843_CR65 K Deb (4843_CR66) 2002; 6 Y Ramzanpoor (4843_CR52) 2022; 8 4843_CR60 4843_CR62 A Seifhosseini (4843_CR9) 2024; 240 SC Nayak (4843_CR37) 2018; 30 SS Gill (4843_CR63) 2020; 22 D Liu (4843_CR50) 2018; 89 W Zhu (4843_CR41) 2017; 69 SM Hosseini (4843_CR26) 2021; 108 Q Zhao (4843_CR40) 2016; 59 P Han (4843_CR44) 2021; 112 R Buyya (4843_CR8) 2009; 25 4843_CR27 |
| References_xml | – volume: 91 start-page: 407 year: 2019 ident: 4843_CR13 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2018.09.014 – volume: 33 start-page: 16951 year: 2021 ident: 4843_CR49 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06289-9 – volume: 76 start-page: 122 year: 2020 ident: 4843_CR57 publication-title: J. Supercomput. doi: 10.1007/s11227-019-03004-3 – volume: 5 start-page: 1 issue: 11 year: 2014 ident: 4843_CR16 publication-title: J. Internet Serv. Appl. doi: 10.1186/s13174-014-0011-3 – volume: 77 start-page: 11643 year: 2021 ident: 4843_CR51 publication-title: J. Supercomput. doi: 10.1007/s11227-021-03764-x – volume: 102 start-page: 477 year: 2020 ident: 4843_CR59 publication-title: Computing doi: 10.1007/s00607-019-00740-5 – volume: 22 start-page: 52 issue: 3 year: 2020 ident: 4843_CR63 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2018.2873866 – ident: 4843_CR6 – volume: 30 start-page: 152 issue: 2 year: 2018 ident: 4843_CR37 publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2016.05.003 – ident: 4843_CR64 doi: 10.1109/TCSET49122.2020.235532 – ident: 4843_CR2 – ident: 4843_CR62 doi: 10.1016/j.cosrev.2021.100398 – volume: 7 start-page: 506 issue: 5 year: 1996 ident: 4843_CR23 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.503776 – year: 2022 ident: 4843_CR31 publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2021.05.011 – ident: 4843_CR7 doi: 10.6028/NIST.SP.800-145 – volume: 61 start-page: 132 issue: 2 year: 2015 ident: 4843_CR55 publication-title: IETE J. Res. doi: 10.1080/03772063.2014.988757 – volume: 143 start-page: 1 year: 2019 ident: 4843_CR14 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2019.06.006 – volume: 59 start-page: 14 year: 2016 ident: 4843_CR40 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2015.05.001 – volume: 14 start-page: 5 issue: 1 year: 2016 ident: 4843_CR42 publication-title: J. Grid Comput. doi: 10.1007/s10723-015-9340-0 – ident: 4843_CR47 – volume: 32 start-page: 1541 year: 2016 ident: 4843_CR15 publication-title: J. Inf. Sci. Eng. – volume: 8 start-page: 361 year: 2022 ident: 4843_CR52 publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00368-z – volume: 58 start-page: 95 issue: 1 year: 2015 ident: 4843_CR19 publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2015.07.001 – volume: 14 start-page: 1195 issue: 2 year: 2015 ident: 4843_CR30 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1016/10.1109/TASE.2015.2500574 – ident: 4843_CR3 – volume: 11 start-page: 105578 year: 2023 ident: 4843_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3318553 – volume: 108 start-page: 1 issue: 102828 year: 2021 ident: 4843_CR26 publication-title: Parallel Comput. doi: 10.1016/j.parco.2021.102828 – ident: 4843_CR68 doi: 10.1016/j.compeleceng.2022.108458 – volume: 112 start-page: 1 issue: 10183 year: 2021 ident: 4843_CR44 publication-title: J. Syst. Architect. doi: 10.1016/j.sysarc.2020.101837 – ident: 4843_CR70 doi: 10.1007/s00607-023-01215-4 – volume: 79 start-page: 1451 year: 2023 ident: 4843_CR46 publication-title: J. Supercomput. doi: 10.1007/s11227-022-04703-0 – volume: 69 start-page: 66 year: 2017 ident: 4843_CR41 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2016.10.034 – volume: 25 start-page: 599 issue: 6 year: 2009 ident: 4843_CR8 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2008.12.001 – volume: 35 start-page: 18035 year: 2023 ident: 4843_CR12 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08682-y – volume: 12 start-page: 15 year: 2023 ident: 4843_CR22 publication-title: J. Cloud Comput. doi: 10.1186/s13677-022-00374-7 – volume: 29 start-page: 1 issue: 11 year: 2017 ident: 4843_CR34 publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.4044 – ident: 4843_CR65 doi: 10.1016/j.jpdc.2010.05.002 – volume: 8 start-page: 1085 year: 2022 ident: 4843_CR58 publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00528-1 – volume: 62 start-page: 1 year: 2017 ident: 4843_CR48 publication-title: Parallel Comput. doi: 10.1016/j.parco.2017.01.002 – ident: 4843_CR67 doi: 10.1109/WORKS.2008.4723958 – volume: 25 start-page: 682 issue: 3 year: 2014 ident: 4843_CR18 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2013.57 – ident: 4843_CR11 doi: 10.1109/RAECS.2014.6799514 – volume: 240 start-page: 1 issue: 110161 year: 2024 ident: 4843_CR9 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2023.110161 – volume: 4 start-page: 175 issue: 2 year: 1993 ident: 4843_CR24 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.207593 – ident: 4843_CR4 – volume: 270 start-page: 255 year: 2014 ident: 4843_CR25 publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.122 – ident: 4843_CR38 doi: 10.1016/j.asoc.2023.111142 – volume: 17 start-page: 385 year: 2019 ident: 4843_CR43 publication-title: J. Grid Comput. doi: 10.1007/s10723-017-9424-0 – ident: 4843_CR35 – volume: 27 start-page: 10833 year: 2024 ident: 4843_CR56 publication-title: Clust. Comput. doi: 10.1007/s10586-024-04468-6 – ident: 4843_CR27 doi: 10.1007/978-81-322-1759-6_53 – volume: 25 start-page: 5173 year: 2024 ident: 4843_CR61 publication-title: Soft. Comput. doi: 10.1007/s00500-023-09201-w – volume: 125 start-page: 725 year: 2018 ident: 4843_CR28 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2017.12.093 – volume: 2 start-page: 169 issue: 14 year: 2021 ident: 4843_CR33 publication-title: J. Optim. Ind. Eng. doi: 10.22094/joie.2020.1877455.1685 – volume: 89 start-page: 455 year: 2018 ident: 4843_CR50 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2018.05.059 – volume: 28 start-page: 1 issue: 1 year: 2022 ident: 4843_CR32 publication-title: Rev. int. métodos numér. cálc. diseñoing. doi: 10.23967/j.rimni.2022.03.001 – volume: 197 start-page: 238 year: 2022 ident: 4843_CR39 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2021.12.137 – ident: 4843_CR60 doi: 10.1007/978-3-031-24848-1_2 – volume: 16 start-page: 603 issue: 6 year: 2022 ident: 4843_CR1 publication-title: IET Soft. doi: 10.1049/sfw2.12072 – ident: 4843_CR69 doi: 10.1007/s00607-024-01263-4 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 4843_CR66 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – ident: 4843_CR5 – volume: 13 start-page: 260 issue: 3 year: 2002 ident: 4843_CR17 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.993206 – volume: 4350615 start-page: 1 year: 2023 ident: 4843_CR53 publication-title: Appl. Bionics Biomech. doi: 10.1155/2023/4350615 – volume: 21 start-page: 75 year: 2023 ident: 4843_CR21 publication-title: J. Grid Comput. doi: 10.1007/s10723-023-09711-9 – volume: 69 start-page: 395 year: 2018 ident: 4843_CR29 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.11.018 – volume: 90 start-page: 1 issue: 103501 year: 2020 ident: 4843_CR10 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103501 – volume: 9 start-page: 20 year: 2016 ident: 4843_CR36 publication-title: Sustain. Comput. Inform. Syst. doi: 10.1016/j.suscom.2015.08.001 – ident: 4843_CR45 doi: 10.1109/CloudCom.2012.6427573 – volume: 80 start-page: 9384 year: 2024 ident: 4843_CR54 publication-title: J. Supercomput. doi: 10.1007/s11227-023-05806-y |
| SSID | ssj0009729 |
| Score | 2.4055443 |
| Snippet | With the advancement of the cloud computing environment, the users’ expectations to gain better services significantly increased. One of the most prominent... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 137 |
| SubjectTerms | Algorithms Cloud computing Computer Communication Networks Computer Science Customer relationship management Customer services Failure Heuristic Heuristic task scheduling Literature reviews Multiple objective analysis Operating Systems Optimization Optimization models Processor Architectures Quality of service Reliability Scheduling Search algorithms Software services User satisfaction Workflow |
| Title | A heuristic task scheduling algorithm in cloud computing environment: an overall cost minimization approach |
| URI | https://link.springer.com/article/10.1007/s10586-024-04843-3 https://www.proquest.com/docview/3133622058 |
| Volume | 28 |
| WOSCitedRecordID | wos001365489600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQDlwg0pN0jYutwkxcZoQL-1WpWnKpnUdWjt-P0nW0oEACc5xrcqJY1vx9xmhc6GULjIUcXhMPcdjnDjgJYETAEidv4aepMIOm-CDAQyH4V0FCivqbvf6SdLe1CtgNx9Mw6xpnACPOWwdbehwx00j3_3Dc0O1y-1sMsK0NAefV1CZ73V8DkdNjvnlWdRGm377f_-5g7ar7BL3lsdhF62pfA-168kNuHLkfTTp4ZFaLEmacSmKCdZFrg46BpuORfYym4_L0RSPcyyz2SLB0mowiyvAuCsscmw6QEWWaYmixIanZFoBO3HNVn6Anvo3j9e3TjV2wZHaH0tHCRpLL4aEgvLiwCdSWxHAj1MmGeWSpKCrRum6QuqLUnA_pELEioKUkOh6hR2iVj7L1RHCEArCOeMpBDpTI1qFqxTx0zTgInE57yBSWz-SFSe5GY2RRQ2bsrFmpK0ZWWtGrIMuPr55XTJy_CrdrTc1qryziJguzAODMIYOuqw3sVn-Wdvx38RP0BY144Jto08Xtcr5Qp2iTflWjov5mT217wiy5ng |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8An1xfuJ0ah5808KStM3NNxFl4hyCU_ZW0jR1w9rJ2vn3m3StU1FBn3M9yiWXuyP3-x3AkdTaFBmaOiJkruNyQR10I9_xEZXJX1uuYrIYNiG6Xez3W7clKCyrut2rJ8nipv4AdvPQNszaxgl0ucPnYdFlJsO3Nfrdw4xqVxSzySg30gI9UUJlvtfxORzNcswvz6JFtLms_e8_12C1zC7J2fQ4rMOcTjegVk1uIKUjb8LTGRnoyZSkmeQyeyKmyDVBx2LTiUweR-NhPngmw5SoZDSJiCo02MUPwLhTIlNiO0BlkhiJLCeWp-S5BHaSiq18C-4vL3rnbaccu-Ao44-5oyULlRtixFC7oe9RZayI6IUxV5wJRWM0VaNqNqUyF6UUXotJGWqGSmFk6hW-DQvpKNU7QLAlqRBcxOibTI0aFU2tqRfHvpBRU4g60Mr6gSo5ye1ojCSYsSlbawbGmkFhzYDX4fj9m5cpI8ev0o1qU4PSO7OAm8LctwhjrMNJtYmz5Z-17f5N_BCW272bTtC56l7vwQqzo4OLpp8GLOTjid6HJfWaD7PxQXGC3wDecelc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4psWlaZubb0MdijIGfrC3kqapG-u6sXX-_SZd66aoID7nepRLLndH7vc7gFOhlC4yFLV4YDuWwzi10Ak9y0OUOn-tO9IW2bAJ3mphp1NvL6D4s2734klyhmkwLE1JejEKo4sF4JuLpnnWNFGgwyy2DCuOaZcz9frjy5x2l2dzyijT0hxdnsNmvtfxOTTN880vT6RZ5GmW___Pm7CRZ52kMTsmW7Ckkm0oFxMdSO7gO9BvkK6azsibSSomfaKLXx2MDGadiPh1OO6l3QHpJUTGw2lIZKbBLC4A5i6JSIjpDBVxrCUmKTH8JYMc8EkKFvNdeG7ePF3dWvk4BktqP00tJexAOgGGNion8FwqtUUR3SBiktlc0gh1NSlrNSH1BSq4W7eFCJSNUmKo6xi2B6VkmKh9IFgXlHPGI_R0Bke1ippS1I0ij4uwxnkFaLETvsy5ys3IjNifsywba_ramn5mTZ9V4Ozjm9GMqeNX6WqxwX7utROf6YLdM8hjrMB5saHz5Z-1HfxN_ATW2tdN_-GudX8I67aZKJz1AlWhlI6n6ghW5Vvam4yPs8P8DhWB8jc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+heuristic+task+scheduling+algorithm+in+cloud+computing+environment%3A+an+overall+cost+minimization+approach&rft.jtitle=Cluster+computing&rft.au=Boroumand%2C+Ali&rft.au=Hosseini+Shirvani%2C+Mirsaeid&rft.au=Motameni%2C+Homayun&rft.date=2025-04-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs10586-024-04843-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_024_04843_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |