A Characterization of the Hardy Space Associated with the Dunkl Transform

For p ≥ p 0 : = 2 λ / ( 2 λ + 1 ) with λ > 0 , the Hardy space H λ p ( R + 2 ) associated with the Dunkl transform F λ and the Dunkl operator D on the line R , where ( D x f ) ( x ) = f ′ ( x ) + λ x ( f ( x ) - f ( - x ) ) , is the set of functions F = u + i v on the half plane R + 2 = { ( x , y...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex analysis and operator theory Ročník 15; číslo 3
Hlavní autoři: Wei, Haihua, Liao, Jianquan, Li, Zhongkai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.04.2021
Springer Nature B.V
Témata:
ISSN:1661-8254, 1661-8262
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract For p ≥ p 0 : = 2 λ / ( 2 λ + 1 ) with λ > 0 , the Hardy space H λ p ( R + 2 ) associated with the Dunkl transform F λ and the Dunkl operator D on the line R , where ( D x f ) ( x ) = f ′ ( x ) + λ x ( f ( x ) - f ( - x ) ) , is the set of functions F = u + i v on the half plane R + 2 = { ( x , y ) : x ∈ R , y > 0 } , satisfying the generalized Cauchy–Riemann equations D x u - ∂ y v = 0 , ∂ y u + D x v = 0 , and sup y > 0 ∫ R | F ( x , y ) | p | x | 2 λ d x < + ∞ ; and the real Hardy space H λ p ( R ) on the line R is the collection of boundary functions of the real parts of functions F ∈ H λ p ( R + 2 ) . In this paper, we establish the Hardy-Littlewood-Sobolev type theorem on the Hardy spaces for the Riesz potential I λ α associated to the Dunkl transform; and as the main result, we prove the equality D ( I λ 1 f ) = - H λ f for f ∈ H λ 1 ( R ) in a weak sense, where H λ is the generalized Hilbert transform related to the Dunkl transform, which gives a characterization for f ∈ H λ 1 ( R ) .
AbstractList For p ≥ p 0 : = 2 λ / ( 2 λ + 1 ) with λ > 0 , the Hardy space H λ p ( R + 2 ) associated with the Dunkl transform F λ and the Dunkl operator D on the line R , where ( D x f ) ( x ) = f ′ ( x ) + λ x ( f ( x ) - f ( - x ) ) , is the set of functions F = u + i v on the half plane R + 2 = { ( x , y ) : x ∈ R , y > 0 } , satisfying the generalized Cauchy–Riemann equations D x u - ∂ y v = 0 , ∂ y u + D x v = 0 , and sup y > 0 ∫ R | F ( x , y ) | p | x | 2 λ d x < + ∞ ; and the real Hardy space H λ p ( R ) on the line R is the collection of boundary functions of the real parts of functions F ∈ H λ p ( R + 2 ) . In this paper, we establish the Hardy-Littlewood-Sobolev type theorem on the Hardy spaces for the Riesz potential I λ α associated to the Dunkl transform; and as the main result, we prove the equality D ( I λ 1 f ) = - H λ f for f ∈ H λ 1 ( R ) in a weak sense, where H λ is the generalized Hilbert transform related to the Dunkl transform, which gives a characterization for f ∈ H λ 1 ( R ) .
For p≥p0:=2λ/(2λ+1) with λ>0, the Hardy space Hλp(R+2) associated with the Dunkl transform Fλ and the Dunkl operator D on the line R, where (Dxf)(x)=f′(x)+λx(f(x)-f(-x)), is the set of functions F=u+iv on the half plane R+2={(x,y):x∈R,y>0}, satisfying the generalized Cauchy–Riemann equations Dxu-∂yv=0, ∂yu+Dxv=0, and supy>0∫R|F(x,y)|p|x|2λdx<+∞; and the real Hardy space Hλp(R) on the line R is the collection of boundary functions of the real parts of functions F∈Hλp(R+2). In this paper, we establish the Hardy-Littlewood-Sobolev type theorem on the Hardy spaces for the Riesz potential Iλα associated to the Dunkl transform; and as the main result, we prove the equality D(Iλ1f)=-Hλf for f∈Hλ1(R) in a weak sense, where Hλ is the generalized Hilbert transform related to the Dunkl transform, which gives a characterization for f∈Hλ1(R).
ArticleNumber 57
Author Li, Zhongkai
Liao, Jianquan
Wei, Haihua
Author_xml – sequence: 1
  givenname: Haihua
  surname: Wei
  fullname: Wei, Haihua
  organization: Department of Mathematics, Shanghai Normal University
– sequence: 2
  givenname: Jianquan
  surname: Liao
  fullname: Liao, Jianquan
  organization: Department of Mathematics, Guangdong University of Education
– sequence: 3
  givenname: Zhongkai
  orcidid: 0000-0002-0635-8164
  surname: Li
  fullname: Li, Zhongkai
  email: lizk@shnu.edu.cn
  organization: Department of Mathematics, Shanghai Normal University
BookMark eNp9kE9PAjEQxRujiYB-AU9NPK92Ct1ujwT_QELiQTw3s7utLMIW2xKDn97KGk08cJpJ5v3mzbw-OW1dawi5AnYDjMnbACALkTEOGQNgMhMnpAd5DlnBc37624vROemHsGIsZ1KpHpmN6WSJHqtofPOJsXEtdZbGpaFT9PWePm-xMnQcgqsajKamH01cHuZ3u_ZtTRce22Cd31yQM4vrYC5_6oC8PNwvJtNs_vQ4m4znWTUEFTMj2UgoIerkXzNulRG1kkLJHFVuC44ClQUpWCnSN2WNxiKUAllloSxLOxyQ627v1rv3nQlRr9zOt8lScwHAi1HanFS8U1XeheCN1VvfbNDvNTD9HZnuItPJRB8i0yJBxT-oauIhk-ixWR9Hhx0akk_7avzfVUeoL4yhgac
CitedBy_id crossref_primary_10_1016_j_matpur_2025_103725
crossref_primary_10_1007_s12220_024_01860_x
crossref_primary_10_1007_s00041_025_10186_3
Cites_doi 10.1090/S0002-9947-1965-0199636-9
10.1007/BF02546524
10.1360/03ys0252
10.1007/s00365-013-9179-1
10.1016/j.jfa.2013.05.024
10.1524/anly.1996.16.1.27
10.1016/j.cam.2005.02.022
10.1006/jath.1996.0061
10.1007/BF01244305
10.1090/S0002-9947-1989-0951883-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11785-021-01107-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1661-8262
ExternalDocumentID 10_1007_s11785_021_01107_5
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11401113; 11571261
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11371258
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c319t-e7045955d079d02f9e5d975976a96f82a5a9f1750b5021bdaefa1b5a0cf1bbbf3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639446900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1661-8254
IngestDate Thu Sep 18 00:03:37 EDT 2025
Sat Nov 29 06:38:31 EST 2025
Tue Nov 18 21:34:35 EST 2025
Fri Feb 21 02:49:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Dunkl transform
44A15
Hilbert transform
30D55
Weak Dunkl derivative
42A50
30G20
Riesz potential
Hardy space
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e7045955d079d02f9e5d975976a96f82a5a9f1750b5021bdaefa1b5a0cf1bbbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0635-8164
PQID 2511284079
PQPubID 2044007
ParticipantIDs proquest_journals_2511284079
crossref_primary_10_1007_s11785_021_01107_5
crossref_citationtrail_10_1007_s11785_021_01107_5
springer_journals_10_1007_s11785_021_01107_5
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex analysis and operator theory
PublicationTitleAbbrev Complex Anal. Oper. Theory
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Li (CR5) 1996; 16
Thangavelu, Xu (CR13) 2007; 199
Li, Liao (CR6) 2013; 37
Stefanov (CR10) 2002; 44
Rösler, Heyer, Mukherjea (CR9) 1995
CR3
Stein (CR11) 1970
Stein, Weiss (CR12) 1960; 103
Muckenhoupt, Stein (CR8) 1965; 118
Li, Liao (CR7) 2013; 265
Dunkl (CR2) 1989; 311
de Jeu (CR1) 1993; 113
Wang (CR14) 2005; 48
Li (CR4) 1996; 86
Z-K Li (1107_CR5) 1996; 16
Z-K Li (1107_CR6) 2013; 37
MFE de Jeu (1107_CR1) 1993; 113
Z-K Li (1107_CR4) 1996; 86
CF Dunkl (1107_CR2) 1989; 311
1107_CR3
A Stefanov (1107_CR10) 2002; 44
B Muckenhoupt (1107_CR8) 1965; 118
S Thangavelu (1107_CR13) 2007; 199
EM Stein (1107_CR12) 1960; 103
M Rösler (1107_CR9) 1995
SL Wang (1107_CR14) 2005; 48
EM Stein (1107_CR11) 1970
Z-K Li (1107_CR7) 2013; 265
References_xml – volume: 118
  start-page: 17
  year: 1965
  end-page: 92
  ident: CR8
  article-title: Classical expansions and their relation to conjugate harmonic functions
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1965-0199636-9
– start-page: 292
  year: 1995
  end-page: 304
  ident: CR9
  article-title: Bessel-type signed hypergroups on
  publication-title: Probability Measures on Groups and Related Structures XI
– volume: 103
  start-page: 26
  year: 1960
  end-page: 62
  ident: CR12
  article-title: On the theory of harmonic functions of several variables, I. The theory of spaces
  publication-title: Acta Math.
  doi: 10.1007/BF02546524
– volume: 48
  start-page: 448
  issue: 4
  year: 2005
  end-page: 455
  ident: CR14
  article-title: A note on characterization of Hardy space
  publication-title: Sci. China Ser. A
  doi: 10.1360/03ys0252
– volume: 37
  start-page: 233
  year: 2013
  end-page: 281
  ident: CR6
  article-title: Harmonic analysis associated with the one-dimensional Dunkl transform
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-013-9179-1
– year: 1970
  ident: CR11
  publication-title: Singular Integrals and Differentiability Properties of Functions
– volume: 265
  start-page: 687
  year: 2013
  end-page: 742
  ident: CR7
  article-title: Hardy spaces for Dunkl-Gegenbauer expansions
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2013.05.024
– ident: CR3
– volume: 16
  start-page: 27
  year: 1996
  end-page: 49
  ident: CR5
  article-title: Hardy spaces for Jacobi expansions
  publication-title: Analysis
  doi: 10.1524/anly.1996.16.1.27
– volume: 199
  start-page: 181
  year: 2007
  end-page: 195
  ident: CR13
  article-title: Riesz transform and Riesz potentials for Dunkl transform
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.02.022
– volume: 86
  start-page: 179
  year: 1996
  end-page: 196
  ident: CR4
  article-title: Conjugate Jacobi series and conjugate functions
  publication-title: J. Approx. Theory
  doi: 10.1006/jath.1996.0061
– volume: 113
  start-page: 147
  year: 1993
  end-page: 162
  ident: CR1
  article-title: The Dunkl transform
  publication-title: Invent. Math.
  doi: 10.1007/BF01244305
– volume: 44
  start-page: 574
  year: 2002
  end-page: 592
  ident: CR10
  article-title: Characterization of and applications to sigular integrals
  publication-title: Illinois J. Math.
– volume: 311
  start-page: 167
  year: 1989
  end-page: 183
  ident: CR2
  article-title: Differential-difference operators associated to reflection groups
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1989-0951883-8
– volume: 16
  start-page: 27
  year: 1996
  ident: 1107_CR5
  publication-title: Analysis
  doi: 10.1524/anly.1996.16.1.27
– volume: 37
  start-page: 233
  year: 2013
  ident: 1107_CR6
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-013-9179-1
– volume: 311
  start-page: 167
  year: 1989
  ident: 1107_CR2
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1989-0951883-8
– volume: 265
  start-page: 687
  year: 2013
  ident: 1107_CR7
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2013.05.024
– volume: 86
  start-page: 179
  year: 1996
  ident: 1107_CR4
  publication-title: J. Approx. Theory
  doi: 10.1006/jath.1996.0061
– start-page: 292
  volume-title: Probability Measures on Groups and Related Structures XI
  year: 1995
  ident: 1107_CR9
– volume: 48
  start-page: 448
  issue: 4
  year: 2005
  ident: 1107_CR14
  publication-title: Sci. China Ser. A
  doi: 10.1360/03ys0252
– volume: 44
  start-page: 574
  year: 2002
  ident: 1107_CR10
  publication-title: Illinois J. Math.
– volume: 118
  start-page: 17
  year: 1965
  ident: 1107_CR8
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1965-0199636-9
– volume: 199
  start-page: 181
  year: 2007
  ident: 1107_CR13
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.02.022
– volume-title: Singular Integrals and Differentiability Properties of Functions
  year: 1970
  ident: 1107_CR11
– ident: 1107_CR3
– volume: 113
  start-page: 147
  year: 1993
  ident: 1107_CR1
  publication-title: Invent. Math.
  doi: 10.1007/BF01244305
– volume: 103
  start-page: 26
  year: 1960
  ident: 1107_CR12
  publication-title: Acta Math.
  doi: 10.1007/BF02546524
SSID ssj0060799
Score 2.193722
Snippet For p ≥ p 0 : = 2 λ / ( 2 λ + 1 ) with λ > 0 , the Hardy space H λ p ( R + 2 ) associated with the Dunkl transform F λ and the Dunkl operator D on the line R ,...
For p≥p0:=2λ/(2λ+1) with λ>0, the Hardy space Hλp(R+2) associated with the Dunkl transform Fλ and the Dunkl operator D on the line R, where...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Analysis
Hilbert transformation
Infinite-dimensional Analysis and Non-commutative Theory
Mathematics
Mathematics and Statistics
Operator Theory
Title A Characterization of the Hardy Space Associated with the Dunkl Transform
URI https://link.springer.com/article/10.1007/s11785-021-01107-5
https://www.proquest.com/docview/2511284079
Volume 15
WOSCitedRecordID wos000639446900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1661-8262
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060799
  issn: 1661-8254
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt1itkoM3Dewr2c2xFEUPFrFVelvyGhBLK93q7zdJN10UFfSc2Wx2JsnMt_NC6DwFkRbKxEQxBsTiLyBSJ0C0LiRXTEoG4JtN5P1-MRrx-zoprArR7sEl6W_qJtnNNZInLqTA6ayc0FW0ZtVd4Y7jw-Ap3L8syn3XyNhqHuLwT50q8_0cn9VRY2N-cYt6bXO9_b917qCt2rrE3cV22EUrZrKHNu-WpVmrfXTbxb1lkeZFDiaeArYU2Hvx8cCiaIOD2IzG7letH7fG7ssYD4Ope4Aer6-GvRtS91Mgyh60OTG5td84pdpySEcJcEM1zy2iYIIzKBJBBQdrTkSS2tVLLQyIWFIRKYillJAeotZkOjFHCMccTMo1CMOYxUyZ4JkBHelMKA46i9ooDmwtVV1s3PW8GJdNmWTHptK-qPRsKmkbXSyfeV2U2viVuhOkVdbHriodXrL61n5fG10G6TTDP892_DfyE7SReAG7CJ4Oas1nb-YUrav3-XM1O_Pb8QMXltkS
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-J0ah5800C7tunyOIay4TbETdlbSZociGOTdfr3m2TtiqKCPueapndJ7ne9L4DLAEXQSLVPU8aQGvsLqVR1pEo1JE-ZlAzRNZuI-_3GaMTv86SwrIh2L1yS7qYuk91sI3lqQwqszopptAprodFYNpDvYfBU3L_Mi13XSN9oHmrtnzxV5vs5PqujEmN-cYs6bXO787917sJ2ji5Jc7Ed9mBFT_Zhq7cszZodQKdJWssizYscTDJFYiiI8-KTgbGiNSnEphWxv2rduAG7L2MyLKDuITze3gxbbZr3U6CpOWhzqmOD33gUKcMh5dWR60jx2FgUTHCGjbqIBEcDJzwZmdVLJTQKX0bCS9GXUmJwBJXJdKKPgfgcdcAVCs2YsZlCwUONylOhSDmq0KuCX7A1SfNi47bnxTgpyyRbNiXmRYljUxJV4Wr5zOui1Mav1LVCWkl-7LLE2ktG35rvq8J1IZ1y-OfZTv5GfgEb7WGvm3Q7_btT2Kw7YdtonhpU5rM3fQbr6fv8OZudu635AU2n2_Y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEL8oGqMPfhtR1D74po0bbB19JCiRqIQENLwt7dpLjGQQQP9-224DNWpifO6t6-7a3f16XwDnNRS1eqJ9mjCG1OAvpFJVkSpVlzxhUjJE12wi6nTqgwHvfsjid9HuhUsyy2mwVZrS2dVY4dUi8c02lac2vMDqr4iGy7AS2KZBFq_3nop_MfMi10HSN1qIWiyUp818P8dn1bSwN7-4SJ3maW39f83bsJlbnaSRbZMdWNLpLmw8zEu2Tveg3SDNefHmLDeTjJAYCuK8-6Rn0LUmhTi1IvYK140bI_hlSPqFCbwPj62bfvOW5n0WaGIO4IzqyNh1PAyV4Zbyqsh1qHhkkAYTnGG9KkLB0ZgZngzN6qUSGoUvQ-El6EspsXYApXSU6kMgPkdd4wqFZsxgqUDwQKPyVCASjirwyuAXLI6TvAi57YUxjBflky2bYvOi2LEpDstwMX9mnJXg-JW6Ukguzo_jNLY4yuhh831luCwktRj-ebajv5GfwVr3uhXftzt3x7BedbK2QT4VKM0mr_oEVpO32fN0cup26Ttp0uTa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Characterization+of+the+Hardy+Space+Associated+with+the+Dunkl+Transform&rft.jtitle=Complex+analysis+and+operator+theory&rft.au=Wei+Haihua&rft.au=Liao+Jianquan&rft.au=Li+Zhongkai&rft.date=2021-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1661-8254&rft.eissn=1661-8262&rft.volume=15&rft.issue=3&rft_id=info:doi/10.1007%2Fs11785-021-01107-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8254&client=summon