A heuristic task scheduling algorithm in cloud computing environment: an overall cost minimization approach

With the advancement of the cloud computing environment, the users’ expectations to gain better services significantly increased. One of the most prominent parts of cloud systems is the task scheduling concept in which its improvement can increase the users’ satisfaction as a consequence. Most of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing Jg. 28; H. 2; S. 137
Hauptverfasser: Boroumand, Ali, Hosseini Shirvani, Mirsaeid, Motameni, Homayun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2025
Springer Nature B.V
Schlagworte:
ISSN:1386-7857, 1573-7543
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the advancement of the cloud computing environment, the users’ expectations to gain better services significantly increased. One of the most prominent parts of cloud systems is the task scheduling concept in which its improvement can increase the users’ satisfaction as a consequence. Most of the published literature in this domain is extended to either a single-objective or bi-objective perspective. This paper presents a heuristic task scheduling algorithm for the optimization of makespan -cost-reliability (TSO-MCR) objectives. In addition, the users’ constraints are considered in the proposed optimization model. To this end, the task ranking approach, ignoring the unreliable processors, using Pareto dominance, and crowding distance approaches are utilized so the trade-off amongst potentially conflicting objectives is gained. To verify the effectiveness of the proposed TSO-MCR, its performance is compared with Multi-Objective Heterogeneous Earliest Finish Time (MOHEFT), Cost and Makespan Scheduling of Workflows in the Cloud (CMSWC), Hybrid Discrete Cuckoo Search Algorithm (HDCSA), and Multi-Objective Best Fit Decreasing (MOBFD) approaches. Since the comparative algorithms are bi-objectives, the multi-objective version of each is customized commensurate with the stated problem to prepare the same conditions. The simulation results prove that the proposed TSO-MCR significantly outperforms other state-of-the-art. It has 4.23, 8.93, 2.08, and 4.24% improvement against all counterparts in all 12 scenarios respectively in terms of makespan , total monetary cost, reliability, and the final score function incorporating all weighted objectives. It is worth mentioning that the comparison has been done on the datasets including both scientific workflow and random applications with different communication-to-computation ratio (CCR) values.
AbstractList With the advancement of the cloud computing environment, the users’ expectations to gain better services significantly increased. One of the most prominent parts of cloud systems is the task scheduling concept in which its improvement can increase the users’ satisfaction as a consequence. Most of the published literature in this domain is extended to either a single-objective or bi-objective perspective. This paper presents a heuristic task scheduling algorithm for the optimization of makespan-cost-reliability (TSO-MCR) objectives. In addition, the users’ constraints are considered in the proposed optimization model. To this end, the task ranking approach, ignoring the unreliable processors, using Pareto dominance, and crowding distance approaches are utilized so the trade-off amongst potentially conflicting objectives is gained. To verify the effectiveness of the proposed TSO-MCR, its performance is compared with Multi-Objective Heterogeneous Earliest Finish Time (MOHEFT), Cost and Makespan Scheduling of Workflows in the Cloud (CMSWC), Hybrid Discrete Cuckoo Search Algorithm (HDCSA), and Multi-Objective Best Fit Decreasing (MOBFD) approaches. Since the comparative algorithms are bi-objectives, the multi-objective version of each is customized commensurate with the stated problem to prepare the same conditions. The simulation results prove that the proposed TSO-MCR significantly outperforms other state-of-the-art. It has 4.23, 8.93, 2.08, and 4.24% improvement against all counterparts in all 12 scenarios respectively in terms of makespan, total monetary cost, reliability, and the final score function incorporating all weighted objectives. It is worth mentioning that the comparison has been done on the datasets including both scientific workflow and random applications with different communication-to-computation ratio (CCR) values.
With the advancement of the cloud computing environment, the users’ expectations to gain better services significantly increased. One of the most prominent parts of cloud systems is the task scheduling concept in which its improvement can increase the users’ satisfaction as a consequence. Most of the published literature in this domain is extended to either a single-objective or bi-objective perspective. This paper presents a heuristic task scheduling algorithm for the optimization of makespan -cost-reliability (TSO-MCR) objectives. In addition, the users’ constraints are considered in the proposed optimization model. To this end, the task ranking approach, ignoring the unreliable processors, using Pareto dominance, and crowding distance approaches are utilized so the trade-off amongst potentially conflicting objectives is gained. To verify the effectiveness of the proposed TSO-MCR, its performance is compared with Multi-Objective Heterogeneous Earliest Finish Time (MOHEFT), Cost and Makespan Scheduling of Workflows in the Cloud (CMSWC), Hybrid Discrete Cuckoo Search Algorithm (HDCSA), and Multi-Objective Best Fit Decreasing (MOBFD) approaches. Since the comparative algorithms are bi-objectives, the multi-objective version of each is customized commensurate with the stated problem to prepare the same conditions. The simulation results prove that the proposed TSO-MCR significantly outperforms other state-of-the-art. It has 4.23, 8.93, 2.08, and 4.24% improvement against all counterparts in all 12 scenarios respectively in terms of makespan , total monetary cost, reliability, and the final score function incorporating all weighted objectives. It is worth mentioning that the comparison has been done on the datasets including both scientific workflow and random applications with different communication-to-computation ratio (CCR) values.
ArticleNumber 137
Author Motameni, Homayun
Hosseini Shirvani, Mirsaeid
Boroumand, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Boroumand
  fullname: Boroumand, Ali
  organization: Department of Computer Engineering, Sari Branch, Islamic Azad University
– sequence: 2
  givenname: Mirsaeid
  surname: Hosseini Shirvani
  fullname: Hosseini Shirvani, Mirsaeid
  email: mirsaeid_hosseini@iau.ac.ir
  organization: Department of Computer Engineering, Sari Branch, Islamic Azad University
– sequence: 3
  givenname: Homayun
  surname: Motameni
  fullname: Motameni, Homayun
  organization: Department of Computer Engineering, Sari Branch, Islamic Azad University
BookMark eNp9kF1LwzAUhoNMcE7_gFcBr6v5aJfUuzH8goE3eh3SNF2ztclM0oH-erNVELzYVQ6c98l5eS7BxDqrAbjB6A4jxO4DRgWfZ4jkGcp5TjN6Bqa4YDRjRU4naaZpzXjBLsBlCBuEUMlIOQXbBWz14E2IRsEowxYG1ep66IxdQ9mtnTex7aGxUHVuqKFy_W6Ih6W2e-Od7bWND1Ba6Pbay65LiRBhb6zpzbeMxlkodzvvpGqvwHkju6Cvf98Z-Hh6fF--ZKu359flYpUpisuYaUkqlVe8Jlzn1bzAKvXmvKgaqihhCjecYKwQkgpjLFlREikrTbhSvMaY0xm4Hf9NZz8HHaLYuMHbdFJQTOmckCQrpfiYUt6F4HUjlInHwtFL0wmMxEGtGNWKpFYc1QqaUPIP3XnTS_91GqIjFFLYrrX_a3WC-gGUP4_Q
CitedBy_id crossref_primary_10_1016_j_suscom_2025_101209
crossref_primary_10_1016_j_jii_2025_100936
crossref_primary_10_3390_fi17020051
crossref_primary_10_1007_s11227_025_07231_9
crossref_primary_10_1007_s00607_025_01513_z
crossref_primary_10_1007_s12083_025_02105_6
Cites_doi 10.1016/j.future.2018.09.014
10.1007/s00521-021-06289-9
10.1007/s11227-019-03004-3
10.1186/s13174-014-0011-3
10.1007/s11227-021-03764-x
10.1007/s00607-019-00740-5
10.1109/MCSE.2018.2873866
10.1016/j.jksuci.2016.05.003
10.1109/TCSET49122.2020.235532
10.1016/j.cosrev.2021.100398
10.1109/71.503776
10.1016/j.jksuci.2021.05.011
10.6028/NIST.SP.800-145
10.1080/03772063.2014.988757
10.1016/j.jnca.2019.06.006
10.1016/j.jnca.2015.05.001
10.1007/s10723-015-9340-0
10.1007/s40747-021-00368-z
10.1016/j.simpat.2015.07.001
10.1016/10.1109/TASE.2015.2500574
10.1109/ACCESS.2023.3318553
10.1016/j.parco.2021.102828
10.1016/j.compeleceng.2022.108458
10.1016/j.sysarc.2020.101837
10.1007/s00607-023-01215-4
10.1007/s11227-022-04703-0
10.1016/j.future.2016.10.034
10.1016/j.future.2008.12.001
10.1007/s00521-023-08682-y
10.1186/s13677-022-00374-7
10.1002/cpe.4044
10.1016/j.jpdc.2010.05.002
10.1007/s40747-021-00528-1
10.1016/j.parco.2017.01.002
10.1109/WORKS.2008.4723958
10.1109/TPDS.2013.57
10.1109/RAECS.2014.6799514
10.1016/j.comnet.2023.110161
10.1109/71.207593
10.1016/j.ins.2014.02.122
10.1016/j.asoc.2023.111142
10.1007/s10723-017-9424-0
10.1007/s10586-024-04468-6
10.1007/978-81-322-1759-6_53
10.1007/s00500-023-09201-w
10.1016/j.procs.2017.12.093
10.22094/joie.2020.1877455.1685
10.1016/j.future.2018.05.059
10.23967/j.rimni.2022.03.001
10.1016/j.procs.2021.12.137
10.1007/978-3-031-24848-1_2
10.1049/sfw2.12072
10.1007/s00607-024-01263-4
10.1109/4235.996017
10.1109/71.993206
10.1155/2023/4350615
10.1007/s10723-023-09711-9
10.1016/j.compeleceng.2017.11.018
10.1016/j.engappai.2020.103501
10.1016/j.suscom.2015.08.001
10.1109/CloudCom.2012.6427573
10.1007/s11227-023-05806-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10586-024-04843-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
ExternalDocumentID 10_1007_s10586_024_04843_3
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PHGZT
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
ABBRH
ABRTQ
ADKFA
AFDZB
AFFHD
AFOHR
AGQPQ
AHPBZ
ATHPR
CITATION
PHGZM
PQGLB
JQ2
ID FETCH-LOGICAL-c319t-ea2bc4b8d28e4b651c785885bf3c327c1f8211c00ac111a7592aabe28cc8d1183
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001365489600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-7857
IngestDate Wed Nov 26 14:51:44 EST 2025
Sat Nov 29 08:05:16 EST 2025
Tue Nov 18 20:56:56 EST 2025
Fri Mar 28 01:22:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Task scheduling
Cloud computing
Multi objective heuristic algorithm
Reliability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ea2bc4b8d28e4b651c785885bf3c327c1f8211c00ac111a7592aabe28cc8d1183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3133622058
PQPubID 2043865
ParticipantIDs proquest_journals_3133622058
crossref_citationtrail_10_1007_s10586_024_04843_3
crossref_primary_10_1007_s10586_024_04843_3
springer_journals_10_1007_s10586_024_04843_3
PublicationCentury 2000
PublicationDate 20250400
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 4843_CR35
L Zhang (4843_CR21) 2023; 21
S Gill (4843_CR43) 2019; 17
4843_CR70
H Materwala (4843_CR39) 2022; 197
YK Kwok (4843_CR23) 1996; 7
M Shojaeefard (4843_CR32) 2022; 28
A Arunarani (4843_CR13) 2019; 91
A Khalili (4843_CR34) 2017; 29
S Vobugari (4843_CR55) 2015; 61
GC Sih (4843_CR24) 1993; 4
B Sahu (4843_CR53) 2023; 4350615
T Hai (4843_CR22) 2023; 12
SM Hosseini (4843_CR10) 2020; 90
4843_CR38
M Kumar (4843_CR29) 2018; 69
4843_CR45
4843_CR47
A Arabnejad (4843_CR18) 2014; 25
M Kumar (4843_CR14) 2019; 143
A Verma (4843_CR48) 2017; 62
M Naghshnejad (4843_CR57) 2020; 76
X Li (4843_CR30) 2015; 14
T Carli (4843_CR36) 2016; 9
K Dubey (4843_CR28) 2018; 125
DM Khademi (4843_CR56) 2024; 27
4843_CR2
4843_CR3
4843_CR4
4843_CR5
JJ Durillo (4843_CR19) 2015; 58
P Banerjee (4843_CR20) 2023; 11
4843_CR6
M Tanha (4843_CR49) 2021; 33
4843_CR7
MA Nezafat Tabalvandani (4843_CR61) 2024; 25
AY Asghari (4843_CR46) 2023; 79
SM Hosseini (4843_CR54) 2024; 80
4843_CR11
M Mollajafari (4843_CR15) 2016; 32
M Hosseini Shirvani (4843_CR1) 2022; 16
R Noorian Talouki (4843_CR31) 2022
A Tchernykh (4843_CR42) 2016; 14
SM Hosseini (4843_CR58) 2022; 8
SS Mousavi Nik (4843_CR59) 2020; 102
D Ardagna (4843_CR16) 2014; 5
Z Deng (4843_CR51) 2021; 77
H Topcuoglu (4843_CR17) 2002; 13
X Yuming (4843_CR25) 2014; 270
M Mollajafari (4843_CR12) 2023; 35
4843_CR68
4843_CR67
4843_CR69
4843_CR64
KJ Javadian (4843_CR33) 2021; 2
4843_CR65
K Deb (4843_CR66) 2002; 6
Y Ramzanpoor (4843_CR52) 2022; 8
4843_CR60
4843_CR62
A Seifhosseini (4843_CR9) 2024; 240
SC Nayak (4843_CR37) 2018; 30
SS Gill (4843_CR63) 2020; 22
D Liu (4843_CR50) 2018; 89
W Zhu (4843_CR41) 2017; 69
SM Hosseini (4843_CR26) 2021; 108
Q Zhao (4843_CR40) 2016; 59
P Han (4843_CR44) 2021; 112
R Buyya (4843_CR8) 2009; 25
4843_CR27
References_xml – volume: 91
  start-page: 407
  year: 2019
  ident: 4843_CR13
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.09.014
– volume: 33
  start-page: 16951
  year: 2021
  ident: 4843_CR49
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06289-9
– volume: 76
  start-page: 122
  year: 2020
  ident: 4843_CR57
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-019-03004-3
– volume: 5
  start-page: 1
  issue: 11
  year: 2014
  ident: 4843_CR16
  publication-title: J. Internet Serv. Appl.
  doi: 10.1186/s13174-014-0011-3
– volume: 77
  start-page: 11643
  year: 2021
  ident: 4843_CR51
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-03764-x
– volume: 102
  start-page: 477
  year: 2020
  ident: 4843_CR59
  publication-title: Computing
  doi: 10.1007/s00607-019-00740-5
– volume: 22
  start-page: 52
  issue: 3
  year: 2020
  ident: 4843_CR63
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2018.2873866
– ident: 4843_CR6
– volume: 30
  start-page: 152
  issue: 2
  year: 2018
  ident: 4843_CR37
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2016.05.003
– ident: 4843_CR64
  doi: 10.1109/TCSET49122.2020.235532
– ident: 4843_CR2
– ident: 4843_CR62
  doi: 10.1016/j.cosrev.2021.100398
– volume: 7
  start-page: 506
  issue: 5
  year: 1996
  ident: 4843_CR23
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.503776
– year: 2022
  ident: 4843_CR31
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2021.05.011
– ident: 4843_CR7
  doi: 10.6028/NIST.SP.800-145
– volume: 61
  start-page: 132
  issue: 2
  year: 2015
  ident: 4843_CR55
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2014.988757
– volume: 143
  start-page: 1
  year: 2019
  ident: 4843_CR14
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2019.06.006
– volume: 59
  start-page: 14
  year: 2016
  ident: 4843_CR40
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2015.05.001
– volume: 14
  start-page: 5
  issue: 1
  year: 2016
  ident: 4843_CR42
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-015-9340-0
– ident: 4843_CR47
– volume: 32
  start-page: 1541
  year: 2016
  ident: 4843_CR15
  publication-title: J. Inf. Sci. Eng.
– volume: 8
  start-page: 361
  year: 2022
  ident: 4843_CR52
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00368-z
– volume: 58
  start-page: 95
  issue: 1
  year: 2015
  ident: 4843_CR19
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2015.07.001
– volume: 14
  start-page: 1195
  issue: 2
  year: 2015
  ident: 4843_CR30
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1016/10.1109/TASE.2015.2500574
– ident: 4843_CR3
– volume: 11
  start-page: 105578
  year: 2023
  ident: 4843_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3318553
– volume: 108
  start-page: 1
  issue: 102828
  year: 2021
  ident: 4843_CR26
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2021.102828
– ident: 4843_CR68
  doi: 10.1016/j.compeleceng.2022.108458
– volume: 112
  start-page: 1
  issue: 10183
  year: 2021
  ident: 4843_CR44
  publication-title: J. Syst. Architect.
  doi: 10.1016/j.sysarc.2020.101837
– ident: 4843_CR70
  doi: 10.1007/s00607-023-01215-4
– volume: 79
  start-page: 1451
  year: 2023
  ident: 4843_CR46
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04703-0
– volume: 69
  start-page: 66
  year: 2017
  ident: 4843_CR41
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2016.10.034
– volume: 25
  start-page: 599
  issue: 6
  year: 2009
  ident: 4843_CR8
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2008.12.001
– volume: 35
  start-page: 18035
  year: 2023
  ident: 4843_CR12
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08682-y
– volume: 12
  start-page: 15
  year: 2023
  ident: 4843_CR22
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-022-00374-7
– volume: 29
  start-page: 1
  issue: 11
  year: 2017
  ident: 4843_CR34
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.4044
– ident: 4843_CR65
  doi: 10.1016/j.jpdc.2010.05.002
– volume: 8
  start-page: 1085
  year: 2022
  ident: 4843_CR58
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00528-1
– volume: 62
  start-page: 1
  year: 2017
  ident: 4843_CR48
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2017.01.002
– ident: 4843_CR67
  doi: 10.1109/WORKS.2008.4723958
– volume: 25
  start-page: 682
  issue: 3
  year: 2014
  ident: 4843_CR18
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2013.57
– ident: 4843_CR11
  doi: 10.1109/RAECS.2014.6799514
– volume: 240
  start-page: 1
  issue: 110161
  year: 2024
  ident: 4843_CR9
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2023.110161
– volume: 4
  start-page: 175
  issue: 2
  year: 1993
  ident: 4843_CR24
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.207593
– ident: 4843_CR4
– volume: 270
  start-page: 255
  year: 2014
  ident: 4843_CR25
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.122
– ident: 4843_CR38
  doi: 10.1016/j.asoc.2023.111142
– volume: 17
  start-page: 385
  year: 2019
  ident: 4843_CR43
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-017-9424-0
– ident: 4843_CR35
– volume: 27
  start-page: 10833
  year: 2024
  ident: 4843_CR56
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-024-04468-6
– ident: 4843_CR27
  doi: 10.1007/978-81-322-1759-6_53
– volume: 25
  start-page: 5173
  year: 2024
  ident: 4843_CR61
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-023-09201-w
– volume: 125
  start-page: 725
  year: 2018
  ident: 4843_CR28
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2017.12.093
– volume: 2
  start-page: 169
  issue: 14
  year: 2021
  ident: 4843_CR33
  publication-title: J. Optim. Ind. Eng.
  doi: 10.22094/joie.2020.1877455.1685
– volume: 89
  start-page: 455
  year: 2018
  ident: 4843_CR50
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.05.059
– volume: 28
  start-page: 1
  issue: 1
  year: 2022
  ident: 4843_CR32
  publication-title: Rev. int. métodos numér. cálc. diseñoing.
  doi: 10.23967/j.rimni.2022.03.001
– volume: 197
  start-page: 238
  year: 2022
  ident: 4843_CR39
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2021.12.137
– ident: 4843_CR60
  doi: 10.1007/978-3-031-24848-1_2
– volume: 16
  start-page: 603
  issue: 6
  year: 2022
  ident: 4843_CR1
  publication-title: IET Soft.
  doi: 10.1049/sfw2.12072
– ident: 4843_CR69
  doi: 10.1007/s00607-024-01263-4
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 4843_CR66
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– ident: 4843_CR5
– volume: 13
  start-page: 260
  issue: 3
  year: 2002
  ident: 4843_CR17
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.993206
– volume: 4350615
  start-page: 1
  year: 2023
  ident: 4843_CR53
  publication-title: Appl. Bionics Biomech.
  doi: 10.1155/2023/4350615
– volume: 21
  start-page: 75
  year: 2023
  ident: 4843_CR21
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-023-09711-9
– volume: 69
  start-page: 395
  year: 2018
  ident: 4843_CR29
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.11.018
– volume: 90
  start-page: 1
  issue: 103501
  year: 2020
  ident: 4843_CR10
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103501
– volume: 9
  start-page: 20
  year: 2016
  ident: 4843_CR36
  publication-title: Sustain. Comput. Inform. Syst.
  doi: 10.1016/j.suscom.2015.08.001
– ident: 4843_CR45
  doi: 10.1109/CloudCom.2012.6427573
– volume: 80
  start-page: 9384
  year: 2024
  ident: 4843_CR54
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-023-05806-y
SSID ssj0009729
Score 2.4055443
Snippet With the advancement of the cloud computing environment, the users’ expectations to gain better services significantly increased. One of the most prominent...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 137
SubjectTerms Algorithms
Cloud computing
Computer Communication Networks
Computer Science
Customer relationship management
Customer services
Failure
Heuristic
Heuristic task scheduling
Literature reviews
Multiple objective analysis
Operating Systems
Optimization
Optimization models
Processor Architectures
Quality of service
Reliability
Scheduling
Search algorithms
Software services
User satisfaction
Workflow
Title A heuristic task scheduling algorithm in cloud computing environment: an overall cost minimization approach
URI https://link.springer.com/article/10.1007/s10586-024-04843-3
https://www.proquest.com/docview/3133622058
Volume 28
WOSCitedRecordID wos001365489600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQDlwg0pN0jYutwkxcZoQL-1WpWnKpnUdWjt-P0nW0oEACc5xrcqJY1vx9xmhc6GULjIUcXhMPcdjnDjgJYETAEidv4aepMIOm-CDAQyH4V0FCivqbvf6SdLe1CtgNx9Mw6xpnACPOWwdbehwx00j3_3Dc0O1y-1sMsK0NAefV1CZ73V8DkdNjvnlWdRGm377f_-5g7ar7BL3lsdhF62pfA-168kNuHLkfTTp4ZFaLEmacSmKCdZFrg46BpuORfYym4_L0RSPcyyz2SLB0mowiyvAuCsscmw6QEWWaYmixIanZFoBO3HNVn6Anvo3j9e3TjV2wZHaH0tHCRpLL4aEgvLiwCdSWxHAj1MmGeWSpKCrRum6QuqLUnA_pELEioKUkOh6hR2iVj7L1RHCEArCOeMpBDpTI1qFqxTx0zTgInE57yBSWz-SFSe5GY2RRQ2bsrFmpK0ZWWtGrIMuPr55XTJy_CrdrTc1qryziJguzAODMIYOuqw3sVn-Wdvx38RP0BY144Jto08Xtcr5Qp2iTflWjov5mT217wiy5ng
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8An1xfuJ0ah5808KStM3NNxFl4hyCU_ZW0jR1w9rJ2vn3m3StU1FBn3M9yiWXuyP3-x3AkdTaFBmaOiJkruNyQR10I9_xEZXJX1uuYrIYNiG6Xez3W7clKCyrut2rJ8nipv4AdvPQNszaxgl0ucPnYdFlJsO3Nfrdw4xqVxSzySg30gI9UUJlvtfxORzNcswvz6JFtLms_e8_12C1zC7J2fQ4rMOcTjegVk1uIKUjb8LTGRnoyZSkmeQyeyKmyDVBx2LTiUweR-NhPngmw5SoZDSJiCo02MUPwLhTIlNiO0BlkhiJLCeWp-S5BHaSiq18C-4vL3rnbaccu-Ao44-5oyULlRtixFC7oe9RZayI6IUxV5wJRWM0VaNqNqUyF6UUXotJGWqGSmFk6hW-DQvpKNU7QLAlqRBcxOibTI0aFU2tqRfHvpBRU4g60Mr6gSo5ye1ojCSYsSlbawbGmkFhzYDX4fj9m5cpI8ev0o1qU4PSO7OAm8LctwhjrMNJtYmz5Z-17f5N_BCW272bTtC56l7vwQqzo4OLpp8GLOTjid6HJfWaD7PxQXGC3wDecelc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4psWlaZubb0MdijIGfrC3kqapG-u6sXX-_SZd66aoID7nepRLLndH7vc7gFOhlC4yFLV4YDuWwzi10Ak9y0OUOn-tO9IW2bAJ3mphp1NvL6D4s2734klyhmkwLE1JejEKo4sF4JuLpnnWNFGgwyy2DCuOaZcz9frjy5x2l2dzyijT0hxdnsNmvtfxOTTN880vT6RZ5GmW___Pm7CRZ52kMTsmW7Ckkm0oFxMdSO7gO9BvkK6azsibSSomfaKLXx2MDGadiPh1OO6l3QHpJUTGw2lIZKbBLC4A5i6JSIjpDBVxrCUmKTH8JYMc8EkKFvNdeG7ePF3dWvk4BktqP00tJexAOgGGNion8FwqtUUR3SBiktlc0gh1NSlrNSH1BSq4W7eFCJSNUmKo6xi2B6VkmKh9IFgXlHPGI_R0Bke1ippS1I0ij4uwxnkFaLETvsy5ys3IjNifsywba_ramn5mTZ9V4Ozjm9GMqeNX6WqxwX7utROf6YLdM8hjrMB5saHz5Z-1HfxN_ATW2tdN_-GudX8I67aZKJz1AlWhlI6n6ghW5Vvam4yPs8P8DhWB8jc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+heuristic+task+scheduling+algorithm+in+cloud+computing+environment%3A+an+overall+cost+minimization+approach&rft.jtitle=Cluster+computing&rft.au=Boroumand%2C+Ali&rft.au=Hosseini+Shirvani%2C+Mirsaeid&rft.au=Motameni%2C+Homayun&rft.date=2025-04-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs10586-024-04843-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_024_04843_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon