A new Pareto multi-objective sine cosine algorithm for performance enhancement of radial distribution network by optimal allocation of distributed generators
The integration of distributed generators (DGs) is considered to be one of the best cost-effective techniques to improve the efficiency of power distribution systems in the recent deregulation caused by continuous load demand and transmission system contingency. In this perspective, a new multi-obje...
Uloženo v:
| Vydáno v: | Evolutionary intelligence Ročník 14; číslo 4; s. 1635 - 1656 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1864-5909, 1864-5917 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The integration of distributed generators (DGs) is considered to be one of the best cost-effective techniques to improve the efficiency of power distribution systems in the recent deregulation caused by continuous load demand and transmission system contingency. In this perspective, a new multi-objective sine cosine algorithm is proposed for optimal DG allocation in radial distribution systems with minimization of total active power loss, maximization of voltage stability index, minimization of annual energy loss costs as well as pollutant gas emissions without violating the system and DG operating constraints. The proposed algorithm is enhanced by incorporating exponential variation of the conversion parameter and the self-adapting levy mutation to increase its performance during different iteration phases. The contradictory relationships among the objectives motivate the authors to generate an optimal Pareto set in order to help the network operators in taking fast appropriate decisions. The proposed approach is successfully applied to 33-bus and 69-bus distribution systems under four practical load conditions and is evaluated in different two-objective and three-objective optimization cases. The effectiveness of the algorithm is confirmed by comparing the results against other well-known multi-objective algorithms, namely, strength Pareto evolutionary algorithm 2, non-dominated sorting genetic algorithm II and multi-objective particle swarm optimization. The quality of Pareto fronts from different multi-objective algorithms is compared in terms of certain performance indicators, such as generational distance, spacing metric and spread metric (
Δ
), and its statistical significance is verified by performing Wilcoxon signed rank test. |
|---|---|
| AbstractList | The integration of distributed generators (DGs) is considered to be one of the best cost-effective techniques to improve the efficiency of power distribution systems in the recent deregulation caused by continuous load demand and transmission system contingency. In this perspective, a new multi-objective sine cosine algorithm is proposed for optimal DG allocation in radial distribution systems with minimization of total active power loss, maximization of voltage stability index, minimization of annual energy loss costs as well as pollutant gas emissions without violating the system and DG operating constraints. The proposed algorithm is enhanced by incorporating exponential variation of the conversion parameter and the self-adapting levy mutation to increase its performance during different iteration phases. The contradictory relationships among the objectives motivate the authors to generate an optimal Pareto set in order to help the network operators in taking fast appropriate decisions. The proposed approach is successfully applied to 33-bus and 69-bus distribution systems under four practical load conditions and is evaluated in different two-objective and three-objective optimization cases. The effectiveness of the algorithm is confirmed by comparing the results against other well-known multi-objective algorithms, namely, strength Pareto evolutionary algorithm 2, non-dominated sorting genetic algorithm II and multi-objective particle swarm optimization. The quality of Pareto fronts from different multi-objective algorithms is compared in terms of certain performance indicators, such as generational distance, spacing metric and spread metric (
Δ
), and its statistical significance is verified by performing Wilcoxon signed rank test. The integration of distributed generators (DGs) is considered to be one of the best cost-effective techniques to improve the efficiency of power distribution systems in the recent deregulation caused by continuous load demand and transmission system contingency. In this perspective, a new multi-objective sine cosine algorithm is proposed for optimal DG allocation in radial distribution systems with minimization of total active power loss, maximization of voltage stability index, minimization of annual energy loss costs as well as pollutant gas emissions without violating the system and DG operating constraints. The proposed algorithm is enhanced by incorporating exponential variation of the conversion parameter and the self-adapting levy mutation to increase its performance during different iteration phases. The contradictory relationships among the objectives motivate the authors to generate an optimal Pareto set in order to help the network operators in taking fast appropriate decisions. The proposed approach is successfully applied to 33-bus and 69-bus distribution systems under four practical load conditions and is evaluated in different two-objective and three-objective optimization cases. The effectiveness of the algorithm is confirmed by comparing the results against other well-known multi-objective algorithms, namely, strength Pareto evolutionary algorithm 2, non-dominated sorting genetic algorithm II and multi-objective particle swarm optimization. The quality of Pareto fronts from different multi-objective algorithms is compared in terms of certain performance indicators, such as generational distance, spacing metric and spread metric (Δ), and its statistical significance is verified by performing Wilcoxon signed rank test. |
| Author | Raut, Usharani Mishra, Sivkumar |
| Author_xml | – sequence: 1 givenname: Usharani surname: Raut fullname: Raut, Usharani organization: Department of Electrical Engineering, International Institute of Information Technology – sequence: 2 givenname: Sivkumar orcidid: 0000-0002-9749-0581 surname: Mishra fullname: Mishra, Sivkumar email: sivmishra@gmail.com, capgs.smishra@bput.ac.in organization: Department of Electrical Engineering, Centre for Advanced Post Graduate Studies, Biju Pattnaik University of Technology |
| BookMark | eNp9kc1uHCEQhFFkS_FPXiAnpJzHBgZmmKNl-U-ylBySM2KYZs1mBtYNG8sP43cN3o0cyQefCqnr66JVx-QgpgiEfOXsjDPWn2cuWKcaJljDmBS6EZ_IEdedbNTA-4O3Nxs-k-Oc14x1gvXyiLxc0AhP9IdFKIku27mEJo1rcCX8AZpDBOrSTuy8ShjKw0J9QroBrLLY6IBCfHjVBWKhyVO0U7AznUIuGMZtCSnWjPKU8Dcdn2nalLDUuZ3n5OxuWqE3N0x0BRHQloT5lBx6O2f48k9PyK_rq5-Xt83995u7y4v7xrV8KA30EsB5r8ZJc3CD5APvpPLWTXKalO9962Q3Oj32HXetG0FozV2nlG2lkqo9Id_2ezeYHreQi1mnLcYaaYTSqu7rpK4usXc5TDkjeLPBego-G87Maw1mX4OpNZhdDUZUSL-DXCi7swvaMH-Mtns015y4Avz_qw-ov5Yoo3c |
| CitedBy_id | crossref_primary_10_1088_1742_6596_2237_1_012004 crossref_primary_10_1016_j_apenergy_2022_119605 crossref_primary_10_3389_fenrg_2024_1418893 crossref_primary_10_1007_s10462_021_10026_y crossref_primary_10_3390_jmse11020308 crossref_primary_10_1007_s11277_024_11062_x crossref_primary_10_1016_j_rineng_2024_102506 crossref_primary_10_1007_s00500_024_09807_8 crossref_primary_10_3390_cleantechnol4040076 crossref_primary_10_1007_s40031_023_00890_3 crossref_primary_10_1080_01430750_2022_2127886 crossref_primary_10_3390_en15062267 crossref_primary_10_1080_15325008_2024_2303066 crossref_primary_10_1007_s12065_021_00677_9 crossref_primary_10_1007_s11042_024_18704_z crossref_primary_10_3390_biomimetics9020115 crossref_primary_10_1080_0305215X_2022_2164573 crossref_primary_10_1007_s11227_024_06043_7 crossref_primary_10_1016_j_est_2022_105937 crossref_primary_10_1007_s11831_024_10218_z crossref_primary_10_1093_ce_zkac010 crossref_primary_10_1007_s13369_020_04808_9 crossref_primary_10_3390_en15228516 crossref_primary_10_1007_s12652_022_03731_1 crossref_primary_10_1371_journal_pone_0319422 |
| Cites_doi | 10.1007/s00521-017-3049-x 10.1016/j.asoc.2019.105938 10.1016/j.enconman.2013.02.015 10.1016/j.asoc.2017.07.004 10.1016/j.rser.2016.05.056 10.1016/j.energy.2013.12.037 10.1016/j.asoc.2015.11.036 10.1109/TPWRS.2012.2237043 10.1109/TPWRD.2014.2325938 10.1109/ICEE-B.2017.8192171 10.1080/15325008.2014.1002589 10.1016/j.ijepes.2013.11.014 10.1016/j.engappai.2018.05.003 10.1007/3-540-45356-3_83 10.1049/iet-gtd.2015.1034 10.1049/iet-gtd.2016.2126 10.3390/en10060811 10.1016/j.asoc.2018.06.020 10.1109/PICC.2018.8384796 10.1016/j.asoc.2017.06.059 10.1109/ICIT48102.2019.00018 10.1016/j.jesit.2016.12.006 10.1016/j.energy.2019.116880 10.1016/j.ijepes.2014.10.033 10.1016/j.ijepes.2018.01.024 10.1109/EnergyTech.2013.6645315 10.1016/j.ijepes.2015.01.033 10.1016/j.energy.2017.02.172 10.1016/j.knosys.2015.12.022 10.1080/15325008.2014.963268 10.1007/978-981-13-1592-3_1 10.1007/978-3-030-10674-4 10.1002/etep.1835 10.1007/s10489-018-1190-6 10.1016/j.ijepes.2014.12.080 10.1016/j.renene.2017.12.106 10.1007/s00500-018-3634-7 10.1109/JSYST.2018.2875177 10.1016/j.ijepes.2014.12.010 10.1080/15325008.2017.1378944 10.1016/j.asoc.2020.106293 10.1109/JSYST.2017.2691759 10.1016/j.ijepes.2014.06.031 10.1007/s00521-019-04629-4 10.1109/ITCE.2018.8316637 10.1186/s40807-019-0056-9 10.1049/iet-gtd.2014.0915 10.1007/s13042-018-0851-4 10.1007/s00521-019-04570-6 10.1016/j.ref.2019.04.001 10.1109/TSG.2012.2237420 10.1109/TPWRD.2007.905370 10.3390/en9120982 10.1016/j.asoc.2019.02.013 10.1016/S0142-0615(00)00040-5 10.1016/j.asej.2017.03.001 10.1016/j.ins.2016.12.003 10.1016/j.ijepes.2015.12.034 10.1109/TENCON.2017.8228135 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s12065-020-00428-2 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1864-5917 |
| EndPage | 1656 |
| ExternalDocumentID | 10_1007_s12065_020_00428_2 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 06D 0R~ 0VY 1N0 203 29G 29~ 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 875 8TC 8UJ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PT4 QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c319t-e74eecff5bd81ec94191645facd4dd5f7f3c46bc8b761c3cbe2881c655a345453 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551438000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5909 |
| IngestDate | Wed Sep 17 23:57:34 EDT 2025 Sat Nov 29 06:12:13 EST 2025 Tue Nov 18 21:57:23 EST 2025 Fri Feb 21 02:47:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Power loss Voltage stability Pareto front Non-dominated solutions Distributed generation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-e74eecff5bd81ec94191645facd4dd5f7f3c46bc8b761c3cbe2881c655a345453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9749-0581 |
| PQID | 2585419648 |
| PQPubID | 2043920 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2585419648 crossref_primary_10_1007_s12065_020_00428_2 crossref_citationtrail_10_1007_s12065_020_00428_2 springer_journals_10_1007_s12065_020_00428_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Evolutionary intelligence |
| PublicationTitleAbbrev | Evol. Intel |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Kumar, Guria (CR45) 2017; 382 Sultana, Roy (CR11) 2016; 40 Zeinalzadeh, Mohammadi, Moradi (CR31) 2015; 67 Sheng, Liu, Liu, Meng, Li (CR32) 2014; 30 CR38 Hari Prasad, Subbaramaiah, Sujatha (CR19) 2019; 6 CR37 CR36 CR34 CR33 Mahesh, Nallagownden, Elamvazuthi (CR39) 2016; 9 ChithraDevi, Lakshminarasimman, Balamurugan (CR12) 2017; 20 Kumar, Nallagownden, Elamvazuthi (CR40) 2017; 10 Poornazaryan, Karimyan, Gharehpetian, Abedi (CR4) 2016; 79 Hadidian-Moghaddam, Arabi-Nowdeh, Bigdeli, Azizian (CR27) 2017; 9 Moradi, Tousi, Abedini (CR30) 2014; 56 Sultana, Roy (CR18) 2014; 63 Hamida, Salah, Msahli, Mimouni (CR49) 2018; 121 Mirjalili (CR53) 2016; 96 Murty, Kumar (CR28) 2015; 69 CR5 Aman, Jasmon, Bakar, Mokhlis (CR2) 2013; 70 Chakravorty, Das (CR59) 2001; 23 Meena, Swarnkar, Gupta, Niazi (CR47) 2017; 11 CR46 CR41 Tanwar, Khatod (CR25) 2017; 127 Abualigah, Khader, Hanandeh, Gandomi (CR14) 2017; 60 Selim, Kamel, Jurado (CR48) 2020; 86 Injeti (CR42) 2018; 5 Mohandas, Balamurugan, Lakshminarasimman (CR8) 2015; 66 Abdelaziz, Hegazy, El-Khattam, Othman (CR9) 2015; 43 Sultana, Khairuddin, Aman, Mokhtar, Zareen (CR58) 2016; 63 Kumar, Mandal, Chakraborty (CR35) 2019; 78 Ali, Thomas, Kumar (CR57) 2015; 9 CR55 CR54 Attia, El Sehiemy, Hasanien (CR56) 2018; 99 CR51 Tawhid, Savsani (CR52) 2019; 31 Bohre, Agnihotri, Dubey (CR7) 2016; 10 CR50 Abualigah, Khader, Hanandeh (CR16) 2018; 73 Ghatak, Sannigrahi, Acharjee (CR23) 2017; 12 Nguyen, Vo (CR6) 2018; 70 Abualigah, Khader, Hanandeh (CR13) 2018; 48 Georgilakis, Hatziargyriou (CR1) 2013; 28 Aman, Jasmon, Bakar, Mokhlis (CR3) 2014; 66 Gampa, Das (CR17) 2017; 45 Ghatak, Sannigrahi, Acharjee (CR44) 2018; 13 Biswas, Mallipeddi, Suganthan, Amaratunga (CR43) 2017; 60 CR24 CR22 Savier, Das (CR64) 2007; 22 CR21 Raut, Mishra (CR60) 2019; 30 Ameli, Farrokhifard, Ahmadifar, Haghifam (CR10) 2015; 25 CR20 CR62 Liu, Sheng, Liu, Meng, Liu (CR61) 2015; 69 Darfoun, El-Hawary (CR26) 2015; 43 Nekooei, Farsangi, Nezamabadi-Pour, Lee (CR29) 2013; 4 Rao, Narasimham, Raju, Srinivasa Rao (CR63) 2010; 26 Abualigah (CR15) 2019 RS Rao (428_CR63) 2010; 26 M Kumar (428_CR45) 2017; 382 428_CR24 B Poornazaryan (428_CR4) 2016; 79 SA ChithraDevi (428_CR12) 2017; 20 428_CR22 428_CR20 428_CR21 428_CR62 K Nekooei (428_CR29) 2013; 4 NK Meena (428_CR47) 2017; 11 K Mahesh (428_CR39) 2016; 9 U Raut (428_CR60) 2019; 30 K Liu (428_CR61) 2015; 69 SS Tanwar (428_CR25) 2017; 127 SK Injeti (428_CR42) 2018; 5 SR Ghatak (428_CR44) 2018; 13 A Selim (428_CR48) 2020; 86 JS Savier (428_CR64) 2007; 22 MJ Hadidian-Moghaddam (428_CR27) 2017; 9 W Sheng (428_CR32) 2014; 30 428_CR37 428_CR38 M Chakravorty (428_CR59) 2001; 23 428_CR36 428_CR33 428_CR34 SR Gampa (428_CR17) 2017; 45 428_CR5 PP Biswas (428_CR43) 2017; 60 A-F Attia (428_CR56) 2018; 99 U Sultana (428_CR58) 2016; 63 S Sultana (428_CR18) 2014; 63 VVSN Murty (428_CR28) 2015; 69 MA Tawhid (428_CR52) 2019; 31 428_CR46 LM Abualigah (428_CR14) 2017; 60 IB Hamida (428_CR49) 2018; 121 I Ali (428_CR57) 2015; 9 MM Aman (428_CR2) 2013; 70 428_CR41 S Sultana (428_CR11) 2016; 40 A Ameli (428_CR10) 2015; 25 LM Abualigah (428_CR13) 2018; 48 S Kumar (428_CR35) 2019; 78 TP Nguyen (428_CR6) 2018; 70 LMQ Abualigah (428_CR15) 2019 C Hari Prasad (428_CR19) 2019; 6 MA Darfoun (428_CR26) 2015; 43 428_CR55 428_CR54 LM Abualigah (428_CR16) 2018; 73 428_CR51 S Mirjalili (428_CR53) 2016; 96 428_CR50 N Mohandas (428_CR8) 2015; 66 MM Aman (428_CR3) 2014; 66 SR Ghatak (428_CR23) 2017; 12 A Zeinalzadeh (428_CR31) 2015; 67 M Kumar (428_CR40) 2017; 10 PS Georgilakis (428_CR1) 2013; 28 AK Bohre (428_CR7) 2016; 10 AY Abdelaziz (428_CR9) 2015; 43 MH Moradi (428_CR30) 2014; 56 |
| References_xml | – volume: 45 start-page: 1678 issue: 15 year: 2017 end-page: 1690 ident: CR17 article-title: Multi-objective approach for reconfiguration of distribution systems with distributed generations publication-title: Electric Power Compon Syst – ident: CR22 – volume: 11 start-page: 2418 issue: 9 year: 2017 end-page: 2428 ident: CR47 article-title: Multi-objective Taguchi approach for optimal DG integration in distribution systems publication-title: IET Gener Transm Distrib – volume: 6 start-page: 2 issue: 1 year: 2019 ident: CR19 article-title: Cost-benefit analysis for optimal dg placement in distribution systems by using elephant herding optimization algorithm publication-title: Renew Wind Water Solar – volume: 121 start-page: 66 year: 2018 end-page: 80 ident: CR49 article-title: Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGS publication-title: Renew Energy – volume: 25 start-page: 216 issue: 2 year: 2015 end-page: 232 ident: CR10 article-title: Distributed generation planning based on the distribution company’s and the DG owner’s profit maximization publication-title: Int Trans Electr Energy Syst – volume: 66 start-page: 202 year: 2014 end-page: 215 ident: CR3 article-title: A new approach for optimum simultaneous multi-DG distributed generation units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm publication-title: Energy – ident: CR51 – volume: 86 start-page: 105938 year: 2020 ident: CR48 article-title: Efficient optimization technique for multiple DG allocation in distribution networks publication-title: Appl Soft Comput – volume: 23 start-page: 129 issue: 2 year: 2001 end-page: 135 ident: CR59 article-title: Voltage stability analysis of radial distribution networks publication-title: Int J Electr Power Energy Syst – volume: 30 start-page: 92 year: 2019 end-page: 106 ident: CR60 article-title: An improved elitist-jaya algorithm for simultaneous network reconfiguration and DG allocation in power distribution systems publication-title: Renew Energy Focus – volume: 382 start-page: 15 year: 2017 end-page: 37 ident: CR45 article-title: The elitist non-dominated sorting genetic algorithm with inheritance (i-nsga-ii) and its jumping gene adaptations for multi-objective optimization publication-title: Inf Sci – volume: 127 start-page: 52 year: 2017 end-page: 67 ident: CR25 article-title: Techno-economic and environmental approach for optimal placement and sizing of renewable DGS in distribution system publication-title: Energy – ident: CR54 – volume: 73 start-page: 111 year: 2018 end-page: 125 ident: CR16 article-title: A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis publication-title: Eng Appl Artif Intell – volume: 40 start-page: 391 year: 2016 end-page: 404 ident: CR11 article-title: Krill herd algorithm for optimal location of distributed generator in radial distribution system publication-title: Appl Soft Comput – volume: 69 start-page: 430 year: 2015 end-page: 440 ident: CR61 article-title: Optimal sitting and sizing of DGS in distribution system considering time sequence characteristics of loads and DGS publication-title: Int J Electr Power Energy Syst – volume: 67 start-page: 336 year: 2015 end-page: 349 ident: CR31 article-title: Optimal multi objective placement and sizing of multiple DGS and shunt capacitor banks simultaneously considering load uncertainty via MOPSo approach publication-title: Int J Electr Power Energy Syst – volume: 99 start-page: 331 year: 2018 end-page: 343 ident: CR56 article-title: Optimal power flow solution in power systems using a novel sine-cosine algorithm publication-title: Int J Electr Power Energy Syst – ident: CR21 – volume: 13 start-page: 3038 issue: 3 year: 2018 end-page: 3049 ident: CR44 article-title: Multi-objective approach for strategic incorporation of solar energy source, battery storage system, and DSTATCOM in a smart grid environment publication-title: IEEE Syst J – volume: 26 start-page: 1080 issue: 3 year: 2010 end-page: 1088 ident: CR63 article-title: Optimal network reconfiguration of large-scale distribution system using harmony search algorithm publication-title: IEEE Trans Power Syst – volume: 9 start-page: 2101 year: 2017 end-page: 2109 ident: CR27 article-title: A multi-objective optimal sizing and siting of distributed generation using ant lion optimization technique publication-title: Ain Shams Eng J – ident: CR46 – volume: 43 start-page: 828 issue: 7 year: 2015 end-page: 836 ident: CR26 article-title: Multi-objective optimization approach for optimal distributed generation sizing and placement publication-title: Electric Power Compon Syst – volume: 22 start-page: 2473 issue: 4 year: 2007 end-page: 2480 ident: CR64 article-title: Impact of network reconfiguration on loss allocation of radial distribution systems publication-title: IEEE Trans Power Deliv – volume: 10 start-page: 811 issue: 6 year: 2017 ident: CR40 article-title: Optimal placement and sizing of renewable distributed generations and capacitor banks into radial distribution systems publication-title: Energies – volume: 60 start-page: 423 year: 2017 end-page: 435 ident: CR14 article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques publication-title: Appl Soft Comput – volume: 69 start-page: 246 year: 2015 end-page: 256 ident: CR28 article-title: Optimal placement of dg in radial distribution systems based on new voltage stability index under load growth publication-title: Int J Electr Power Energy Syst – ident: CR50 – volume: 70 start-page: 202 year: 2013 end-page: 210 ident: CR2 article-title: A new approach for optimum dg placement and sizing based on voltage stability maximization and minimization of power losses publication-title: Energy Convers Manag – volume: 66 start-page: 41 year: 2015 end-page: 52 ident: CR8 article-title: Optimal location and sizing of real power DG units to improve the voltage stability in the distribution system using abc algorithm united with chaos publication-title: Int J Electr Power Energy Syst – volume: 63 start-page: 363 year: 2016 end-page: 378 ident: CR58 article-title: A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system publication-title: Renew Sustain Energy Rev – volume: 10 start-page: 2606 issue: 11 year: 2016 end-page: 2621 ident: CR7 article-title: Optimal sizing and sitting of DG with load models using soft computing techniques in practical distribution system publication-title: IET Gener Transm Distrib – volume: 63 start-page: 534 year: 2014 end-page: 545 ident: CR18 article-title: Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems publication-title: Int J Electr Power Energy Syst – volume: 48 start-page: 4047 issue: 11 year: 2018 end-page: 4071 ident: CR13 article-title: Hybrid clustering analysis using improved krill herd algorithm publication-title: Appl Intell – ident: CR36 – ident: CR5 – volume: 43 start-page: 105 issue: 1 year: 2015 end-page: 117 ident: CR9 article-title: A multi-objective optimization for sizing and placement of voltage-controlled distributed generation using supervised big bang-big crunch method publication-title: Electric Power Compon Syst – year: 2019 ident: CR15 publication-title: Feature selection and enhanced krill herd algorithm for text document clustering – volume: 28 start-page: 3420 issue: 3 year: 2013 end-page: 3428 ident: CR1 article-title: Optimal distributed generation placement in power distribution networks: models, methods, and future research publication-title: IEEE Trans Power Syst – ident: CR37 – ident: CR33 – volume: 9 start-page: 982 issue: 12 year: 2016 ident: CR39 article-title: Advanced pareto front non-dominated sorting multi-objective particle swarm optimization for optimal placement and sizing of distributed generation publication-title: Energies – volume: 9 start-page: 1051 issue: 11 year: 2015 end-page: 1060 ident: CR57 article-title: Energy efficient reconfiguration for practical load combinations in distribution systems publication-title: IET Gener Transm Distrib – volume: 70 start-page: 773 year: 2018 end-page: 796 ident: CR6 article-title: A novel stochastic fractal search algorithm for optimal allocation of distributed generators in radial distribution systems publication-title: Appl Soft Comput – volume: 78 start-page: 70 year: 2019 end-page: 83 ident: CR35 article-title: Optimal dg placement by multi-objective opposition based chaotic differential evolution for techno-economic analysis publication-title: Appl Soft Comput – volume: 31 start-page: 915 issue: 2 year: 2019 end-page: 929 ident: CR52 article-title: Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems publication-title: Neural Comput Appl – volume: 4 start-page: 557 issue: 1 year: 2013 end-page: 567 ident: CR29 article-title: An improved multi-objective harmony search for optimal placement of DGS in distribution systems publication-title: IEEE Trans Smart Grid – volume: 79 start-page: 42 year: 2016 end-page: 52 ident: CR4 article-title: Optimal allocation and sizing of dg units considering voltage stability, losses and load variations publication-title: Int J Electr Power Energy Syst – volume: 20 start-page: 748 issue: 2 year: 2017 end-page: 759 ident: CR12 article-title: Stud krill herd algorithm for multiple dg placement and sizing in a radial distribution system publication-title: Eng Sci Technol Int J – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: CR53 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl Based Syst – volume: 12 start-page: 2791 issue: 3 year: 2017 end-page: 2802 ident: CR23 article-title: Comparative performance analysis of DG and DSTATCOM using improved PSO based on success rate for deregulated environment publication-title: IEEE Syst J – volume: 60 start-page: 268 year: 2017 end-page: 280 ident: CR43 article-title: A multiobjective approach for optimal placement and sizing of distributed generators and capacitors in distribution network publication-title: Appl Soft Comput – ident: CR38 – ident: CR34 – volume: 5 start-page: 908 issue: 3 year: 2018 end-page: 927 ident: CR42 article-title: A pareto optimal approach for allocation of distributed generators in radial distribution systems using improved differential search algorithm publication-title: J Electr Syst Inf Technol – ident: CR55 – volume: 30 start-page: 569 issue: 2 year: 2014 end-page: 578 ident: CR32 article-title: Optimal placement and sizing of distributed generation via an improved nondominated sorting genetic algorithm ii publication-title: IEEE Trans Power Deliv – ident: CR41 – ident: CR62 – ident: CR24 – volume: 56 start-page: 117 year: 2014 end-page: 126 ident: CR30 article-title: Multi-objective PFDE algorithm for solving the optimal siting and sizing problem of multiple DG sources publication-title: Int J Electr Power Energy Syst – ident: CR20 – volume: 31 start-page: 915 issue: 2 year: 2019 ident: 428_CR52 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3049-x – volume: 86 start-page: 105938 year: 2020 ident: 428_CR48 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105938 – volume: 20 start-page: 748 issue: 2 year: 2017 ident: 428_CR12 publication-title: Eng Sci Technol Int J – volume: 70 start-page: 202 year: 2013 ident: 428_CR2 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.02.015 – volume: 60 start-page: 268 year: 2017 ident: 428_CR43 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.07.004 – volume: 63 start-page: 363 year: 2016 ident: 428_CR58 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.05.056 – volume: 66 start-page: 202 year: 2014 ident: 428_CR3 publication-title: Energy doi: 10.1016/j.energy.2013.12.037 – volume: 40 start-page: 391 year: 2016 ident: 428_CR11 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.11.036 – volume: 28 start-page: 3420 issue: 3 year: 2013 ident: 428_CR1 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2012.2237043 – volume: 30 start-page: 569 issue: 2 year: 2014 ident: 428_CR32 publication-title: IEEE Trans Power Deliv doi: 10.1109/TPWRD.2014.2325938 – ident: 428_CR41 doi: 10.1109/ICEE-B.2017.8192171 – volume: 43 start-page: 828 issue: 7 year: 2015 ident: 428_CR26 publication-title: Electric Power Compon Syst doi: 10.1080/15325008.2014.1002589 – volume: 56 start-page: 117 year: 2014 ident: 428_CR30 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.11.014 – volume: 73 start-page: 111 year: 2018 ident: 428_CR16 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.05.003 – ident: 428_CR62 doi: 10.1007/3-540-45356-3_83 – volume: 10 start-page: 2606 issue: 11 year: 2016 ident: 428_CR7 publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2015.1034 – volume: 11 start-page: 2418 issue: 9 year: 2017 ident: 428_CR47 publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2016.2126 – volume: 10 start-page: 811 issue: 6 year: 2017 ident: 428_CR40 publication-title: Energies doi: 10.3390/en10060811 – volume: 70 start-page: 773 year: 2018 ident: 428_CR6 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.06.020 – ident: 428_CR24 doi: 10.1109/PICC.2018.8384796 – volume: 60 start-page: 423 year: 2017 ident: 428_CR14 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.06.059 – ident: 428_CR33 doi: 10.1109/ICIT48102.2019.00018 – volume: 5 start-page: 908 issue: 3 year: 2018 ident: 428_CR42 publication-title: J Electr Syst Inf Technol doi: 10.1016/j.jesit.2016.12.006 – ident: 428_CR20 doi: 10.1016/j.energy.2019.116880 – volume: 66 start-page: 41 year: 2015 ident: 428_CR8 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.10.033 – volume: 99 start-page: 331 year: 2018 ident: 428_CR56 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2018.01.024 – ident: 428_CR38 doi: 10.1109/EnergyTech.2013.6645315 – volume: 69 start-page: 430 year: 2015 ident: 428_CR61 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.01.033 – volume: 127 start-page: 52 year: 2017 ident: 428_CR25 publication-title: Energy doi: 10.1016/j.energy.2017.02.172 – volume: 96 start-page: 120 year: 2016 ident: 428_CR53 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 43 start-page: 105 issue: 1 year: 2015 ident: 428_CR9 publication-title: Electric Power Compon Syst doi: 10.1080/15325008.2014.963268 – ident: 428_CR50 doi: 10.1007/978-981-13-1592-3_1 – volume-title: Feature selection and enhanced krill herd algorithm for text document clustering year: 2019 ident: 428_CR15 doi: 10.1007/978-3-030-10674-4 – volume: 25 start-page: 216 issue: 2 year: 2015 ident: 428_CR10 publication-title: Int Trans Electr Energy Syst doi: 10.1002/etep.1835 – ident: 428_CR37 – volume: 48 start-page: 4047 issue: 11 year: 2018 ident: 428_CR13 publication-title: Appl Intell doi: 10.1007/s10489-018-1190-6 – volume: 69 start-page: 246 year: 2015 ident: 428_CR28 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.12.080 – volume: 121 start-page: 66 year: 2018 ident: 428_CR49 publication-title: Renew Energy doi: 10.1016/j.renene.2017.12.106 – ident: 428_CR36 doi: 10.1007/s00500-018-3634-7 – volume: 13 start-page: 3038 issue: 3 year: 2018 ident: 428_CR44 publication-title: IEEE Syst J doi: 10.1109/JSYST.2018.2875177 – volume: 67 start-page: 336 year: 2015 ident: 428_CR31 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.12.010 – volume: 26 start-page: 1080 issue: 3 year: 2010 ident: 428_CR63 publication-title: IEEE Trans Power Syst – volume: 45 start-page: 1678 issue: 15 year: 2017 ident: 428_CR17 publication-title: Electric Power Compon Syst doi: 10.1080/15325008.2017.1378944 – ident: 428_CR51 doi: 10.1016/j.asoc.2020.106293 – volume: 12 start-page: 2791 issue: 3 year: 2017 ident: 428_CR23 publication-title: IEEE Syst J doi: 10.1109/JSYST.2017.2691759 – volume: 63 start-page: 534 year: 2014 ident: 428_CR18 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.06.031 – ident: 428_CR46 doi: 10.1007/s00521-017-3049-x – ident: 428_CR22 doi: 10.1007/s00521-019-04629-4 – ident: 428_CR54 doi: 10.1109/ITCE.2018.8316637 – volume: 6 start-page: 2 issue: 1 year: 2019 ident: 428_CR19 publication-title: Renew Wind Water Solar doi: 10.1186/s40807-019-0056-9 – volume: 9 start-page: 1051 issue: 11 year: 2015 ident: 428_CR57 publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2014.0915 – ident: 428_CR34 doi: 10.1007/s13042-018-0851-4 – ident: 428_CR21 doi: 10.1007/s00521-019-04570-6 – volume: 30 start-page: 92 year: 2019 ident: 428_CR60 publication-title: Renew Energy Focus doi: 10.1016/j.ref.2019.04.001 – volume: 4 start-page: 557 issue: 1 year: 2013 ident: 428_CR29 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2012.2237420 – volume: 22 start-page: 2473 issue: 4 year: 2007 ident: 428_CR64 publication-title: IEEE Trans Power Deliv doi: 10.1109/TPWRD.2007.905370 – ident: 428_CR55 – volume: 9 start-page: 982 issue: 12 year: 2016 ident: 428_CR39 publication-title: Energies doi: 10.3390/en9120982 – volume: 78 start-page: 70 year: 2019 ident: 428_CR35 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.02.013 – volume: 23 start-page: 129 issue: 2 year: 2001 ident: 428_CR59 publication-title: Int J Electr Power Energy Syst doi: 10.1016/S0142-0615(00)00040-5 – volume: 9 start-page: 2101 year: 2017 ident: 428_CR27 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2017.03.001 – volume: 382 start-page: 15 year: 2017 ident: 428_CR45 publication-title: Inf Sci doi: 10.1016/j.ins.2016.12.003 – volume: 79 start-page: 42 year: 2016 ident: 428_CR4 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.12.034 – ident: 428_CR5 doi: 10.1109/TENCON.2017.8228135 |
| SSID | ssj0062074 |
| Score | 2.3523526 |
| Snippet | The integration of distributed generators (DGs) is considered to be one of the best cost-effective techniques to improve the efficiency of power distribution... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1635 |
| SubjectTerms | Applications of Mathematics Artificial Intelligence Bioinformatics Contingency Control Deregulation Distributed generation Electric power distribution Electric power loss Energy costs Energy dissipation Engineering Evolutionary algorithms Generators Genetic algorithms Mathematical and Computational Engineering Mechatronics Multiple objective analysis Particle swarm optimization Performance enhancement Pollutants Radial distribution Rank tests Research Paper Robotics Sorting algorithms Statistical Physics and Dynamical Systems System effectiveness Trigonometric functions Voltage stability |
| Title | A new Pareto multi-objective sine cosine algorithm for performance enhancement of radial distribution network by optimal allocation of distributed generators |
| URI | https://link.springer.com/article/10.1007/s12065-020-00428-2 https://www.proquest.com/docview/2585419648 |
| Volume | 14 |
| WOSCitedRecordID | wos000551438000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1864-5917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: RSV dateStart: 20080301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHvTg-sTHKnPwpoE2TZrkKKJ4EBFfeCttkvpg3cruKvhj_K9Osq1VUUFPPeTRwExmJsnM9xGyrbUTSuYxlcxFlAsZoR3MLZWWJ0w77qJwmXN1LE9O1PW1Pq2LwoZNtnvzJBksdVvsxtBdUn_cCYE-RcM7he5OecKGs_Orxv6mLArYy7FKORU60nWpzPdzfHZHbYz55Vk0eJvDzv_WOU_m6ugS9sbqsEAmXH-RdBrmBqg38iKZ_QBDuERe9wCDazj1hLcVhBRDWhX3Y1MIPjEeTBU-ee-mGtyNbh8AY114bIsOwPVv_dffNUJVwsBDHvTAeljemlEL_xEyzqF4gQoN1QO2-1f_8Z2hH_Te21m4CXDYngpomVweHlzsH9GatoEa3M8j6iR3zpSlKKyKndEcj4QpF2VuLLdWlLJMDE8LowqZxiYxhWNKxSYVIk84BnTJCpnsV323SkAk1hNmWWmxSRd5niZlGmkTlRpPv0ytkbiRXmZqTHNPrdHLWjRmL40MpZEFaWRsjey8j3kcI3r82rvbKEVW7-5hxvCMxT2SGS5gt1GCtvnn2db_1n2DzDCfQhOyZ7pkcjR4cptk2jyP7oaDraD1bw8Q_i8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZQi0R7aOkDkRLoHLhRS7tee70-RoioiBBVbYlyW-3a3iRVko2StFJ_TP8rY2e3Cwgq0ZMPfkrjedkz3xDyUSkrEpmFVDIbUC5kgHIwM1QaHjFluQ38Y86gJ_v9ZDhUF1VS2KqOdq-_JL2kbpLdGKpL6twdb-hTFLzbHDWWQ8y_vBrU8jdmgcdeDpOYU6ECVaXK_H2N39VRY2P-8S3qtU13_3nnfE32KusSOpvrcEBe2Pkh2a8rN0DFyIdk9xcYwiPy0AE0ruHCFbwtwYcY0jK_2YhCcIHxoEvfZNNRuZysxzNAWxcWTdIB2PnYte6tEcoClg7yYArGwfJWFbVwDx9xDvk9lCioZtjvfv03b4Zu0uNoa2Dk4bBdKaBj8qP75frzOa3KNlCN_LymVnJrdVGI3CSh1YqjSxhzUWTacGNEIYtI8zjXSS7jUEc6tyxJQh0LkUUcDbroDdmal3P7loCIjCuYZaTBLpVnWRwVcaB0UCj0flnSImFNvVRXmOautMY0bdCYHTVSpEbqqZGyFvn0OGexQfR4cnS7vhRpxd2rlKGPxR2SGR7grL4ETfe_Vzv5v-Gn5NX59fde2vva__aO7DAXTuMjadpka728te_JS323nqyWHzwH_AQAPQEi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqWiF6KOVRlZaWOfQGFoljx_ERtV21KlqtxEPcosQPHlqS1ZIi8WP6X-txEkIrQEKccvAjlsYznrG_-YaQL0pZkckippLZiHIhI28HC0Ol4QlTltsoXOYc78vxODs5UZM7WfwB7d4_SbY5DcjSVDW7M-N2h8Q35o9OiqFPcPqpN8IvOQLpMV4_OO5tccqiwMMcZymnQkWqS5u5f45_j6bB3_zviTScPKPl56_5LXnTeZ2w126TFfLCVqtkua_oAJ2Cr5LXd-gJ18ifPfBON0ywEG4NAXpI6_KiNZGAgHnQdfgU09N6ft6cXYL3gWE2JCOArc7wi3eQUDuYIxXCFAzS9XaVtvw_AhIdyhuovQG79O2IBmjvEnHQbW9r4DTQZGOJoHVyNPp--PUH7co5UO31vKFWcmu1c6I0WWy14j5UTLlwhTbcGOGkSzRPS52VMo11okvLsizWqRBFwr2jl7wjC1Vd2fcERGKwkJaRxjepsijSxKWR0pFTPipm2QaJe0nmuuM6x5Ib03xgaUZp5F4aeZBGzjbI9u2YWcv08WjvzX6D5J3WX-XMx14cGc78Anb6DTE0Pzzbh6d13yKLk2-jfP_n-NdHssQQZRMANptkoZn_tp_IK33dnF_NPwdl-AuB5woG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+Pareto+multi-objective+sine+cosine+algorithm+for+performance+enhancement+of+radial+distribution+network+by+optimal+allocation+of+distributed+generators&rft.jtitle=Evolutionary+intelligence&rft.au=Raut+Usharani&rft.au=Mishra+Sivkumar&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=14&rft.issue=4&rft.spage=1635&rft.epage=1656&rft_id=info:doi/10.1007%2Fs12065-020-00428-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon |