Numerical Computation of Optimal Control Problems with Atangana–Baleanu Fractional Derivatives

In this paper, a computational method is proposed for solving a class of fractional optimal control problems subject to canonical constraints of equality and inequality. Fractional derivatives are described in the Atangana–Baleanu-Caputo sense, and their fractional orders can be different. To solve...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of optimization theory and applications Ročník 197; číslo 2; s. 798 - 816
Hlavní autori: Liu, Chongyang, Yu, Changjun, Gong, Zhaohua, Cheong, Huey Tyng, Teo, Kok Lay
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2023
Springer Nature B.V
Predmet:
ISSN:0022-3239, 1573-2878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, a computational method is proposed for solving a class of fractional optimal control problems subject to canonical constraints of equality and inequality. Fractional derivatives are described in the Atangana–Baleanu-Caputo sense, and their fractional orders can be different. To solve this problem, we present a discretization scheme based on the trapezoidal rule and a novel numerical integration technique. Then, the gradient formulas of the cost and constraint functions with respect to the decision variables are derived. Furthermore, a gradient-based optimization algorithm for solving the discretized optimal control problem is developed. Finally, the applicability and effectiveness of the proposed algorithm are verified through three non-trivial example problems.
AbstractList In this paper, a computational method is proposed for solving a class of fractional optimal control problems subject to canonical constraints of equality and inequality. Fractional derivatives are described in the Atangana–Baleanu-Caputo sense, and their fractional orders can be different. To solve this problem, we present a discretization scheme based on the trapezoidal rule and a novel numerical integration technique. Then, the gradient formulas of the cost and constraint functions with respect to the decision variables are derived. Furthermore, a gradient-based optimization algorithm for solving the discretized optimal control problem is developed. Finally, the applicability and effectiveness of the proposed algorithm are verified through three non-trivial example problems.
Author Gong, Zhaohua
Cheong, Huey Tyng
Liu, Chongyang
Yu, Changjun
Teo, Kok Lay
Author_xml – sequence: 1
  givenname: Chongyang
  orcidid: 0000-0002-2229-6717
  surname: Liu
  fullname: Liu, Chongyang
  email: chongyangliu@aliyun.com
  organization: School of Mathematics and Information Science, Shandong Technology and Business University
– sequence: 2
  givenname: Changjun
  surname: Yu
  fullname: Yu, Changjun
  organization: Department of Mathematics, Shanghai University
– sequence: 3
  givenname: Zhaohua
  surname: Gong
  fullname: Gong, Zhaohua
  organization: School of Mathematics and Information Science, Shandong Technology and Business University
– sequence: 4
  givenname: Huey Tyng
  surname: Cheong
  fullname: Cheong, Huey Tyng
  organization: School of Mathematical Sciences, Sunway University
– sequence: 5
  givenname: Kok Lay
  surname: Teo
  fullname: Teo, Kok Lay
  organization: School of Mathematical Sciences, Sunway University
BookMark eNp9kL1OwzAURi1UJNrCCzBFYg74p07ssRQKSBVlgNk4xi6pkjjYThEb78Ab8iS4DRISQwfL0tV3Pt17RmDQ2EYDcIrgOYIwv_AIcpqnEJP4MMIpPQBDRHOSYpazARjCOE4JJvwIjLxfQwg5yydD8Hzf1dqVSlbJzNZtF2QobZNYkyzbUNa7cROcrZIHZ4tK1z55L8NrMg2yWclGfn9-XcpKy6ZL5k6qLRyZq1i5iU0b7Y_BoZGV1ye__xg8za8fZ7fpYnlzN5suUkUQD6nmBknJUKG0YqwgLJMEM6WzF63MhCuF-URpIyVH0GBCDVeoKHJiEC2KDGsyBmd9b-vsW6d9EGvbubiMF5ghCinHGYsp1qeUs947bYQq-5ODk2UlEBRbn6L3KaJPsfMpaETxP7R1UZD72A-RHvIx3Ky0-9tqD_UDAZ2NUQ
CitedBy_id crossref_primary_10_1016_j_chaos_2023_113964
crossref_primary_10_1016_j_cam_2025_116526
crossref_primary_10_1186_s13660_024_03140_2
crossref_primary_10_1016_j_cam_2025_116814
crossref_primary_10_1002_oca_70005
crossref_primary_10_1007_s11768_025_00276_4
crossref_primary_10_1016_j_chaos_2024_115193
crossref_primary_10_1016_j_cam_2024_116169
Cites_doi 10.1007/s11590-022-01926-1
10.1115/1.2814055
10.1080/00207721.2022.2058640
10.1016/j.jocs.2021.101342
10.1007/s10957-017-1186-0
10.1137/20M1351436
10.1016/j.amc.2021.126270
10.1177/10775463211016967
10.1007/s10957-011-9904-5
10.1080/00207179008934113
10.1016/j.amc.2022.127094
10.1016/j.chaos.2022.112202
10.3390/axioms10020058
10.1016/j.physa.2017.12.007
10.1007/s40314-021-01595-3
10.1016/j.automatica.2016.12.022
10.1080/25765299.2022.2112646
10.1016/j.amc.2014.02.086
10.1002/oca.2877
10.1007/s10957-021-01935-7
10.1201/9781003263517
10.1016/j.camwa.2009.08.006
10.1177/1077546308088565
10.1002/cta.2348
10.1016/j.cnsns.2017.12.003
10.1137/19M1282210
10.1016/j.camwa.2019.03.043
10.1177/1077546314567181
10.1177/1077546320933129
10.1186/s13662-020-02793-9
10.3182/20060719-3-PT-4902.00011
10.1007/s10957-017-1163-7
10.1002/oca.2664
10.2298/TSCI160111018A
10.1007/s10957-018-1418-y
10.1007/s10957-021-01926-8
10.21136/AM.2018.0083-18
10.1080/00207721.2021.1947411
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10957-023-02212-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
EndPage 816
ExternalDocumentID 10_1007_s10957_023_02212_5
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12271307
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Fundamental Research Grant Scheme Fundamental Research Grant Scheme of Malaysia
  grantid: FRGS/1/2021/STG06/SYUC/03/1; 12271335
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-e9f1aa81bcec88b386a328ce6decf49cc294cefaa910f235f9c1bb73f15bb62e3
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000963485500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3239
IngestDate Wed Nov 05 03:34:15 EST 2025
Tue Nov 18 21:46:36 EST 2025
Sat Nov 29 06:02:32 EST 2025
Fri Feb 21 02:44:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fractional optimal control
Atangana–Baleanu derivative
Optimization algorithm
90C55
34K37
49M37
Discretization scheme
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e9f1aa81bcec88b386a328ce6decf49cc294cefaa910f235f9c1bb73f15bb62e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2229-6717
PQID 2815059268
PQPubID 48247
PageCount 19
ParticipantIDs proquest_journals_2815059268
crossref_citationtrail_10_1007_s10957_023_02212_5
crossref_primary_10_1007_s10957_023_02212_5
springer_journals_10_1007_s10957_023_02212_5
PublicationCentury 2000
PublicationDate 20230500
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 5
  year: 2023
  text: 20230500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Samko, Kilbas, Marchev (CR29) 1993
Heydari, Razzaghi (CR15) 2022; 53
Singh, Srivastava, Nieto (CR31) 2022
Kamocki (CR18) 2014; 235
Zeng, Migórski, Liu (CR42) 2021; 31
Gómez-Aguilar (CR11) 2018; 494
Zeng, Migórski, Khan (CR41) 2021; 59
Baleanu, Defterli, Agrawal (CR5) 2009; 154
Liu, Gong, Wang, Teo (CR23) 2022
Teo, Li, Yu, Rehbock (CR35) 2021
Baleanu, Fernandez (CR6) 2018; 59
Ammi, Torres (CR3) 2019; 78
Tunç, Atan, Tunç, Yao (CR37) 2021; 10
Baleanu, Jajari, Hajipour (CR7) 2017; 175
Tajadodi, Khan, Gómez-Aguilar, Khan (CR33) 2021; 42
Yari (CR39) 2020; 27
Luus (CR25) 1990; 51
Nocedal, Wright (CR27) 2006
Rabiei, Ordokhani (CR28) 2019; 63
Wang, Li, Liu (CR38) 2022; 43
Batool, Talib, Riaz, Tunç (CR8) 2022; 29
Agrawal (CR2) 2008; 130
Li, Wang, Rehbock (CR21) 2019; 180
Tricaud, Chen (CR36) 2010; 59
Li, Yu, Teo, Duan (CR20) 2011; 151
Agrawal (CR1) 2006; 39
Heydari, Tavakoli, Razzaghi (CR16) 2022; 53
Keshavarz, Ordokhani, Razzaghi (CR19) 2016; 22
Tang, Shi, Wang (CR34) 2017; 78
Bohner, Tunç, Tunç (CR9) 2021; 40
Gong, Liu, Teo, Yi (CR14) 2022; 425
Gómez-Aguilar, Atangana, Morales-Delgado (CR12) 2017; 45
Liu, Gong, Teo, Wang (CR22) 2022; 193
Jafari, Ganji, Sayevand, Baleanu (CR17) 2022; 28
Liu, Gong, Yu, Wang, Teo (CR24) 2021; 191
Mu, Wang, Liu (CR26) 2020; 187
Singh, Mehra (CR30) 2021; 51
Caputo, Fabrizio (CR10) 2015; 1
Sweilam, Al-Mekhlafi, Assiri, Atangana (CR32) 2020; 2020
Gong, Liu, Teo, Wang, Wu (CR13) 2021; 405
Zafar, Zaib, Hussain, Tunç, Javeed (CR40) 2022; 160
Atangana, Baleanu (CR4) 2016; 20
R Luus (2212_CR25) 1990; 51
Z Zafar (2212_CR40) 2022; 160
O Tunç (2212_CR37) 2021; 10
SD Zeng (2212_CR42) 2021; 31
H Jafari (2212_CR17) 2022; 28
MH Heydari (2212_CR15) 2022; 53
H Singh (2212_CR31) 2022
D Baleanu (2212_CR5) 2009; 154
JF Gómez-Aguilar (2212_CR11) 2018; 494
OP Agrawal (2212_CR2) 2008; 130
C Tricaud (2212_CR36) 2010; 59
A Batool (2212_CR8) 2022; 29
M Caputo (2212_CR10) 2015; 1
SD Zeng (2212_CR41) 2021; 59
NH Sweilam (2212_CR32) 2020; 2020
KL Teo (2212_CR35) 2021
MRS Ammi (2212_CR3) 2019; 78
H Tajadodi (2212_CR33) 2021; 42
E Keshavarz (2212_CR19) 2016; 22
MH Heydari (2212_CR16) 2022; 53
A Yari (2212_CR39) 2020; 27
A Atangana (2212_CR4) 2016; 20
M Bohner (2212_CR9) 2021; 40
C Liu (2212_CR22) 2022; 193
OP Agrawal (2212_CR1) 2006; 39
D Baleanu (2212_CR6) 2018; 59
D Baleanu (2212_CR7) 2017; 175
Z Gong (2212_CR13) 2021; 405
P Mu (2212_CR26) 2020; 187
C Liu (2212_CR24) 2021; 191
SG Samko (2212_CR29) 1993
Z Gong (2212_CR14) 2022; 425
W Li (2212_CR21) 2019; 180
B Li (2212_CR20) 2011; 151
S Wang (2212_CR38) 2022; 43
K Rabiei (2212_CR28) 2019; 63
A Singh (2212_CR30) 2021; 51
R Kamocki (2212_CR18) 2014; 235
J Nocedal (2212_CR27) 2006
JF Gómez-Aguilar (2212_CR12) 2017; 45
X Tang (2212_CR34) 2017; 78
C Liu (2212_CR23) 2022
References_xml – volume: 1
  start-page: 73
  year: 2015
  end-page: 85
  ident: CR10
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Prog. Fract. Differ. Appl.
– volume: 59
  start-page: 444
  year: 2018
  end-page: 462
  ident: CR6
  article-title: On some new properties of fractional derivatives with Mittag-Leffler kernel
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 51
  start-page: 101342
  year: 2021
  ident: CR30
  article-title: Wavelet collocation method based on Legendre polynomials and its application in solving the stochastic fractional integro-differential equations
  publication-title: J. Comput. Sci.
– volume: 151
  start-page: 260
  year: 2011
  end-page: 291
  ident: CR20
  article-title: An exact penalty function method for continuous inequality constrained optimal control problem
  publication-title: J. Optim. Theory Appl.
– volume: 191
  start-page: 83
  year: 2021
  end-page: 117
  ident: CR24
  article-title: Optimal control computation for nonlinear fractional time-delay systems with state inequality constraints
  publication-title: J. Optim. Theory Appl.
– volume: 175
  start-page: 718
  year: 2017
  end-page: 737
  ident: CR7
  article-title: A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel
  publication-title: J. Optim. Theory Appl.
– volume: 235
  start-page: 94
  year: 2014
  end-page: 104
  ident: CR18
  article-title: On the existence of optimal solutions to fractional optimal control problems
  publication-title: Appl. Math. Comput.
– volume: 187
  start-page: 234
  year: 2020
  end-page: 247
  ident: CR26
  article-title: A control parameterization method to solve the fractional-order optimal control problem
  publication-title: J. Optim. Theory Appl.
– year: 2021
  ident: CR35
  publication-title: Applied and Computational Optimal Control: A Control Parameterization Approach
– volume: 63
  start-page: 541
  year: 2019
  end-page: 567
  ident: CR28
  article-title: Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems
  publication-title: Appl. Math.
– volume: 494
  start-page: 52
  year: 2018
  end-page: 75
  ident: CR11
  article-title: Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations
  publication-title: Phys. A
– volume: 40
  start-page: 214
  year: 2021
  ident: CR9
  article-title: Qualitative analysis of Caputo fractional integro-differential equations with constant delays
  publication-title: Comput. Appl. Math.
– volume: 45
  start-page: 1514
  year: 2017
  end-page: 1533
  ident: CR12
  article-title: Morales-Delgado, Electric circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives
  publication-title: Int. J. Circuit Theory Appl.
– volume: 193
  start-page: 856
  year: 2022
  end-page: 876
  ident: CR22
  article-title: Optimal control of nonlinear fractional-order systems with multiple time-varying delays
  publication-title: J. Optim. Theory Appl.
– year: 1993
  ident: CR29
  publication-title: Fractional Integrals and Derivatives: Theory and Applications
– volume: 43
  start-page: 1096
  year: 2022
  end-page: 1108
  ident: CR38
  article-title: On necessary optimality conditions and exact penalization for a constrained fractional optimal control problem
  publication-title: Optim. Control Appl. Methods
– volume: 39
  start-page: 68
  year: 2006
  end-page: 72
  ident: CR1
  article-title: A formulation and a numerical scheme for fractional optimal control problems
  publication-title: IFAC Proc. Vol.
– volume: 51
  start-page: 995
  year: 1990
  end-page: 1013
  ident: CR25
  article-title: Optimal control by dynamic programming using systemic reduction in grid size
  publication-title: Int. J. Control
– volume: 59
  start-page: 1246
  year: 2021
  end-page: 1274
  ident: CR41
  article-title: Nonlinear quasi-hemivariational inequalities: existence and optimal control
  publication-title: SIAM J. Control. Optim.
– volume: 31
  start-page: 2829
  year: 2021
  end-page: 2862
  ident: CR42
  article-title: Well-posedness, optimal control and sensitivity analysis for a class of differential variational-hemivariational inequalities
  publication-title: SIAM J. Optim.
– year: 2022
  ident: CR23
  article-title: Numerical solution of delay fractional optimal control problems with free terminal time
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-022-01926-1
– volume: 53
  start-page: 2694
  year: 2022
  end-page: 2708
  ident: CR16
  article-title: Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative
  publication-title: Int. J. Syst. Sci.
– volume: 78
  start-page: 333
  year: 2017
  end-page: 340
  ident: CR34
  article-title: A new framework for solving fractional optimal control problems using fractional pseudospectral methods
  publication-title: Automatica
– volume: 10
  start-page: 58
  year: 2021
  ident: CR37
  article-title: Qualitative analyses of integro-fractional differential equations with Caputo derivatives and retardations via the Lyapunov-Razumikhin method
  publication-title: Axioms
– volume: 154
  start-page: 583
  year: 2009
  end-page: 597
  ident: CR5
  article-title: A central difference numerical scheme for fractional optimal control problems
  publication-title: J. Vib. Control
– year: 2006
  ident: CR27
  publication-title: Numerical Optimization
– volume: 2020
  start-page: 334
  year: 2020
  ident: CR32
  article-title: Optimal control for cancer treatment mathematical model using Atangana-Baleanu-Caputo fractional derivative
  publication-title: Adv. Differ. Equ.
– volume: 160
  start-page: 112202
  year: 2022
  ident: CR40
  article-title: Analysis and numerical simulation of tuberculosis model using different fractional derivatives
  publication-title: Chaos Solitons Fractals
– volume: 20
  start-page: 763
  year: 2016
  end-page: 769
  ident: CR4
  article-title: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model
  publication-title: Therm. Sci.
– volume: 425
  start-page: 127094
  year: 2022
  ident: CR14
  article-title: Optimal control of nonlinear fractional systems with multiple pantograph-delays
  publication-title: Appl. Math. Comput.
– volume: 130
  start-page: 011010
  year: 2008
  ident: CR2
  article-title: A quadratic numerical scheme for fractional optimal control problems
  publication-title: J. Dyn. Syst. Meas. Contr.
– volume: 53
  start-page: 240
  year: 2022
  end-page: 252
  ident: CR15
  article-title: A new class of orthonormal basis functions: application for fractional optimal control problems
  publication-title: Int. J. Syst. Sci.
– volume: 28
  start-page: 2596
  year: 2022
  end-page: 2606
  ident: CR17
  article-title: A numerical approach for solving fractional optimal control problems with mittag-leffler kernel
  publication-title: J. Vib. Control
– volume: 180
  start-page: 556
  year: 2019
  end-page: 573
  ident: CR21
  article-title: Numerical solution of fractional optimal control
  publication-title: J. Optim. Theory Appl.
– volume: 42
  start-page: 96
  year: 2021
  end-page: 106
  ident: CR33
  article-title: Optimal control problems with Atangana-Baleanu fractional derivative
  publication-title: Optim. Control Appl. Methods
– year: 2022
  ident: CR31
  publication-title: Handbook of Fractional Calculus for Engineering and Science
– volume: 27
  start-page: 698
  year: 2020
  end-page: 716
  ident: CR39
  article-title: Numerical solution for fractional optimal control problems by Hermite polynomials
  publication-title: J. Vib. Control
– volume: 78
  start-page: 1507
  year: 2019
  end-page: 1516
  ident: CR3
  article-title: Optimal control of a nonlocal thermistor problem with ABC fractional time derivatives
  publication-title: Comput. Math. Appl.
– volume: 59
  start-page: 1644
  year: 2010
  end-page: 1655
  ident: CR36
  article-title: An approximate method for numerically solving fractional order optimal control problems of general form
  publication-title: Comput. Math. Appl.
– volume: 22
  start-page: 3889
  year: 2016
  end-page: 3903
  ident: CR19
  article-title: A numerical solution for fractional optimal control problems via Bernoulli polynomials
  publication-title: J. Vib. Control
– volume: 29
  start-page: 249
  year: 2022
  end-page: 257
  ident: CR8
  article-title: Extension of lower and upper solutions approach for generalized nonlinear fractional boundary value problems
  publication-title: Arab J. Basic Appl. Sci.
– volume: 405
  start-page: 126270
  year: 2021
  ident: CR13
  article-title: Numerical solution of free final time fractional optimal control problems
  publication-title: Appl. Math. Comput.
– volume: 1
  start-page: 73
  year: 2015
  ident: 2212_CR10
  publication-title: Prog. Fract. Differ. Appl.
– volume-title: Fractional Integrals and Derivatives: Theory and Applications
  year: 1993
  ident: 2212_CR29
– volume: 130
  start-page: 011010
  year: 2008
  ident: 2212_CR2
  publication-title: J. Dyn. Syst. Meas. Contr.
  doi: 10.1115/1.2814055
– volume: 53
  start-page: 2694
  year: 2022
  ident: 2212_CR16
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2022.2058640
– volume: 51
  start-page: 101342
  year: 2021
  ident: 2212_CR30
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2021.101342
– volume-title: Applied and Computational Optimal Control: A Control Parameterization Approach
  year: 2021
  ident: 2212_CR35
– volume: 175
  start-page: 718
  year: 2017
  ident: 2212_CR7
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-017-1186-0
– volume-title: Numerical Optimization
  year: 2006
  ident: 2212_CR27
– volume: 31
  start-page: 2829
  year: 2021
  ident: 2212_CR42
  publication-title: SIAM J. Optim.
  doi: 10.1137/20M1351436
– volume: 405
  start-page: 126270
  year: 2021
  ident: 2212_CR13
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2021.126270
– volume: 28
  start-page: 2596
  year: 2022
  ident: 2212_CR17
  publication-title: J. Vib. Control
  doi: 10.1177/10775463211016967
– volume: 151
  start-page: 260
  year: 2011
  ident: 2212_CR20
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-011-9904-5
– volume: 51
  start-page: 995
  year: 1990
  ident: 2212_CR25
  publication-title: Int. J. Control
  doi: 10.1080/00207179008934113
– volume: 425
  start-page: 127094
  year: 2022
  ident: 2212_CR14
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2022.127094
– year: 2022
  ident: 2212_CR23
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-022-01926-1
– volume: 160
  start-page: 112202
  year: 2022
  ident: 2212_CR40
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112202
– volume: 10
  start-page: 58
  year: 2021
  ident: 2212_CR37
  publication-title: Axioms
  doi: 10.3390/axioms10020058
– volume: 494
  start-page: 52
  year: 2018
  ident: 2212_CR11
  publication-title: Phys. A
  doi: 10.1016/j.physa.2017.12.007
– volume: 40
  start-page: 214
  year: 2021
  ident: 2212_CR9
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-021-01595-3
– volume: 78
  start-page: 333
  year: 2017
  ident: 2212_CR34
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.12.022
– volume: 29
  start-page: 249
  year: 2022
  ident: 2212_CR8
  publication-title: Arab J. Basic Appl. Sci.
  doi: 10.1080/25765299.2022.2112646
– volume: 235
  start-page: 94
  year: 2014
  ident: 2212_CR18
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.02.086
– volume: 43
  start-page: 1096
  year: 2022
  ident: 2212_CR38
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.2877
– volume: 193
  start-page: 856
  year: 2022
  ident: 2212_CR22
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-021-01935-7
– volume-title: Handbook of Fractional Calculus for Engineering and Science
  year: 2022
  ident: 2212_CR31
  doi: 10.1201/9781003263517
– volume: 59
  start-page: 1644
  year: 2010
  ident: 2212_CR36
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.08.006
– volume: 154
  start-page: 583
  year: 2009
  ident: 2212_CR5
  publication-title: J. Vib. Control
  doi: 10.1177/1077546308088565
– volume: 45
  start-page: 1514
  year: 2017
  ident: 2212_CR12
  publication-title: Int. J. Circuit Theory Appl.
  doi: 10.1002/cta.2348
– volume: 59
  start-page: 444
  year: 2018
  ident: 2212_CR6
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.12.003
– volume: 59
  start-page: 1246
  year: 2021
  ident: 2212_CR41
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/19M1282210
– volume: 78
  start-page: 1507
  year: 2019
  ident: 2212_CR3
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2019.03.043
– volume: 22
  start-page: 3889
  year: 2016
  ident: 2212_CR19
  publication-title: J. Vib. Control
  doi: 10.1177/1077546314567181
– volume: 27
  start-page: 698
  year: 2020
  ident: 2212_CR39
  publication-title: J. Vib. Control
  doi: 10.1177/1077546320933129
– volume: 2020
  start-page: 334
  year: 2020
  ident: 2212_CR32
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-020-02793-9
– volume: 39
  start-page: 68
  year: 2006
  ident: 2212_CR1
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20060719-3-PT-4902.00011
– volume: 187
  start-page: 234
  year: 2020
  ident: 2212_CR26
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-017-1163-7
– volume: 42
  start-page: 96
  year: 2021
  ident: 2212_CR33
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.2664
– volume: 20
  start-page: 763
  year: 2016
  ident: 2212_CR4
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI160111018A
– volume: 180
  start-page: 556
  year: 2019
  ident: 2212_CR21
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1418-y
– volume: 191
  start-page: 83
  year: 2021
  ident: 2212_CR24
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-021-01926-8
– volume: 63
  start-page: 541
  year: 2019
  ident: 2212_CR28
  publication-title: Appl. Math.
  doi: 10.21136/AM.2018.0083-18
– volume: 53
  start-page: 240
  year: 2022
  ident: 2212_CR15
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2021.1947411
SSID ssj0009874
Score 2.4234602
Snippet In this paper, a computational method is proposed for solving a class of fractional optimal control problems subject to canonical constraints of equality and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 798
SubjectTerms Algorithms
Applications of Mathematics
Calculus of Variations and Optimal Control; Optimization
Discretization
Engineering
Mathematics
Mathematics and Statistics
Methods
Numerical analysis
Numerical integration
Operations Research/Decision Theory
Optimal control
Optimization
Optimization algorithms
Optimization techniques
Polynomials
Theory of Computation
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T-QwGLU4tlgKjmURwyUXdGAxsXPYFRqOERJioACJLtiOvVoJMjCZmZr_wD_kl_DZccguEjQUKXLYsvQ--3vx8R5Cu5HMmBaWElUUmsSxUEToSBLJlZSF1jQzyptNZIMBv70VV2HCrQrbKpsx0Q_UxVC7OfIDyoG6JIKm_PDxiTjXKLe6Giw0ZtF8RGnk4vw8I63oLm9UmClhlIlwaCYcnRNJRiBjwUWdH8D_iallmx8WSH3e6S99t8XLaDEwTtyrQ2QFzZjyF1r4R4cQ7i7exVurVXQ3mNTLOPe49nzw4OGhxZcwvjz4x35_O76q3Wgq7GZzcQ945h9ZytfnlyNIO7Kc4P6oPjcBZU6gyqlXGa9-o5v-6fXxGQlGDERDDx0TI2wkJRBcbTTnivFUMsq1SQujbSwAURFrY6UE7mEpSyzArVTGbJQolVLD1tBcOSzNOsJadaVKu4YWUCbtxkoBv8hS-JHKWGyo7aCoQSHXQaXcmWXc562-skMuB-Ryj1yedNDee5nHWqPjy6-3Grjy0F-rvMWqg_YbwNvXn9e28XVtm-gn9THmdkhuobnxaGK20Q89Hf-tRjs-Wt8ADOLyEw
  priority: 102
  providerName: ProQuest
Title Numerical Computation of Optimal Control Problems with Atangana–Baleanu Fractional Derivatives
URI https://link.springer.com/article/10.1007/s10957-023-02212-5
https://www.proquest.com/docview/2815059268
Volume 197
WOSCitedRecordID wos000963485500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4V6KEcSilFbEtXPnArljZ2EttH_laVKpYICgUuwXZshASh2uxy7jvwhjxJJ07CQtVWag8ZyYltRTO250vs-QZgI9KCW-UZNUVhaRwrQ5WNNNXSaF1Yy4QzIdmEGI3k6anK2qCwqjvt3m1JhpX6SbCbSgRFH4MXqxn852AB3Z2sp-Ph0cmMald23MuMcsZVGyrz-z6eu6MZxvxlWzR4m-HS_73nG3jdokuy1QyHZXjhyrew-IRzEEv7j0St1QpcjKbNls01afI7BEORW08OcC25CbfDWXaSNZlnKlL_uSVbiCkvdakfftxvo4vR5ZQMx02MBLbZxS7vAqN49Q6Oh3tfdz7TNukCtTgbJ9QpH2mNYNY6K6XhMtWcSevSwlkfK7Seiq3zWiPO8IwnHk1rjOA-SoxJmeOrMF_elm4NiDUDbdKBYwW2SQexMYglRIofTYLHjvkeRJ3uc9sykteJMa7zGZdyrcscdZkHXeZJDz49tvne8HH8tfZ6Z9K8nZtVziSC4ESxVPZgszPh7PGfe3v_b9U_wCsWRkF9OnId5ifjqfsIL-3d5Koa92FOfDvrw8L23ig7xNIXQVHuD3ZqyQ6CzGopjlBmyXk_jPKfKKbwag
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RWqlwKH1QdSm0PrSn1mJj52EfKsSjKxCw5UAlbsF2bFQJsnSzC-LW_9D_0R_FL2HsJKStVG4cesghD4-c5PPM2J75BuBdpDJupGNUF4WhcSw1lSZSVAmtVGEMy6wOxSay4VAcHcmDGfjV5sL4sMpWJwZFXYyMXyNfZQJdl0SyVKydf6e-apTfXW1LaNSw2LVXlzhlqz7tbOH_fc_Y4PPh5jZtqgpQg3CbUCtdpBR6a8YaITQXqeJMGJsW1rhYYvdkbKxTCg2pYzxx2HetM-6iROuUWY5yH8DDOMbh4EMF-5sdya9oWZ8Z5YzLJkmnSdWTSUbRQuLBfP2BPw1h593-tSEb7Nxg4X_7Qk_hSeNRk_V6CDyDGVs-h_nfeBbxbP-WnLZ6AcfDab1NdUrqmhYBnGTkyBfUn2fhcojfJwd1tZ2K-NVqso5-9Ikq1fWPnxtoVlU5JYNxnReCbbZQ5EVgUa8W4eu9vPBLmC1HpX0FxOi-0mnfsgLbpP1Ya_SfshQnihmPLXM9iNq_npuGhd0XAznNO_5oj5QckZIHpORJDz7ctjmvOUjufHq5hUfe6KMq77DRg48twLrb_5a2dLe0t_B4-3B_L9_bGe6-hjkW8O2jQZdhdjKe2hV4ZC4m36rxmzBSCBzfN_BuAJASU2w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VFiE4tPwUsdCCD3ACqxs7P_YBVYXtimph2QNIvaW2Y1eVSrZsdou48Q59mz5On6RjJ2kAid564JBDfjyKk88zY3vmG4CXkcq4kY5RXRSGxrHUVJpIUSW0UoUxLLM6FJvIxmOxvy8nS3De5sL4sMpWJwZFXUyNXyPfYgJdl0SyVGy5JixiMhhun3ynvoKU32lty2nUEBnZnz9w-la93Rvgv37F2HD3y_sPtKkwQA1Cb06tdJFS6LkZa4TQXKSKM2FsWljjYomvKmNjnVJoVB3jicN-aJ1xFyVap8xylHsLVtAKJ36MjTLaEf6KlgGaUc64bBJ2mrQ9mWQUrSUezNci-NModp7uX5uzweYN1_7nr3UfVhtPm-zUQ-MBLNnyIdz7jX8Rzz5dkdZWj-BgvKi3r45JXesigJZMHfmMevVbuBzi-smkrsJTEb-KTXbQvz5Upbr4dfYOza0qF2Q4q_NFsM0ARZ4GdvVqHb7eSIcfw3I5Le0TIEb3lU77lhXYJu3HWqNflaU4gcx4bJnrQdQiIDcNO7svEnKcd7zSHjU5oiYPqMmTHry-anNSc5Nc-_RGC5W80VNV3uGkB29asHW3_y3t6fXSXsAdxFv-cW88egZ3WYC6DxLdgOX5bGE34bY5nR9Vs-dh0BA4uGncXQJDclwS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Computation+of+Optimal+Control+Problems+with+Atangana%E2%80%93Baleanu+Fractional+Derivatives&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Liu%2C+Chongyang&rft.au=Yu%2C+Changjun&rft.au=Gong%2C+Zhaohua&rft.au=Cheong%2C+Huey+Tyng&rft.date=2023-05-01&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=197&rft.issue=2&rft.spage=798&rft.epage=816&rft_id=info:doi/10.1007%2Fs10957-023-02212-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10957_023_02212_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon