Image-based wheat grain classification using convolutional neural network
India is among the largest cultivators and consumers of wheat grains leading to apparent demand for identifying the quality and varietal distribution of wheat to fulfill the specific requirements of food industries. Moreover, with the variations in prices of distinct varieties in different parts of...
Gespeichert in:
| Veröffentlicht in: | Multimedia tools and applications Jg. 80; H. 28-29; S. 35441 - 35465 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.11.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1380-7501, 1573-7721 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | India is among the largest cultivators and consumers of wheat grains leading to apparent demand for identifying the quality and varietal distribution of wheat to fulfill the specific requirements of food industries. Moreover, with the variations in prices of distinct varieties in different parts of the country, it becomes a vital need for the customers as well as for the cultivators to identify and classify the grains based upon specific end products, demand, and prices of individual variety. The growth of Machine Learning and Computer Vision in agriculture, facilitate the development of such techniques that can successfully identify the classes based on visual features and representation. In this paper, a model has been developed from scratch for the classification of fifteen different varieties of wheat consists of 15000 images based on their visual traits using Convolutional Neural Network. The model has been produced under a different set of hyper-parameters tuned to develop the best model that can classify the varieties of wheat grains with high accuracy and minimum loss. The performance of the different models are compared in terms of classification accuracy and categorical cross-entropy loss. The model which is found best, successfully classifies the wheat varieties with 94.88% training accuracy and 97.53% test accuracy while on the other side reduces loss to 15% for training and 8% for the test set. Hence, the developed model can be deployed for the classification of different grain varieties, plant diseases, plant varieties, and several other fields under agriculture. |
|---|---|
| AbstractList | India is among the largest cultivators and consumers of wheat grains leading to apparent demand for identifying the quality and varietal distribution of wheat to fulfill the specific requirements of food industries. Moreover, with the variations in prices of distinct varieties in different parts of the country, it becomes a vital need for the customers as well as for the cultivators to identify and classify the grains based upon specific end products, demand, and prices of individual variety. The growth of Machine Learning and Computer Vision in agriculture, facilitate the development of such techniques that can successfully identify the classes based on visual features and representation. In this paper, a model has been developed from scratch for the classification of fifteen different varieties of wheat consists of 15000 images based on their visual traits using Convolutional Neural Network. The model has been produced under a different set of hyper-parameters tuned to develop the best model that can classify the varieties of wheat grains with high accuracy and minimum loss. The performance of the different models are compared in terms of classification accuracy and categorical cross-entropy loss. The model which is found best, successfully classifies the wheat varieties with 94.88% training accuracy and 97.53% test accuracy while on the other side reduces loss to 15% for training and 8% for the test set. Hence, the developed model can be deployed for the classification of different grain varieties, plant diseases, plant varieties, and several other fields under agriculture. |
| Author | Tomer, Manjeet Singh Lingwal, Surabhi Bhatia, Komal Kumar |
| Author_xml | – sequence: 1 givenname: Surabhi surname: Lingwal fullname: Lingwal, Surabhi email: surabhi.lingwal@gmail.com organization: Govind Ballabh Pant Institute of Engineering and Technology – sequence: 2 givenname: Komal Kumar surname: Bhatia fullname: Bhatia, Komal Kumar organization: J. C. Bose University of Science and Technology, YMCA – sequence: 3 givenname: Manjeet Singh surname: Tomer fullname: Tomer, Manjeet Singh organization: J. C. Bose University of Science and Technology, YMCA |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7CKxNowfsXJElU8KlViA2vLsZ2QktrFTqj4e9IWCYlFV3c0mntn5szQxAfvELomcEsA5F0iBDjFQAETIJJjdoamREiGpaRkMtasACwFkAs0S2kNQHJB-RQtlxvdOFzp5Gy2e3e6z5qoW5-ZTqfU1q3RfRt8NqTWN5kJ_it0w76ju8y7IR6k34X4cYnOa90ld_Wrc_T2-PC6eMarl6fl4n6FDSNlj13uDKu0qKwFU3NeaGYpY04yXVZGEmtFBRZEyQ3lWnPpaFnzQgory9wJxubo5pi7jeFzcKlX6zDE8Z6kaA48F1IwMk7R45SJIaXoarWN7UbHb0VA7ZGpIzI1IlMHZGofXfwzmbY__N-PTLrTVna0pnGPb1z8u-qE6weU-oL5 |
| CitedBy_id | crossref_primary_10_1002_jsfa_13668 crossref_primary_10_1007_s10812_023_01552_4 crossref_primary_10_28979_jarnas_1512352 crossref_primary_10_1007_s10921_024_01143_z crossref_primary_10_3390_agronomy15051157 crossref_primary_10_1007_s00217_024_04473_4 crossref_primary_10_1007_s11042_024_18867_9 crossref_primary_10_3390_agronomy12123187 crossref_primary_10_1007_s11042_022_12662_0 crossref_primary_10_1007_s11042_023_16075_5 crossref_primary_10_3389_fpls_2023_1336192 crossref_primary_10_1016_j_compeleceng_2023_108896 crossref_primary_10_3390_agriculture13112056 crossref_primary_10_3390_plants12051191 crossref_primary_10_1016_j_measurement_2021_110252 crossref_primary_10_1080_0952813X_2022_2062458 crossref_primary_10_1117_1_JEI_33_5_053063 crossref_primary_10_1002_jsfa_14378 crossref_primary_10_3390_su151813706 |
| Cites_doi | 10.1007/s12393-014-9101-z 10.1002/jsfa.8080 10.1016/j.isprsjprs.2017.11.021 10.1038/nature14539 10.1007/s00371-017-1379-4 10.1007/s00371-018-1566-y 10.1007/s11632-013-0414-4 10.1109/ACCESS.2014.2325029 10.1007/s00371-018-1583-x 10.1109/TPAMI.2008.79 10.1109/TSMC.1979.4310076 10.1109/MCI.2010.938364 10.1016/j.compag.2018.08.013 10.1016/j.compag.2016.07.020 10.1016/j.patcog.2013.06.012 10.1007/s00371-013-0782-8 10.1016/j.eswa.2014.10.003 10.1002/jsfa.8264 10.1016/j.compag.2018.08.001 10.1080/10942912.2011.615085 10.1007/s00371-019-01763-x 10.1109/ICMLA.2016.0178 10.1145/3139367.3139368 10.1007/978-3-642-35289-8_3 10.1007/s00371-019-01768-6 10.1145/3209914.3209945 10.1007/978-981-13-1702-6_32 10.1007/978-3-319-90403-0_6 10.1109/Agro-Geoinformatics.2014.6910610 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-020-10174-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Agriculture |
| EISSN | 1573-7721 |
| EndPage | 35465 |
| ExternalDocumentID | 10_1007_s11042_020_10174_3 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-e6ec3ba5bdd0cf448a3d233e73a9bc71dd5b0d0594c24aa47e29f4875d796e533 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607776300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Tue Nov 04 23:01:13 EST 2025 Tue Nov 18 22:18:44 EST 2025 Sat Nov 29 06:20:08 EST 2025 Fri Feb 21 02:47:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 28-29 |
| Keywords | Deep learning Image processing Wheat crops Convolutional neural network Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-e6ec3ba5bdd0cf448a3d233e73a9bc71dd5b0d0594c24aa47e29f4875d796e533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2604657531 |
| PQPubID | 54626 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2604657531 crossref_primary_10_1007_s11042_020_10174_3 crossref_citationtrail_10_1007_s11042_020_10174_3 springer_journals_10_1007_s11042_020_10174_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20211100 2021-11-00 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Barbedo (CR2) 2018; 153 CR15 Sivakumar, Anandalakshmi, Warrier, Singh, Tigabu, Nagarajan (CR31) 2013; 15 Kaya, Kayci (CR13) 2014; 30 CR14 CR12 Larese, Namías, Craviotto, Arango, Gallo, Granitto (CR18) 2014; 47 CR11 CR33 CR10 CR32 Zareiforoush, Minaei, Alizadeh, Banakar (CR36) 2015; 7 Chen, Lin (CR6) 2014; 2 CR30 Cheng, Lai, Wang, Qin (CR7) 2019; 35 Patrício, Rieder (CR25) 2018; 153 Otsu (CR23) 1979; 9 Bi, Kim, Kumar, Fulham, Feng (CR3) 2017; 33 Zapotoczny (CR35) 2014; 17 Sabanci, Kayabasi, Toktas (CR28) 2017; 97 Wright, Yang, Ganesh, Sastry, Ma (CR34) 2008; 31 LeCun, Bengio, Hinton (CR19) 2015; 521 CR4 CR5 Liu, Xu, Wang (CR21) 2019; 35 CR8 Paoletti, Haut, Plaza, Plaza (CR24) 2018; 145 CR9 CR27 Sabanci, Toktas, Kayabasi (CR29) 2017; 97 Pazoki, Farokhi, Pazoki (CR26) 2014; 24 CR22 CR20 Kuo, Chung, Chen, Lin, Kuo (CR16) 2016; 127 Kurtulmuş, Ünal (CR17) 2015; 42 Arel, Rose, Karnowski (CR1) 2010; 5 DI Patrício (10174_CR25) 2018; 153 X Liu (10174_CR21) 2019; 35 10174_CR14 10174_CR15 S Cheng (10174_CR7) 2019; 35 10174_CR12 L Bi (10174_CR3) 2017; 33 M Paoletti (10174_CR24) 2018; 145 K Sabanci (10174_CR28) 2017; 97 10174_CR22 JGA Barbedo (10174_CR2) 2018; 153 F Kurtulmuş (10174_CR17) 2015; 42 I Arel (10174_CR1) 2010; 5 10174_CR20 XW Chen (10174_CR6) 2014; 2 N Otsu (10174_CR23) 1979; 9 Y LeCun (10174_CR19) 2015; 521 J Wright (10174_CR34) 2008; 31 P Zapotoczny (10174_CR35) 2014; 17 TY Kuo (10174_CR16) 2016; 127 K Sabanci (10174_CR29) 2017; 97 10174_CR27 A Pazoki (10174_CR26) 2014; 24 10174_CR5 MG Larese (10174_CR18) 2014; 47 10174_CR4 10174_CR10 10174_CR32 10174_CR11 10174_CR33 10174_CR30 H Zareiforoush (10174_CR36) 2015; 7 Y Kaya (10174_CR13) 2014; 30 V Sivakumar (10174_CR31) 2013; 15 10174_CR9 10174_CR8 |
| References_xml | – volume: 7 start-page: 321 issue: 3 year: 2015 end-page: 345 ident: CR36 article-title: Potential applications of computer vision in quality inspection of rice: a review publication-title: Food Eng Rev doi: 10.1007/s12393-014-9101-z – ident: CR22 – volume: 97 start-page: 2588 issue: 8 year: 2017 end-page: 2593 ident: CR28 article-title: Computer vision-based method for classification of wheat grains using artificial neural network publication-title: J Sci Food Agricul doi: 10.1002/jsfa.8080 – volume: 145 start-page: 120 year: 2018 end-page: 147 ident: CR24 article-title: A new deep convolutional neural network for fast hyperspectral image classification publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2017.11.021 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: CR19 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: CR4 – ident: CR14 – volume: 33 start-page: 1061 issue: 6-8 year: 2017 end-page: 1071 ident: CR3 article-title: Stacked fully convolutional networks with multi-channel learning: application to medical image segmentation publication-title: Vis Comput doi: 10.1007/s00371-017-1379-4 – volume: 35 start-page: 445 issue: 3 year: 2019 end-page: 470 ident: CR21 article-title: A survey on deep neural network-based image captioning publication-title: Vis Comput doi: 10.1007/s00371-018-1566-y – ident: CR12 – ident: CR30 – ident: CR10 – volume: 15 start-page: 253 issue: 4 year: 2013 end-page: 260 ident: CR31 article-title: Discrimination of Acacia seeds at species and subspecies levels using an image analyzer publication-title: For Sci Pract doi: 10.1007/s11632-013-0414-4 – ident: CR33 – volume: 24 start-page: 336 issue: 1 year: 2014 end-page: 343 ident: CR26 article-title: Classification of rice grain varieties using two Artificial Neural Networks (MLP and Neuro-Fuzzy) publication-title: J Anim Plant Sci – volume: 2 start-page: 514 year: 2014 end-page: 525 ident: CR6 article-title: Big data deep learning: challenges and perspectives publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2325029 – volume: 35 start-page: 1255 issue: 9 year: 2019 end-page: 1266 ident: CR7 article-title: A novel deep hashing method for fast image retrieval publication-title: Vis Comput doi: 10.1007/s00371-018-1583-x – ident: CR8 – volume: 31 start-page: 210 issue: 2 year: 2008 end-page: 227 ident: CR34 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.79 – volume: 9 start-page: 62 issue: 1 year: 1979 end-page: 66 ident: CR23 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.1979.4310076 – ident: CR27 – volume: 5 start-page: 13 issue: 4 year: 2010 end-page: 18 ident: CR1 article-title: Deep machine learning-a new frontier in artificial intelligence research publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2010.938364 – volume: 153 start-page: 46 year: 2018 end-page: 53 ident: CR2 article-title: Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.08.013 – volume: 127 start-page: 716 year: 2016 end-page: 725 ident: CR16 article-title: Identifying rice grains using image analysis and sparse-representation-based classification publication-title: Comput Electron Agric doi: 10.1016/j.compag.2016.07.020 – volume: 47 start-page: 158 issue: 1 year: 2014 end-page: 168 ident: CR18 article-title: Automatic classification of legumes using leaf vein image features publication-title: Pattern Recogn doi: 10.1016/j.patcog.2013.06.012 – volume: 30 start-page: 71 issue: 1 year: 2014 end-page: 79 ident: CR13 article-title: Application of artificial neural network for automatic detection of butterfly species using color and texture features publication-title: Vis Comput doi: 10.1007/s00371-013-0782-8 – ident: CR15 – ident: CR11 – volume: 42 start-page: 1880 issue: 4 year: 2015 end-page: 1891 ident: CR17 article-title: Discriminating rapeseed varieties using computer vision and machine learning publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.10.003 – ident: CR9 – volume: 97 start-page: 3994 issue: 12 year: 2017 end-page: 4000 ident: CR29 article-title: Grain classifier with computer vision using adaptive neuro-fuzzy inference system publication-title: J Sci Food Agric doi: 10.1002/jsfa.8264 – ident: CR32 – ident: CR5 – volume: 153 start-page: 69 year: 2018 end-page: 81 ident: CR25 article-title: Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.08.001 – ident: CR20 – volume: 17 start-page: 139 issue: 1 year: 2014 end-page: 151 ident: CR35 article-title: Discrimination of wheat grain varieties using image analysis and multidimensional analysis texture of grain mass publication-title: Int J Food Prop doi: 10.1080/10942912.2011.615085 – ident: 10174_CR5 doi: 10.1007/s00371-019-01763-x – volume: 153 start-page: 46 year: 2018 ident: 10174_CR2 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.08.013 – ident: 10174_CR8 doi: 10.1109/ICMLA.2016.0178 – volume: 31 start-page: 210 issue: 2 year: 2008 ident: 10174_CR34 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.79 – ident: 10174_CR27 doi: 10.1145/3139367.3139368 – ident: 10174_CR20 doi: 10.1007/978-3-642-35289-8_3 – ident: 10174_CR30 doi: 10.1007/s00371-019-01768-6 – volume: 2 start-page: 514 year: 2014 ident: 10174_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2325029 – ident: 10174_CR22 doi: 10.1145/3209914.3209945 – volume: 17 start-page: 139 issue: 1 year: 2014 ident: 10174_CR35 publication-title: Int J Food Prop doi: 10.1080/10942912.2011.615085 – ident: 10174_CR12 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10174_CR19 publication-title: Nature doi: 10.1038/nature14539 – volume: 97 start-page: 2588 issue: 8 year: 2017 ident: 10174_CR28 publication-title: J Sci Food Agricul doi: 10.1002/jsfa.8080 – ident: 10174_CR10 – ident: 10174_CR14 – volume: 33 start-page: 1061 issue: 6-8 year: 2017 ident: 10174_CR3 publication-title: Vis Comput doi: 10.1007/s00371-017-1379-4 – ident: 10174_CR33 doi: 10.1007/978-981-13-1702-6_32 – volume: 15 start-page: 253 issue: 4 year: 2013 ident: 10174_CR31 publication-title: For Sci Pract doi: 10.1007/s11632-013-0414-4 – volume: 5 start-page: 13 issue: 4 year: 2010 ident: 10174_CR1 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2010.938364 – volume: 7 start-page: 321 issue: 3 year: 2015 ident: 10174_CR36 publication-title: Food Eng Rev doi: 10.1007/s12393-014-9101-z – volume: 35 start-page: 1255 issue: 9 year: 2019 ident: 10174_CR7 publication-title: Vis Comput doi: 10.1007/s00371-018-1583-x – volume: 127 start-page: 716 year: 2016 ident: 10174_CR16 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2016.07.020 – volume: 153 start-page: 69 year: 2018 ident: 10174_CR25 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.08.001 – volume: 30 start-page: 71 issue: 1 year: 2014 ident: 10174_CR13 publication-title: Vis Comput doi: 10.1007/s00371-013-0782-8 – ident: 10174_CR4 doi: 10.1007/978-3-319-90403-0_6 – volume: 47 start-page: 158 issue: 1 year: 2014 ident: 10174_CR18 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2013.06.012 – volume: 42 start-page: 1880 issue: 4 year: 2015 ident: 10174_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.10.003 – ident: 10174_CR11 doi: 10.1109/Agro-Geoinformatics.2014.6910610 – ident: 10174_CR9 – volume: 145 start-page: 120 year: 2018 ident: 10174_CR24 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2017.11.021 – ident: 10174_CR15 – volume: 35 start-page: 445 issue: 3 year: 2019 ident: 10174_CR21 publication-title: Vis Comput doi: 10.1007/s00371-018-1566-y – ident: 10174_CR32 – volume: 97 start-page: 3994 issue: 12 year: 2017 ident: 10174_CR29 publication-title: J Sci Food Agric doi: 10.1002/jsfa.8264 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10174_CR23 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.1979.4310076 – volume: 24 start-page: 336 issue: 1 year: 2014 ident: 10174_CR26 publication-title: J Anim Plant Sci |
| SSID | ssj0016524 |
| Score | 2.429811 |
| Snippet | India is among the largest cultivators and consumers of wheat grains leading to apparent demand for identifying the quality and varietal distribution of wheat... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35441 |
| SubjectTerms | 1166: Advances of machine learning in data analytics and visual information Processing Accuracy Agriculture Artificial neural networks Classification Computer Communication Networks Computer Science Computer vision Data Structures and Information Theory Gardening Grain Hand tools Image classification Machine learning Multimedia Information Systems Neural networks Plant diseases Special Purpose and Application-Based Systems Training Wheat |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8Mw9KHTgx6cTsXplBy8aaBturY5ijjcZYhf7Bby1SHolG3q3zcvS62KCnrqoUla3vfL-wI4NJprE2nHaVxbmmaS08JGeM0R5yxjpUxs5IdN5INBMRzyi1AUNq2y3auQpJfUdbFbjKUk6O4gGaWULcKSU3cFsuPl1e177CDrhlG2RUSdPoxDqcz3Z3xWR7WN-SUs6rVNr_m__1yHtWBdkpM5OWzAgh23oFlNbiCBkVuw-qEN4Sb0-w9OqlBUaIa8onQmI5wcQTSa1phL5NFHMEd-RDBPPdCr-xT2w_QPn02-BTe9s-vTcxpGLFDteG9GbWY1U7KrjENY6Vw1yUzCmM2Z5ErnsTFdFRns6aKTVMo0twkv0ccxOc-sMxW3oTF-HNsdILo0KlLKSQSZpyXudycaJ1BlZhPDTBviCtJCh_7jOAbjXtSdkxFywkFOeMgJ1oaj9z1P8-4bv67uVAgUgROnwvlrKQaXWNyG4wph9eufT9v92_I9WEkw3cWXKXagMZs8231Y1i-zu-nkwFPoG0fh34E priority: 102 providerName: Springer Nature |
| Title | Image-based wheat grain classification using convolutional neural network |
| URI | https://link.springer.com/article/10.1007/s11042-020-10174-3 https://www.proquest.com/docview/2604657531 |
| Volume | 80 |
| WOSCitedRecordID | wos000607776300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH7iGmDgRpSjysAGFomdxs2EAIFAiFJxwxI5tlMhQQttgb_Pe65DAQkWFmeI7UT63mW_C2DD6FSbUCOnpdqyOFEpq9uQrjkiKRJRKG5D12xCNhr129u06S_cej6sspSJTlCbjqY78m20u2NyEoho5_mFUdco8q76FhqjMB5xHhGdn0j26UVIar6pbT1kqBkjnzQzSJ2LKDGFDk9ElDET3xXT0Nr84SB1eudw5r9_PAvT3uIMdgckMgcjtj0PU7utrq-6YedhpuztEHhWxwlfChUuwPHxE8odRirPBO8kv4MW9ZYINBnfFG3kAA4oir4VUCS7p2j8MFXMdA8Xb74IV4cHl_tHzDdhYBq5s89sYrXIVS03CGmBhzklDBfCSqHSXMvImFoeGqr6onmsVCwtTws6BRmZJhaNySUYa3fadhkCXZg8zHOUGUrGBa3HHQ2KXJVYboSpQFQikGlfoZwaZTxmw9rKhFqGqGUOtUxUYPNzzfOgPsefs9dKqDLPq71siFMFtkqwh69_323l791WYZJTAIxLXFyDsX731a7DhH7rP_S6VRiVN3dVGN87aDTPq45ucTwN92nkZzg2a_c4nl9cfwBQZvSZ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V05T8MwFH6qAAkYOAqIcnqACSySOE2aASHEISpKxQASW3Bsp0KCFtoC4k_xG3nPdVpAgo2BKUNs5_D3Lr8LYEurRGlPIaUlyvAwkgmvGY-OOfxYRCKXgfFss4m42azd3CSXJXgvcmEorLLgiZZR646iM_I91LtDchII_-DxiVPXKPKuFi00BrA4N2-vaLL19uvHuL_bQXB6cnV0xl1XAa4Qbn1uIqNEJquZxnfM0TqRQgdCmFjIJFOxr3U18zSVMVFBKGUYmyDJSa3XcRKZKh2AIssfD0MkBwoV9I6GXouo6pro1jyOkth3STqDVD2fEmHIWCMiCLn4KghH2u03h6yVc6ez_-0PzcGM06jZ4YAE5qFk2mWYPmx1XVURU4bZoncFc6wMB3wqxLgA9foD8lVOIl2zV5JPrEW9M5gi44KiqSyAGWUJtBhF6juKxQdTRVB7sfH0i3D9Jx-7BGPtTtssA1O5zrwsQ54o4zCn-biiRpEiIxNooSvgFzueKleBnRqB3Kej2tGEkhRRklqUpKICO8M5j4P6I7-OXiugkTpe1EtHuKjAbgGu0e2fV1v5fbVNmDy7umikjXrzfBWmAgr2sUmaazDW7z6bdZhQL_27XnfDUgmD278G3QccWEyR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V05T8MwFH5CgBAMlFOU0wNMYJHEOZoBIQRUVEUVA0hswbGdCgkKtIWKv8av4z3XoYAEGwNThtjO4e9dfhfAtlap0p5CSkuV4WEsU14zHh1z-ImIRSED49lmE0mrVbu-Ti_G4K3MhaGwypInWkatHxSdke-j3h2Sk0D4-4ULi7g4qR8-PnHqIEWe1rKdxhAiTfM6QPOtd9A4wb3eCYL66eXxGXcdBrhC6PW5iY0SuYxyje9boKUihQ6EMImQaa4SX-so9zSVNFFBKGWYmCAtSMXXSRqbiA5Dkf1PoBSOiMaaCf_wYMSRa6hb8zhKZd8l7AzT9nxKiiHDjQgi5OKrUBxput-cs1bm1Sv_-W_NwazTtNnRkDTmYcx0FmDmqN111UbMAlTKnhbMsTgc8KlA4yI0GvfIbzmJes0GJLdYm3pqMEVGB0VZWWAzyh5oM4rgd5SMD6ZKofZi4-yX4OpPPnYZxjsPHbMCTBU69_IceaVMwoLm44oaRY2MTaCFroJf7n6mXGV2ahByl41qShNiMkRMZhGTiSrsfsx5HNYl-XX0egmTzPGoXjbCSBX2SqCNbv-82urvq23BFGItO2-0mmswHVAMkM3dXIfxfvfZbMCkeunf9rqblmAY3Pw15t4BhT5VNw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-based+wheat+grain+classification+using+convolutional+neural+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Lingwal+Surabhi&rft.au=Bhatia%2C+Komal+Kumar&rft.au=Tomer+Manjeet+Singh&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=28-29&rft.spage=35441&rft.epage=35465&rft_id=info:doi/10.1007%2Fs11042-020-10174-3&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |