The multisensor information fusion-based deep learning model for equipment health monitor integrating subject matter expert knowledge

Nowadays, the modern production machines are usually equipped with advanced sensors to collect the data which can be further analyzed because of the advent of Industry 4.0. This study proposes a novel deep learning (DL) information fusion-based framework collaborating convolutional neural network (C...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of intelligent manufacturing Ročník 35; číslo 8; s. 4055 - 4069
Hlavní autor: Dang, Jr-Fong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2024
Springer Nature B.V
Témata:
ISSN:0956-5515, 1572-8145
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nowadays, the modern production machines are usually equipped with advanced sensors to collect the data which can be further analyzed because of the advent of Industry 4.0. This study proposes a novel deep learning (DL) information fusion-based framework collaborating convolutional neural network (CNN) architecture with subject matter expert (SME) for equipment health monitor. The author integrates the unsupervised learning with supervised learning strategies bringing several benefits. Unsupervised learning assists in identifying the underlying patterns and relation within data without the need for labeled data, while supervised learning trains the model by the labeled data to derive prediction results. Also, due to sensor data characteristics, this study develops the independent CNN-based backbone net to extract the features of multisonsor data and to allow the proposed architecture to flexibly adopt arbitrary number of sensors attached to the equipment. An empirical study is conducted to demonstrate the effectiveness and the practice viability of the proposed framework. The resulting outcomes show that the proposed algorithm has superior performance than other machine learning models. One could adopt the general framework to maintain the performance of the equipment.
AbstractList Nowadays, the modern production machines are usually equipped with advanced sensors to collect the data which can be further analyzed because of the advent of Industry 4.0. This study proposes a novel deep learning (DL) information fusion-based framework collaborating convolutional neural network (CNN) architecture with subject matter expert (SME) for equipment health monitor. The author integrates the unsupervised learning with supervised learning strategies bringing several benefits. Unsupervised learning assists in identifying the underlying patterns and relation within data without the need for labeled data, while supervised learning trains the model by the labeled data to derive prediction results. Also, due to sensor data characteristics, this study develops the independent CNN-based backbone net to extract the features of multisonsor data and to allow the proposed architecture to flexibly adopt arbitrary number of sensors attached to the equipment. An empirical study is conducted to demonstrate the effectiveness and the practice viability of the proposed framework. The resulting outcomes show that the proposed algorithm has superior performance than other machine learning models. One could adopt the general framework to maintain the performance of the equipment.
Author Dang, Jr-Fong
Author_xml – sequence: 1
  givenname: Jr-Fong
  orcidid: 0000-0003-1034-677X
  surname: Dang
  fullname: Dang, Jr-Fong
  email: jfdang@mail.ntust.edu.tw
  organization: Graduate Institute of Intelligent Manufacturing Technology, National Taiwan University of Science and Technology
BookMark eNp9kMtq4zAUhsWQgUnbeYFZCbp2q4sVWcuh9AaFbtq1kOXjRBlbciWZpg_Q964mKRS6yEIckP7vP-I7QQsfPCD0h5ILSoi8TJQ0tagIq8vhvKl2P9CSCsmqhtZigZZEiVUlBBW_0ElKW0KIalZ0id6fNoDHecgugU8hYuf7EEeTXfC4n1MZVWsSdLgDmPAAJnrn13gMHQy4RDG8zG4awWe8ATPkTXnyLu-bMqxjaSrxNLdbsBmX4gyF2U0QM_7nw-sA3RrO0M_eDAl-f85T9Hxz_XR1Vz083t5f_X2oLKcqV6AYkUSptpfWEiOsWamaCSk7xq3siCCtaLliNW2N5b2hvNw1PbNguKQd8FN0fuidYniZIWW9DXP0ZaXmlKlGrkgtSqo5pGwMKUXotXV5byRH4wZNif4vXR-k6yJd76XrXUHZN3SKbjTx7TjED1AqYb-G-PWrI9QH8P2bPw
CitedBy_id crossref_primary_10_1088_1361_6501_ad57de
crossref_primary_10_1007_s00521_025_11065_0
crossref_primary_10_1016_j_eswa_2025_128406
crossref_primary_10_1016_j_aei_2025_103167
crossref_primary_10_1007_s10845_024_02499_9
Cites_doi 10.1007/s10845-020-01591-0
10.1109/TIE.2020.2972443
10.3390/s20010168
10.1007/s12541-019-00177-y
10.1007/s00170-017-1474-8
10.1109/IIC.2015.7150869
10.1007/s13244-018-0639-9
10.1109/TII.2019.2902274
10.1016/j.jsv.2016.05.027
10.1080/0951192X.2022.2027019
10.1016/j.eswa.2022.118435
10.1109/INISTA.2018.8466309
10.1016/j.net.2019.12.029
10.1016/j.apacoust.2019.107020
10.1016/j.neucom.2019.07.034
10.1016/j.cie.2019.106024
10.1109/TII.2021.3064377
10.1016/j.knosys.2020.106679
10.1016/j.inffus.2019.12.001
10.1007/s10916-021-01761-4
10.1016/j.comcom.2020.05.048
10.1016/j.jbi.2021.103737
10.1109/ACCESS.2020.3006788
10.1016/j.inffus.2021.03.008
10.1016/j.trc.2018.04.001
10.1109/TIE.2016.2515054
10.1016/j.compind.2019.06.001
10.1016/j.neucom.2022.04.044
10.1016/j.compind.2018.11.003
10.1177/1475921718798769
10.1016/j.knosys.2020.106396
10.1109/ACCESS.2018.2886457
10.1016/j.measurement.2021.110358
10.1080/0951192X.2023.2257665
10.1109/TSM.2018.2857818
10.1016/j.asoc.2022.109554
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88E
8AL
8AO
8FD
8FE
8FG
8FJ
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M0S
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10845-024-02338-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
ProQuest Engineering Database (NC LIVE)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1572-8145
EndPage 4069
ExternalDocumentID 10_1007_s10845_024_02338_x
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: 110-2221-E-005-087-; 112-2221-E-011-143-
  funderid: http://dx.doi.org/10.13039/501100004663
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FE
8FG
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZYFGU
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-e9207099bf7cc0a5ca6942577d23c7d050b5b39241bac3fa13d058f2cea371de3
IEDL.DBID K7-
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001182049500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-5515
IngestDate Tue Dec 02 09:51:46 EST 2025
Tue Nov 18 22:11:57 EST 2025
Sat Nov 29 04:20:11 EST 2025
Fri Feb 21 02:39:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Deep learning
Convolutional neural network
Equipment health monitoring
Subject matter expert
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e9207099bf7cc0a5ca6942577d23c7d050b5b39241bac3fa13d058f2cea371de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1034-677X
PQID 3129876045
PQPubID 32407
PageCount 15
ParticipantIDs proquest_journals_3129876045
crossref_citationtrail_10_1007_s10845_024_02338_x
crossref_primary_10_1007_s10845_024_02338_x
springer_journals_10_1007_s10845_024_02338_x
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: London
PublicationTitle Journal of intelligent manufacturing
PublicationTitleAbbrev J Intell Manuf
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ZhangWLiXMaHLuoZLiXUniversal domain adaption in fault diagnostics with hybrid weighted deep adversarial learningIEEE Transactions on Industrial Informatics202117127957796710.1109/TII.2021.3064377
LasisiAAttoh-OkineNPrincipal component analysis and track quality index: A machine learning approachTransportation Research Part C: Emerging Technologies20189123024810.1016/j.trc.2018.04.001
YangFHabibullahMSZhangTXuZLimPNadarajanSHealth index-based prognostics for remaining useful life predictions in electrical machinesIEEE Transactions on Industrial Electronics2016632633264410.1109/TIE.2016.2515054
KiangalaKSWangZAn effective predictive maintenance framework for conveyor motors using dual time-series imaging and convolutional neural network in an industry 4.0 environmentIEEE Access202010110910.1109/ACCESS.2020.3006788
WangCXinCXuZQinMHeMMix-VAEs: A novel multisensory information fusion model for intelligent fault diagnosisNeurocomputing202249223424410.1016/j.neucom.2022.04.044
YangCLChenZXYangCYSensor classification using convolutional neural network by encoding multivariate time series as two-dimensional colored imagesSensors202020116810.3390/s20010168
HeZShaoHZhongXZhaoXEnsemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditionsKnowledge-Based Systems202020710639610.1016/j.knosys.2020.106396
SharmaGUmapathyKKrishnanSTrends in audio signal feature extraction methodsApplied Acoustics202015810702010.1016/j.apacoust.2019.107020
DangJ-FThe Deep learning-based equipment health monitoring model adopting subject matter expertAccepted by International Journal of Computer Integrated Manufacturing202310.1080/0951192X.2023.2257665
Biswal, S., & Sabareesh, G. R. (2015). Design and development of a wind turbine test rig for condition monitoring studies. In 2015 International Conference on Industrial Instrumentation and Control (ICIC) (pp. 891–896).
MiaoZZhouFYuanXXiaYChenKMulti- heterogeneous sensor data fusion method via convolutional neural network for fault diagnosis of wheeled mobile robotApplied Soft Computing202212910955410.1016/j.asoc.2022.109554
Kolokas, N., Vafeiadis, T., Ioannidis, D. & Tzovaras, D. (2018). Forecasting faults of industrial equipment using machine learning classifiers. International Symposium on Innovations in Intelligent Systems and Applications (INISTA) (pp. 1–6).
ChenZWuMZhaoRGuretnoFYanRLiXMachine remaining useful life prediction via an attention-based deep learning approachIEEE Transactions on Industrial Electronics20216832521253110.1109/TIE.2020.2972443
TaoLSunLWuYLuCMaJChengYSuoMMulti-signal fusion diagnosis of gearbox based on minimum Bayesian risk reclassification and adaptive weightingMeasurement202218711035810.1016/j.measurement.2021.110358
HsuC-YLiuW-CMultiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturingJournal of Intelligent Manufacturing20213282383610.1007/s10845-020-01591-0
ZhangCGaoXLiYFengLFault detection strategy based on weighted distance of k nearest neighbors for semiconductor manufacturing processIEEE Transactions on Semiconductor Manufacturing201932758110.1109/TSM.2018.2857818
MengTJingXYanZPedryczWA survey on machine learning for data fusionInformation Fusion20205711512910.1016/j.inffus.2019.12.001
ShaoHLinJZhangLGalarDKumarUA novel approach of multisensory fusion to collaborative fault diagnosis in maintenanceInformation Fusion202174657610.1016/j.inffus.2021.03.008
WuR-TJahanshahiMRData fusion approaches for structural health monitoring and system identification: Past, present, and futureStructural Health Monitoring202019255258610.1177/1475921718798769
YooYParkSHBaekJ-GA clustering-based equipment condition model of chemical vapor deposition processInternational Journal of Precision Engineering and Manufacturing2019201677168910.1007/s12541-019-00177-y
SantoADFerraroAGalliAMoscatoVSperlìGEvaluating time series encoding techniques for predictive maintenanceExpert Systems with Applications202221011843510.1016/j.eswa.2022.118435
Wang, Z., & Oates, T. (2015). Imaging time-series to improve classification and imputation. arXiv:1506.00327. http://arxiv.org/abs/1506.00327.
ZhangWLiXMaHLuoZLiXFederated learning for machinery fault diagnosis with dynamic validation and self-supervisionKnowledge-Based Systems202121310667910.1016/j.knosys.2020.106679
CarvalhoTPSoaresFAAMNVitaRFranciscoRDPBastoJPAlcaláSGSA systematic literature review of machine learning methods applied to predictive maintenanceComputers & Industrial Engineering201913710602410.1016/j.cie.2019.106024
IqbalRManiakTDoctorFKaryotisCFault detection and isolation in industrial processes using deep learning approachesIEEE Transaction on Industrial Informatics20191553077308410.1109/TII.2019.2902274
Reséndiz-FloresEONavarro-AcostaJAGarcía-CalvilloIDSmart fault detection and optimal variables identification using Kernel Mahalanobis distance for industrial manufacturing processInternational Journal of Computer Integrated Manufacturing202235994295010.1080/0951192X.2022.2027019
CanizoMTrigueroICondeAOnievaEMulti-head CNN-RNN for multi-time series anomaly detection: An industrial case studyNeurocomputing201936324626010.1016/j.neucom.2019.07.034
MunirMSiddiquiSADengelAAhmedSDeepAnt: A deep learning approach for unsupervised anomaly detection in time seriesIEEE Access201971991200510.1109/ACCESS.2018.2886457
WangJYanJLiCGaoRXZhaoRDeep heterogeneous GRU model for predictive analytics in smart manufacturing: Application to tool wear predictionComputers in Industry201911111410.1016/j.compind.2019.06.001
RamuSWMaddikuntaPKRParimalaMKoppuSGadekalluTRChowdharyCLAlazabMAn effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architectureComputer Communications202016013914910.1016/j.comcom.2020.05.048
JanssensOSlavkovikjVVervischBStockmanKLoccufierMVerstocktSWalleRVDHoeckeSConvolutional neural network based fault detection for rotating machineryJournal of Sound and Vibration201637733134510.1016/j.jsv.2016.05.027
KongJZhangLJiangMLiuTIncorporate multi-level CNN and attention mechanism for Chinese clinical named entity recognitionJournal of Biomedical Informatics202111610373710.1016/j.jbi.2021.103737
OlthofAWvan OoijenPMACornelissenLJDeep learning-based natural language processing in Radiology: The impact of report complexity, decease prevalence, dataset size, and algorithm type on model performanceJournal of Medical Systems202145109110.1007/s10916-021-01761-4
YamashitaRNishioMDoRKGTogashiKConvolutional neural networks: An overview and application in radiologyInsights into Imaging2018961162910.1007/s13244-018-0639-9
GohelHAUpadhyayHLagosLCooperKSanzeteneaAPredictive maintenance architecture development for nuclear infrastructure using machine learningNuclear Engineering and Technology20205271436144210.1016/j.net.2019.12.029
ChenRHuangXYangLXuXZhangXZhangYIntelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transformComputers in Industry2019106485910.1016/j.compind.2018.11.003
DuanZWuTGuoSShaoTMalekianRLiZDevelopment and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: A reviewThe International Journal of Advanced Manufacturing Technology20189680381910.1007/s00170-017-1474-8
O Janssens (2338_CR12) 2016; 377
EO Reséndiz-Flores (2338_CR22) 2022; 35
C Zhang (2338_CR35) 2019; 32
Z Miao (2338_CR19) 2022; 129
J Kong (2338_CR15) 2021; 116
R Chen (2338_CR3) 2019; 106
AD Santo (2338_CR23) 2022; 210
2338_CR13
Z Chen (2338_CR5) 2021; 68
M Munir (2338_CR17) 2019; 7
W Zhang (2338_CR36) 2021; 17
W Zhang (2338_CR37) 2021; 213
TP Carvalho (2338_CR4) 2019; 137
Z He (2338_CR9) 2020; 207
L Tao (2338_CR26) 2022; 187
J-F Dang (2338_CR7) 2023
F Yang (2338_CR32) 2016; 63
Y Yoo (2338_CR33) 2019; 20
CL Yang (2338_CR34) 2020; 20
T Meng (2338_CR18) 2020; 57
A Lasisi (2338_CR16) 2018; 91
H Shao (2338_CR25) 2021; 74
R-T Wu (2338_CR29) 2020; 19
2338_CR1
R Yamashita (2338_CR31) 2018; 9
G Sharma (2338_CR24) 2020; 158
2338_CR27
J Wang (2338_CR28) 2019; 111
KS Kiangala (2338_CR14) 2020; 10
Z Duan (2338_CR6) 2018; 96
HA Gohel (2338_CR8) 2020; 52
C Wang (2338_CR30) 2022; 492
C-Y Hsu (2338_CR10) 2021; 32
R Iqbal (2338_CR11) 2019; 15
M Canizo (2338_CR2) 2019; 363
AW Olthof (2338_CR20) 2021; 45
SW Ramu (2338_CR21) 2020; 160
References_xml – reference: MiaoZZhouFYuanXXiaYChenKMulti- heterogeneous sensor data fusion method via convolutional neural network for fault diagnosis of wheeled mobile robotApplied Soft Computing202212910955410.1016/j.asoc.2022.109554
– reference: HsuC-YLiuW-CMultiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturingJournal of Intelligent Manufacturing20213282383610.1007/s10845-020-01591-0
– reference: ZhangCGaoXLiYFengLFault detection strategy based on weighted distance of k nearest neighbors for semiconductor manufacturing processIEEE Transactions on Semiconductor Manufacturing201932758110.1109/TSM.2018.2857818
– reference: ZhangWLiXMaHLuoZLiXUniversal domain adaption in fault diagnostics with hybrid weighted deep adversarial learningIEEE Transactions on Industrial Informatics202117127957796710.1109/TII.2021.3064377
– reference: YooYParkSHBaekJ-GA clustering-based equipment condition model of chemical vapor deposition processInternational Journal of Precision Engineering and Manufacturing2019201677168910.1007/s12541-019-00177-y
– reference: RamuSWMaddikuntaPKRParimalaMKoppuSGadekalluTRChowdharyCLAlazabMAn effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architectureComputer Communications202016013914910.1016/j.comcom.2020.05.048
– reference: ZhangWLiXMaHLuoZLiXFederated learning for machinery fault diagnosis with dynamic validation and self-supervisionKnowledge-Based Systems202121310667910.1016/j.knosys.2020.106679
– reference: SantoADFerraroAGalliAMoscatoVSperlìGEvaluating time series encoding techniques for predictive maintenanceExpert Systems with Applications202221011843510.1016/j.eswa.2022.118435
– reference: YangCLChenZXYangCYSensor classification using convolutional neural network by encoding multivariate time series as two-dimensional colored imagesSensors202020116810.3390/s20010168
– reference: GohelHAUpadhyayHLagosLCooperKSanzeteneaAPredictive maintenance architecture development for nuclear infrastructure using machine learningNuclear Engineering and Technology20205271436144210.1016/j.net.2019.12.029
– reference: Kolokas, N., Vafeiadis, T., Ioannidis, D. & Tzovaras, D. (2018). Forecasting faults of industrial equipment using machine learning classifiers. International Symposium on Innovations in Intelligent Systems and Applications (INISTA) (pp. 1–6).
– reference: Reséndiz-FloresEONavarro-AcostaJAGarcía-CalvilloIDSmart fault detection and optimal variables identification using Kernel Mahalanobis distance for industrial manufacturing processInternational Journal of Computer Integrated Manufacturing202235994295010.1080/0951192X.2022.2027019
– reference: WangJYanJLiCGaoRXZhaoRDeep heterogeneous GRU model for predictive analytics in smart manufacturing: Application to tool wear predictionComputers in Industry201911111410.1016/j.compind.2019.06.001
– reference: KiangalaKSWangZAn effective predictive maintenance framework for conveyor motors using dual time-series imaging and convolutional neural network in an industry 4.0 environmentIEEE Access202010110910.1109/ACCESS.2020.3006788
– reference: CarvalhoTPSoaresFAAMNVitaRFranciscoRDPBastoJPAlcaláSGSA systematic literature review of machine learning methods applied to predictive maintenanceComputers & Industrial Engineering201913710602410.1016/j.cie.2019.106024
– reference: Biswal, S., & Sabareesh, G. R. (2015). Design and development of a wind turbine test rig for condition monitoring studies. In 2015 International Conference on Industrial Instrumentation and Control (ICIC) (pp. 891–896).
– reference: YamashitaRNishioMDoRKGTogashiKConvolutional neural networks: An overview and application in radiologyInsights into Imaging2018961162910.1007/s13244-018-0639-9
– reference: MengTJingXYanZPedryczWA survey on machine learning for data fusionInformation Fusion20205711512910.1016/j.inffus.2019.12.001
– reference: KongJZhangLJiangMLiuTIncorporate multi-level CNN and attention mechanism for Chinese clinical named entity recognitionJournal of Biomedical Informatics202111610373710.1016/j.jbi.2021.103737
– reference: DangJ-FThe Deep learning-based equipment health monitoring model adopting subject matter expertAccepted by International Journal of Computer Integrated Manufacturing202310.1080/0951192X.2023.2257665
– reference: ShaoHLinJZhangLGalarDKumarUA novel approach of multisensory fusion to collaborative fault diagnosis in maintenanceInformation Fusion202174657610.1016/j.inffus.2021.03.008
– reference: IqbalRManiakTDoctorFKaryotisCFault detection and isolation in industrial processes using deep learning approachesIEEE Transaction on Industrial Informatics20191553077308410.1109/TII.2019.2902274
– reference: MunirMSiddiquiSADengelAAhmedSDeepAnt: A deep learning approach for unsupervised anomaly detection in time seriesIEEE Access201971991200510.1109/ACCESS.2018.2886457
– reference: TaoLSunLWuYLuCMaJChengYSuoMMulti-signal fusion diagnosis of gearbox based on minimum Bayesian risk reclassification and adaptive weightingMeasurement202218711035810.1016/j.measurement.2021.110358
– reference: WuR-TJahanshahiMRData fusion approaches for structural health monitoring and system identification: Past, present, and futureStructural Health Monitoring202019255258610.1177/1475921718798769
– reference: ChenRHuangXYangLXuXZhangXZhangYIntelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transformComputers in Industry2019106485910.1016/j.compind.2018.11.003
– reference: WangCXinCXuZQinMHeMMix-VAEs: A novel multisensory information fusion model for intelligent fault diagnosisNeurocomputing202249223424410.1016/j.neucom.2022.04.044
– reference: OlthofAWvan OoijenPMACornelissenLJDeep learning-based natural language processing in Radiology: The impact of report complexity, decease prevalence, dataset size, and algorithm type on model performanceJournal of Medical Systems202145109110.1007/s10916-021-01761-4
– reference: HeZShaoHZhongXZhaoXEnsemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditionsKnowledge-Based Systems202020710639610.1016/j.knosys.2020.106396
– reference: LasisiAAttoh-OkineNPrincipal component analysis and track quality index: A machine learning approachTransportation Research Part C: Emerging Technologies20189123024810.1016/j.trc.2018.04.001
– reference: ChenZWuMZhaoRGuretnoFYanRLiXMachine remaining useful life prediction via an attention-based deep learning approachIEEE Transactions on Industrial Electronics20216832521253110.1109/TIE.2020.2972443
– reference: JanssensOSlavkovikjVVervischBStockmanKLoccufierMVerstocktSWalleRVDHoeckeSConvolutional neural network based fault detection for rotating machineryJournal of Sound and Vibration201637733134510.1016/j.jsv.2016.05.027
– reference: DuanZWuTGuoSShaoTMalekianRLiZDevelopment and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: A reviewThe International Journal of Advanced Manufacturing Technology20189680381910.1007/s00170-017-1474-8
– reference: YangFHabibullahMSZhangTXuZLimPNadarajanSHealth index-based prognostics for remaining useful life predictions in electrical machinesIEEE Transactions on Industrial Electronics2016632633264410.1109/TIE.2016.2515054
– reference: SharmaGUmapathyKKrishnanSTrends in audio signal feature extraction methodsApplied Acoustics202015810702010.1016/j.apacoust.2019.107020
– reference: Wang, Z., & Oates, T. (2015). Imaging time-series to improve classification and imputation. arXiv:1506.00327. http://arxiv.org/abs/1506.00327.
– reference: CanizoMTrigueroICondeAOnievaEMulti-head CNN-RNN for multi-time series anomaly detection: An industrial case studyNeurocomputing201936324626010.1016/j.neucom.2019.07.034
– volume: 32
  start-page: 823
  year: 2021
  ident: 2338_CR10
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01591-0
– volume: 68
  start-page: 2521
  issue: 3
  year: 2021
  ident: 2338_CR5
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2020.2972443
– volume: 20
  start-page: 168
  issue: 1
  year: 2020
  ident: 2338_CR34
  publication-title: Sensors
  doi: 10.3390/s20010168
– volume: 20
  start-page: 1677
  year: 2019
  ident: 2338_CR33
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-019-00177-y
– volume: 96
  start-page: 803
  year: 2018
  ident: 2338_CR6
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-017-1474-8
– ident: 2338_CR1
  doi: 10.1109/IIC.2015.7150869
– volume: 9
  start-page: 611
  year: 2018
  ident: 2338_CR31
  publication-title: Insights into Imaging
  doi: 10.1007/s13244-018-0639-9
– volume: 15
  start-page: 3077
  issue: 5
  year: 2019
  ident: 2338_CR11
  publication-title: IEEE Transaction on Industrial Informatics
  doi: 10.1109/TII.2019.2902274
– ident: 2338_CR27
– volume: 377
  start-page: 331
  year: 2016
  ident: 2338_CR12
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2016.05.027
– volume: 35
  start-page: 942
  issue: 9
  year: 2022
  ident: 2338_CR22
  publication-title: International Journal of Computer Integrated Manufacturing
  doi: 10.1080/0951192X.2022.2027019
– volume: 210
  start-page: 118435
  year: 2022
  ident: 2338_CR23
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118435
– ident: 2338_CR13
  doi: 10.1109/INISTA.2018.8466309
– volume: 52
  start-page: 1436
  issue: 7
  year: 2020
  ident: 2338_CR8
  publication-title: Nuclear Engineering and Technology
  doi: 10.1016/j.net.2019.12.029
– volume: 158
  start-page: 107020
  year: 2020
  ident: 2338_CR24
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2019.107020
– volume: 363
  start-page: 246
  year: 2019
  ident: 2338_CR2
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.034
– volume: 137
  start-page: 106024
  year: 2019
  ident: 2338_CR4
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.106024
– volume: 17
  start-page: 7957
  issue: 12
  year: 2021
  ident: 2338_CR36
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2021.3064377
– volume: 213
  start-page: 106679
  year: 2021
  ident: 2338_CR37
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106679
– volume: 57
  start-page: 115
  year: 2020
  ident: 2338_CR18
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2019.12.001
– volume: 45
  start-page: 91
  issue: 10
  year: 2021
  ident: 2338_CR20
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-021-01761-4
– volume: 160
  start-page: 139
  year: 2020
  ident: 2338_CR21
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2020.05.048
– volume: 116
  start-page: 103737
  year: 2021
  ident: 2338_CR15
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2021.103737
– volume: 10
  start-page: 1109
  year: 2020
  ident: 2338_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006788
– volume: 74
  start-page: 65
  year: 2021
  ident: 2338_CR25
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.03.008
– volume: 91
  start-page: 230
  year: 2018
  ident: 2338_CR16
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2018.04.001
– volume: 63
  start-page: 2633
  year: 2016
  ident: 2338_CR32
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2016.2515054
– volume: 111
  start-page: 1
  year: 2019
  ident: 2338_CR28
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2019.06.001
– volume: 492
  start-page: 234
  year: 2022
  ident: 2338_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.044
– volume: 106
  start-page: 48
  year: 2019
  ident: 2338_CR3
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2018.11.003
– volume: 19
  start-page: 552
  issue: 2
  year: 2020
  ident: 2338_CR29
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921718798769
– volume: 207
  start-page: 106396
  year: 2020
  ident: 2338_CR9
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106396
– volume: 7
  start-page: 1991
  year: 2019
  ident: 2338_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886457
– volume: 187
  start-page: 110358
  year: 2022
  ident: 2338_CR26
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110358
– year: 2023
  ident: 2338_CR7
  publication-title: Accepted by International Journal of Computer Integrated Manufacturing
  doi: 10.1080/0951192X.2023.2257665
– volume: 32
  start-page: 75
  year: 2019
  ident: 2338_CR35
  publication-title: IEEE Transactions on Semiconductor Manufacturing
  doi: 10.1109/TSM.2018.2857818
– volume: 129
  start-page: 109554
  year: 2022
  ident: 2338_CR19
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.109554
SSID ssj0009861
Score 2.4152055
Snippet Nowadays, the modern production machines are usually equipped with advanced sensors to collect the data which can be further analyzed because of the advent of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4055
SubjectTerms Advanced manufacturing technologies
Algorithms
Artificial neural networks
Business and Management
Control
Data integration
Deep learning
Industry 4.0
Machine learning
Machines
Manufacturing
Mechatronics
Multisensor fusion
Processes
Production
Robotics
Sensors
Supervised learning
Unsupervised learning
SummonAdditionalLinks – databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6ketCD1apYrbIHb7qQZ5McRSyeiviit7BPEbTWphH_gP_b2c2mqaKCHnJJZpew89zdmW8AjqRmkeY6oiwNNG5Qsj7lLORUBRx3zZHPI1E1m0iGw3Q0yi5dUVhRZ7vXV5LWUi8Uu6WRqSaO8MGNFcXIcRndXWrU8er6roHaTS1KqkXYw3ggdqUy38_x2R01MeaXa1HrbQbt__3nBqy76JKcVuKwCUtq3IF23bmBOEXuwNoCDOEWvKOsEJtZWOCm9nlKHJqq4RnRpTlPo8bbSSKVmhDXaOKe2C46BEmJeikfbOIRqeoq8ZMxFWamCo3CkBclN4c-5MlCehLbW2BG5od623A7OL85u6CuPQMVqLczqrIA7UWWcZ0I4bFYsH5mLEAig1Ak0os9HnMMv5DhTISa-SG-S3UgFAsTX6pwB1rj57HaBYJGxwSbIvBShV5Vc64D7WspfRzGMt0Fv-ZSLhx2uWmh8Zg3qMtm1XNc9dyuev7WheP5mEmF3PErda9mfu60uMhDDIbQW2DU24WTmtnN559n2_sb-T6sBkZebJZMD1qzaakOYEW8It-nh1a6PwCTuPi3
  priority: 102
  providerName: Springer Nature
Title The multisensor information fusion-based deep learning model for equipment health monitor integrating subject matter expert knowledge
URI https://link.springer.com/article/10.1007/s10845-024-02338-x
https://www.proquest.com/docview/3129876045
Volume 35
WOSCitedRecordID wos001182049500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6Vx6EcyqNF3RZWPvTWWk2cZJOcEEWgSqirFdDyuER-IiS6u-wD8Qf438w4DgGkcukhc4gdK9KMZ8Zj-_sAvhgnU6dcymUhHC5Qyh5XMlHcCoWr5jRWqa7JJvJ-vzg7Kweh4DYNxyobn-gdtRlpqpF_TzAw4czFDGRnfMOJNYp2VwOFxgIsxULEZOeHOW9BdwuPl-qx9jAzyMKlmXB1rkjpbnKKDy7T-N3zwNRmmy82SH3cOVj93z9eg3ch42S7tYmswxs73IDVhs2Bhcm9AStPoAnfwz3aD_OnDae40B1NWEBYJT0yN6caG6cIaJixdswC-cQl88w6DLsyezO_8oeRWH3XEpvIfdBINUIFdZ_OFRWC2F8P88k838CMPRb6PsDvg_2TvZ88UDZwjXN5xm0p0IeUpXK51pHMtOyV5BVyIxKdmyiLVKYwJUMjkDpxMk7wXeGEtjLJY2OTTVgcjob2IzB0RJSAahEVFiOtU8oJFztjYvxMlq4DcaOvSgc8c6LVuK5aJGbScYU6rryOq7sOfH38Zlyjebzae6tRbBVm9rRqtdqBb41ptM3_Hu3T66N9hreCrNGflNmCxdlkbrdhWd-iniddWMhPz7uw9GO_PzjqeitH-SvaI5kfoxxkFyiPjv88ACS8CFI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RqNT2UFoKagq0e2hP7Qp77WD7gCrEQ6CkUQ-pxM3dJ0KCJORR4Af07_AbmVmvMa3U3Dj04Iu9Xln2N7Mz65nvA_honEydcimXuXCYoBTbXMlEcSsUZs1prFJdiU1kvV5-clJ8X4DbuheGyiprn-gdtRlq2iPfSnBhQsvFCOTr6JKTahT9Xa0lNCpYdOzNFaZsk53jffy-n4Q4POjvHfGgKsA1wm3KbSEQ5kWhXKZ1JNtabhcE3MyIRGcmakeqrTBqwOeUOnEyTvBc7oS2MsliYxOc9wkspSmaA5UKRnsNyW_u-Vk9tx9GIu3QpBNa9fKUeqFTPDAt5Nd_LoRNdPvXD1m_zh0u_29v6BW8DBE1261M4DUs2MEKLNdqFSw4rxV48YB68Q38Rvtgvppygon8cMwCgyzhlLkZ7SFyWuENM9aOWBDXOGVeOYjhUGYvZ2e-2IpVvaR4idwjzVQxcNDwyUzRRhe78DSmzOspTNn9RuYq_HiUV7MGi4PhwL4Fho6WAmwtotxiJOGUcsLFzpgYb5OFa0Fc46PUga-dZEPOy4ZpmjBVIqZKj6nyugWf7-8ZVWwlc0dv1EAqg-ealA2KWvClhmJz-d-zvZs_2wd4dtT_1i27x73OOjwXZAm-KmgDFqfjmd2Ep_oXfvPxe29TDH4-NkTvAFV4XtM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RilB7KC1QdYGCD-0JLDZOQpIDqqrSFYhqtQeQEJfgT1Sp3V32o8AP4E_x65hxHFIqwY1DD7kkjhUlb8Yzzsx7AJ-Mk4lTLuEyFw4TlGKHKxkrboXCrDmJVKIrsYms281PToreDNzWvTBUVln7RO-ozUDTHvl2jAsTWi5GINsulEX09jpfhhecFKToT2stp1FB5NBeX2L6Nt492MNv_VmIzvejb_s8KAxwjdCbcFsIhHxRKJdp3ZapljsFgTgzItaZaadtlSqMIPCZpY6djGI8lzuhrYyzyNgY530BLzPMMSnx66WnDeFv7rlaPc8fRiVpaNgJbXt5Qn3RCR6YIvKrh4tiE-n-83PWr3mdhf_5bb2FNyHSZl8r03gHM7a_CAu1igULTm0RXv9FybgEN2g3zFdZjjHBH4xYYJYl_DI3pb1FTiu_YcbaIQuiG-fMKwoxHMrsxfSnL8JiVY8pXiK3STNVzBw0fDxVtAHGfnt6U-Z1FibsfoNzGY6f5dW8h9n-oG8_AEMHTIG3Fu3cYoThlHLCRc6YCG-ThWtBVGOl1IHHneREfpUNAzXhq0R8lR5f5VULNu_vGVYsJk-OXqtBVQaPNi4bRLVgq4Zlc_nx2Vaenm0D5hGZ5Y-D7uEqvBJkFL5YaA1mJ6Op_Qhz-g9-8tG6Ny8GZ8-N0DtLD2fk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multisensor+information+fusion-based+deep+learning+model+for+equipment+health+monitor+integrating+subject+matter+expert+knowledge&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Dang%2C+Jr-Fong&rft.date=2024-12-01&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=35&rft.issue=8&rft.spage=4055&rft.epage=4069&rft_id=info:doi/10.1007%2Fs10845-024-02338-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10845_024_02338_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon