Image-based wheat grain classification using convolutional neural network

India is among the largest cultivators and consumers of wheat grains leading to apparent demand for identifying the quality and varietal distribution of wheat to fulfill the specific requirements of food industries. Moreover, with the variations in prices of distinct varieties in different parts of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications Jg. 80; H. 28-29; S. 35441 - 35465
Hauptverfasser: Lingwal, Surabhi, Bhatia, Komal Kumar, Tomer, Manjeet Singh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.11.2021
Springer Nature B.V
Schlagworte:
ISSN:1380-7501, 1573-7721
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract India is among the largest cultivators and consumers of wheat grains leading to apparent demand for identifying the quality and varietal distribution of wheat to fulfill the specific requirements of food industries. Moreover, with the variations in prices of distinct varieties in different parts of the country, it becomes a vital need for the customers as well as for the cultivators to identify and classify the grains based upon specific end products, demand, and prices of individual variety. The growth of Machine Learning and Computer Vision in agriculture, facilitate the development of such techniques that can successfully identify the classes based on visual features and representation. In this paper, a model has been developed from scratch for the classification of fifteen different varieties of wheat consists of 15000 images based on their visual traits using Convolutional Neural Network. The model has been produced under a different set of hyper-parameters tuned to develop the best model that can classify the varieties of wheat grains with high accuracy and minimum loss. The performance of the different models are compared in terms of classification accuracy and categorical cross-entropy loss. The model which is found best, successfully classifies the wheat varieties with 94.88% training accuracy and 97.53% test accuracy while on the other side reduces loss to 15% for training and 8% for the test set. Hence, the developed model can be deployed for the classification of different grain varieties, plant diseases, plant varieties, and several other fields under agriculture.
AbstractList India is among the largest cultivators and consumers of wheat grains leading to apparent demand for identifying the quality and varietal distribution of wheat to fulfill the specific requirements of food industries. Moreover, with the variations in prices of distinct varieties in different parts of the country, it becomes a vital need for the customers as well as for the cultivators to identify and classify the grains based upon specific end products, demand, and prices of individual variety. The growth of Machine Learning and Computer Vision in agriculture, facilitate the development of such techniques that can successfully identify the classes based on visual features and representation. In this paper, a model has been developed from scratch for the classification of fifteen different varieties of wheat consists of 15000 images based on their visual traits using Convolutional Neural Network. The model has been produced under a different set of hyper-parameters tuned to develop the best model that can classify the varieties of wheat grains with high accuracy and minimum loss. The performance of the different models are compared in terms of classification accuracy and categorical cross-entropy loss. The model which is found best, successfully classifies the wheat varieties with 94.88% training accuracy and 97.53% test accuracy while on the other side reduces loss to 15% for training and 8% for the test set. Hence, the developed model can be deployed for the classification of different grain varieties, plant diseases, plant varieties, and several other fields under agriculture.
Author Tomer, Manjeet Singh
Lingwal, Surabhi
Bhatia, Komal Kumar
Author_xml – sequence: 1
  givenname: Surabhi
  surname: Lingwal
  fullname: Lingwal, Surabhi
  email: surabhi.lingwal@gmail.com
  organization: Govind Ballabh Pant Institute of Engineering and Technology
– sequence: 2
  givenname: Komal Kumar
  surname: Bhatia
  fullname: Bhatia, Komal Kumar
  organization: J. C. Bose University of Science and Technology, YMCA
– sequence: 3
  givenname: Manjeet Singh
  surname: Tomer
  fullname: Tomer, Manjeet Singh
  organization: J. C. Bose University of Science and Technology, YMCA
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxNowfsXJElU8KlViA2vLsZ2QktrFTqj4e9IWCYlFV3c0mntn5szQxAfvELomcEsA5F0iBDjFQAETIJJjdoamREiGpaRkMtasACwFkAs0S2kNQHJB-RQtlxvdOFzp5Gy2e3e6z5qoW5-ZTqfU1q3RfRt8NqTWN5kJ_it0w76ju8y7IR6k34X4cYnOa90ld_Wrc_T2-PC6eMarl6fl4n6FDSNlj13uDKu0qKwFU3NeaGYpY04yXVZGEmtFBRZEyQ3lWnPpaFnzQgory9wJxubo5pi7jeFzcKlX6zDE8Z6kaA48F1IwMk7R45SJIaXoarWN7UbHb0VA7ZGpIzI1IlMHZGofXfwzmbY__N-PTLrTVna0pnGPb1z8u-qE6weU-oL5
CitedBy_id crossref_primary_10_1002_jsfa_13668
crossref_primary_10_1007_s10812_023_01552_4
crossref_primary_10_28979_jarnas_1512352
crossref_primary_10_1007_s10921_024_01143_z
crossref_primary_10_3390_agronomy15051157
crossref_primary_10_1007_s00217_024_04473_4
crossref_primary_10_1007_s11042_024_18867_9
crossref_primary_10_3390_agronomy12123187
crossref_primary_10_1007_s11042_022_12662_0
crossref_primary_10_1007_s11042_023_16075_5
crossref_primary_10_3389_fpls_2023_1336192
crossref_primary_10_1016_j_compeleceng_2023_108896
crossref_primary_10_3390_agriculture13112056
crossref_primary_10_3390_plants12051191
crossref_primary_10_1016_j_measurement_2021_110252
crossref_primary_10_1080_0952813X_2022_2062458
crossref_primary_10_1117_1_JEI_33_5_053063
crossref_primary_10_1002_jsfa_14378
crossref_primary_10_3390_su151813706
Cites_doi 10.1007/s12393-014-9101-z
10.1002/jsfa.8080
10.1016/j.isprsjprs.2017.11.021
10.1038/nature14539
10.1007/s00371-017-1379-4
10.1007/s00371-018-1566-y
10.1007/s11632-013-0414-4
10.1109/ACCESS.2014.2325029
10.1007/s00371-018-1583-x
10.1109/TPAMI.2008.79
10.1109/TSMC.1979.4310076
10.1109/MCI.2010.938364
10.1016/j.compag.2018.08.013
10.1016/j.compag.2016.07.020
10.1016/j.patcog.2013.06.012
10.1007/s00371-013-0782-8
10.1016/j.eswa.2014.10.003
10.1002/jsfa.8264
10.1016/j.compag.2018.08.001
10.1080/10942912.2011.615085
10.1007/s00371-019-01763-x
10.1109/ICMLA.2016.0178
10.1145/3139367.3139368
10.1007/978-3-642-35289-8_3
10.1007/s00371-019-01768-6
10.1145/3209914.3209945
10.1007/978-981-13-1702-6_32
10.1007/978-3-319-90403-0_6
10.1109/Agro-Geoinformatics.2014.6910610
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-020-10174-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Agriculture
EISSN 1573-7721
EndPage 35465
ExternalDocumentID 10_1007_s11042_020_10174_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-e6ec3ba5bdd0cf448a3d233e73a9bc71dd5b0d0594c24aa47e29f4875d796e533
IEDL.DBID K7-
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607776300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Tue Nov 04 23:01:13 EST 2025
Tue Nov 18 22:18:44 EST 2025
Sat Nov 29 06:20:08 EST 2025
Fri Feb 21 02:47:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28-29
Keywords Deep learning
Image processing
Wheat crops
Convolutional neural network
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e6ec3ba5bdd0cf448a3d233e73a9bc71dd5b0d0594c24aa47e29f4875d796e533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2604657531
PQPubID 54626
PageCount 25
ParticipantIDs proquest_journals_2604657531
crossref_primary_10_1007_s11042_020_10174_3
crossref_citationtrail_10_1007_s11042_020_10174_3
springer_journals_10_1007_s11042_020_10174_3
PublicationCentury 2000
PublicationDate 20211100
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Barbedo (CR2) 2018; 153
CR15
Sivakumar, Anandalakshmi, Warrier, Singh, Tigabu, Nagarajan (CR31) 2013; 15
Kaya, Kayci (CR13) 2014; 30
CR14
CR12
Larese, Namías, Craviotto, Arango, Gallo, Granitto (CR18) 2014; 47
CR11
CR33
CR10
CR32
Zareiforoush, Minaei, Alizadeh, Banakar (CR36) 2015; 7
Chen, Lin (CR6) 2014; 2
CR30
Cheng, Lai, Wang, Qin (CR7) 2019; 35
Patrício, Rieder (CR25) 2018; 153
Otsu (CR23) 1979; 9
Bi, Kim, Kumar, Fulham, Feng (CR3) 2017; 33
Zapotoczny (CR35) 2014; 17
Sabanci, Kayabasi, Toktas (CR28) 2017; 97
Wright, Yang, Ganesh, Sastry, Ma (CR34) 2008; 31
LeCun, Bengio, Hinton (CR19) 2015; 521
CR4
CR5
Liu, Xu, Wang (CR21) 2019; 35
CR8
Paoletti, Haut, Plaza, Plaza (CR24) 2018; 145
CR9
CR27
Sabanci, Toktas, Kayabasi (CR29) 2017; 97
Pazoki, Farokhi, Pazoki (CR26) 2014; 24
CR22
CR20
Kuo, Chung, Chen, Lin, Kuo (CR16) 2016; 127
Kurtulmuş, Ünal (CR17) 2015; 42
Arel, Rose, Karnowski (CR1) 2010; 5
DI Patrício (10174_CR25) 2018; 153
X Liu (10174_CR21) 2019; 35
10174_CR14
10174_CR15
S Cheng (10174_CR7) 2019; 35
10174_CR12
L Bi (10174_CR3) 2017; 33
M Paoletti (10174_CR24) 2018; 145
K Sabanci (10174_CR28) 2017; 97
10174_CR22
JGA Barbedo (10174_CR2) 2018; 153
F Kurtulmuş (10174_CR17) 2015; 42
I Arel (10174_CR1) 2010; 5
10174_CR20
XW Chen (10174_CR6) 2014; 2
N Otsu (10174_CR23) 1979; 9
Y LeCun (10174_CR19) 2015; 521
J Wright (10174_CR34) 2008; 31
P Zapotoczny (10174_CR35) 2014; 17
TY Kuo (10174_CR16) 2016; 127
K Sabanci (10174_CR29) 2017; 97
10174_CR27
A Pazoki (10174_CR26) 2014; 24
10174_CR5
MG Larese (10174_CR18) 2014; 47
10174_CR4
10174_CR10
10174_CR32
10174_CR11
10174_CR33
10174_CR30
H Zareiforoush (10174_CR36) 2015; 7
Y Kaya (10174_CR13) 2014; 30
V Sivakumar (10174_CR31) 2013; 15
10174_CR9
10174_CR8
References_xml – volume: 7
  start-page: 321
  issue: 3
  year: 2015
  end-page: 345
  ident: CR36
  article-title: Potential applications of computer vision in quality inspection of rice: a review
  publication-title: Food Eng Rev
  doi: 10.1007/s12393-014-9101-z
– ident: CR22
– volume: 97
  start-page: 2588
  issue: 8
  year: 2017
  end-page: 2593
  ident: CR28
  article-title: Computer vision-based method for classification of wheat grains using artificial neural network
  publication-title: J Sci Food Agricul
  doi: 10.1002/jsfa.8080
– volume: 145
  start-page: 120
  year: 2018
  end-page: 147
  ident: CR24
  article-title: A new deep convolutional neural network for fast hyperspectral image classification
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2017.11.021
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: CR19
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR4
– ident: CR14
– volume: 33
  start-page: 1061
  issue: 6-8
  year: 2017
  end-page: 1071
  ident: CR3
  article-title: Stacked fully convolutional networks with multi-channel learning: application to medical image segmentation
  publication-title: Vis Comput
  doi: 10.1007/s00371-017-1379-4
– volume: 35
  start-page: 445
  issue: 3
  year: 2019
  end-page: 470
  ident: CR21
  article-title: A survey on deep neural network-based image captioning
  publication-title: Vis Comput
  doi: 10.1007/s00371-018-1566-y
– ident: CR12
– ident: CR30
– ident: CR10
– volume: 15
  start-page: 253
  issue: 4
  year: 2013
  end-page: 260
  ident: CR31
  article-title: Discrimination of Acacia seeds at species and subspecies levels using an image analyzer
  publication-title: For Sci Pract
  doi: 10.1007/s11632-013-0414-4
– ident: CR33
– volume: 24
  start-page: 336
  issue: 1
  year: 2014
  end-page: 343
  ident: CR26
  article-title: Classification of rice grain varieties using two Artificial Neural Networks (MLP and Neuro-Fuzzy)
  publication-title: J Anim Plant Sci
– volume: 2
  start-page: 514
  year: 2014
  end-page: 525
  ident: CR6
  article-title: Big data deep learning: challenges and perspectives
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2325029
– volume: 35
  start-page: 1255
  issue: 9
  year: 2019
  end-page: 1266
  ident: CR7
  article-title: A novel deep hashing method for fast image retrieval
  publication-title: Vis Comput
  doi: 10.1007/s00371-018-1583-x
– ident: CR8
– volume: 31
  start-page: 210
  issue: 2
  year: 2008
  end-page: 227
  ident: CR34
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.79
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  end-page: 66
  ident: CR23
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.1979.4310076
– ident: CR27
– volume: 5
  start-page: 13
  issue: 4
  year: 2010
  end-page: 18
  ident: CR1
  article-title: Deep machine learning-a new frontier in artificial intelligence research
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2010.938364
– volume: 153
  start-page: 46
  year: 2018
  end-page: 53
  ident: CR2
  article-title: Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.08.013
– volume: 127
  start-page: 716
  year: 2016
  end-page: 725
  ident: CR16
  article-title: Identifying rice grains using image analysis and sparse-representation-based classification
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.07.020
– volume: 47
  start-page: 158
  issue: 1
  year: 2014
  end-page: 168
  ident: CR18
  article-title: Automatic classification of legumes using leaf vein image features
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.06.012
– volume: 30
  start-page: 71
  issue: 1
  year: 2014
  end-page: 79
  ident: CR13
  article-title: Application of artificial neural network for automatic detection of butterfly species using color and texture features
  publication-title: Vis Comput
  doi: 10.1007/s00371-013-0782-8
– ident: CR15
– ident: CR11
– volume: 42
  start-page: 1880
  issue: 4
  year: 2015
  end-page: 1891
  ident: CR17
  article-title: Discriminating rapeseed varieties using computer vision and machine learning
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.10.003
– ident: CR9
– volume: 97
  start-page: 3994
  issue: 12
  year: 2017
  end-page: 4000
  ident: CR29
  article-title: Grain classifier with computer vision using adaptive neuro-fuzzy inference system
  publication-title: J Sci Food Agric
  doi: 10.1002/jsfa.8264
– ident: CR32
– ident: CR5
– volume: 153
  start-page: 69
  year: 2018
  end-page: 81
  ident: CR25
  article-title: Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.08.001
– ident: CR20
– volume: 17
  start-page: 139
  issue: 1
  year: 2014
  end-page: 151
  ident: CR35
  article-title: Discrimination of wheat grain varieties using image analysis and multidimensional analysis texture of grain mass
  publication-title: Int J Food Prop
  doi: 10.1080/10942912.2011.615085
– ident: 10174_CR5
  doi: 10.1007/s00371-019-01763-x
– volume: 153
  start-page: 46
  year: 2018
  ident: 10174_CR2
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.08.013
– ident: 10174_CR8
  doi: 10.1109/ICMLA.2016.0178
– volume: 31
  start-page: 210
  issue: 2
  year: 2008
  ident: 10174_CR34
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.79
– ident: 10174_CR27
  doi: 10.1145/3139367.3139368
– ident: 10174_CR20
  doi: 10.1007/978-3-642-35289-8_3
– ident: 10174_CR30
  doi: 10.1007/s00371-019-01768-6
– volume: 2
  start-page: 514
  year: 2014
  ident: 10174_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2325029
– ident: 10174_CR22
  doi: 10.1145/3209914.3209945
– volume: 17
  start-page: 139
  issue: 1
  year: 2014
  ident: 10174_CR35
  publication-title: Int J Food Prop
  doi: 10.1080/10942912.2011.615085
– ident: 10174_CR12
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10174_CR19
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 97
  start-page: 2588
  issue: 8
  year: 2017
  ident: 10174_CR28
  publication-title: J Sci Food Agricul
  doi: 10.1002/jsfa.8080
– ident: 10174_CR10
– ident: 10174_CR14
– volume: 33
  start-page: 1061
  issue: 6-8
  year: 2017
  ident: 10174_CR3
  publication-title: Vis Comput
  doi: 10.1007/s00371-017-1379-4
– ident: 10174_CR33
  doi: 10.1007/978-981-13-1702-6_32
– volume: 15
  start-page: 253
  issue: 4
  year: 2013
  ident: 10174_CR31
  publication-title: For Sci Pract
  doi: 10.1007/s11632-013-0414-4
– volume: 5
  start-page: 13
  issue: 4
  year: 2010
  ident: 10174_CR1
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2010.938364
– volume: 7
  start-page: 321
  issue: 3
  year: 2015
  ident: 10174_CR36
  publication-title: Food Eng Rev
  doi: 10.1007/s12393-014-9101-z
– volume: 35
  start-page: 1255
  issue: 9
  year: 2019
  ident: 10174_CR7
  publication-title: Vis Comput
  doi: 10.1007/s00371-018-1583-x
– volume: 127
  start-page: 716
  year: 2016
  ident: 10174_CR16
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.07.020
– volume: 153
  start-page: 69
  year: 2018
  ident: 10174_CR25
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.08.001
– volume: 30
  start-page: 71
  issue: 1
  year: 2014
  ident: 10174_CR13
  publication-title: Vis Comput
  doi: 10.1007/s00371-013-0782-8
– ident: 10174_CR4
  doi: 10.1007/978-3-319-90403-0_6
– volume: 47
  start-page: 158
  issue: 1
  year: 2014
  ident: 10174_CR18
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.06.012
– volume: 42
  start-page: 1880
  issue: 4
  year: 2015
  ident: 10174_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.10.003
– ident: 10174_CR11
  doi: 10.1109/Agro-Geoinformatics.2014.6910610
– ident: 10174_CR9
– volume: 145
  start-page: 120
  year: 2018
  ident: 10174_CR24
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2017.11.021
– ident: 10174_CR15
– volume: 35
  start-page: 445
  issue: 3
  year: 2019
  ident: 10174_CR21
  publication-title: Vis Comput
  doi: 10.1007/s00371-018-1566-y
– ident: 10174_CR32
– volume: 97
  start-page: 3994
  issue: 12
  year: 2017
  ident: 10174_CR29
  publication-title: J Sci Food Agric
  doi: 10.1002/jsfa.8264
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10174_CR23
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.1979.4310076
– volume: 24
  start-page: 336
  issue: 1
  year: 2014
  ident: 10174_CR26
  publication-title: J Anim Plant Sci
SSID ssj0016524
Score 2.429811
Snippet India is among the largest cultivators and consumers of wheat grains leading to apparent demand for identifying the quality and varietal distribution of wheat...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35441
SubjectTerms 1166: Advances of machine learning in data analytics and visual information Processing
Accuracy
Agriculture
Artificial neural networks
Classification
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Gardening
Grain
Hand tools
Image classification
Machine learning
Multimedia Information Systems
Neural networks
Plant diseases
Special Purpose and Application-Based Systems
Training
Wheat
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8Mw9KHTgx6cTsXplBy8aaBturY5ijjcZYhf7Bby1SHolG3q3zcvS62KCnrqoUla3vfL-wI4NJprE2nHaVxbmmaS08JGeM0R5yxjpUxs5IdN5INBMRzyi1AUNq2y3auQpJfUdbFbjKUk6O4gGaWULcKSU3cFsuPl1e177CDrhlG2RUSdPoxDqcz3Z3xWR7WN-SUs6rVNr_m__1yHtWBdkpM5OWzAgh23oFlNbiCBkVuw-qEN4Sb0-w9OqlBUaIa8onQmI5wcQTSa1phL5NFHMEd-RDBPPdCr-xT2w_QPn02-BTe9s-vTcxpGLFDteG9GbWY1U7KrjENY6Vw1yUzCmM2Z5ErnsTFdFRns6aKTVMo0twkv0ccxOc-sMxW3oTF-HNsdILo0KlLKSQSZpyXudycaJ1BlZhPDTBviCtJCh_7jOAbjXtSdkxFywkFOeMgJ1oaj9z1P8-4bv67uVAgUgROnwvlrKQaXWNyG4wph9eufT9v92_I9WEkw3cWXKXagMZs8231Y1i-zu-nkwFPoG0fh34E
  priority: 102
  providerName: Springer Nature
Title Image-based wheat grain classification using convolutional neural network
URI https://link.springer.com/article/10.1007/s11042-020-10174-3
https://www.proquest.com/docview/2604657531
Volume 80
WOSCitedRecordID wos000607776300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH7iGmDgRpSjysAGFomdxs2EAIFAiFJxwxI5tlMhQQttgb_Pe65DAQkWFmeI7UT63mW_C2DD6FSbUCOnpdqyOFEpq9uQrjkiKRJRKG5D12xCNhr129u06S_cej6sspSJTlCbjqY78m20u2NyEoho5_mFUdco8q76FhqjMB5xHhGdn0j26UVIar6pbT1kqBkjnzQzSJ2LKDGFDk9ElDET3xXT0Nr84SB1eudw5r9_PAvT3uIMdgckMgcjtj0PU7utrq-6YedhpuztEHhWxwlfChUuwPHxE8odRirPBO8kv4MW9ZYINBnfFG3kAA4oir4VUCS7p2j8MFXMdA8Xb74IV4cHl_tHzDdhYBq5s89sYrXIVS03CGmBhzklDBfCSqHSXMvImFoeGqr6onmsVCwtTws6BRmZJhaNySUYa3fadhkCXZg8zHOUGUrGBa3HHQ2KXJVYboSpQFQikGlfoZwaZTxmw9rKhFqGqGUOtUxUYPNzzfOgPsefs9dKqDLPq71siFMFtkqwh69_323l791WYZJTAIxLXFyDsX731a7DhH7rP_S6VRiVN3dVGN87aDTPq45ucTwN92nkZzg2a_c4nl9cfwBQZvSZ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V05T8MwFH6qAAkYOAqIcnqACSySOE2aASHEISpKxQASW3Bsp0KCFtoC4k_xG3nPdVpAgo2BKUNs5_D3Lr8LYEurRGlPIaUlyvAwkgmvGY-OOfxYRCKXgfFss4m42azd3CSXJXgvcmEorLLgiZZR646iM_I91LtDchII_-DxiVPXKPKuFi00BrA4N2-vaLL19uvHuL_bQXB6cnV0xl1XAa4Qbn1uIqNEJquZxnfM0TqRQgdCmFjIJFOxr3U18zSVMVFBKGUYmyDJSa3XcRKZKh2AIssfD0MkBwoV9I6GXouo6pro1jyOkth3STqDVD2fEmHIWCMiCLn4KghH2u03h6yVc6ez_-0PzcGM06jZ4YAE5qFk2mWYPmx1XVURU4bZoncFc6wMB3wqxLgA9foD8lVOIl2zV5JPrEW9M5gi44KiqSyAGWUJtBhF6juKxQdTRVB7sfH0i3D9Jx-7BGPtTtssA1O5zrwsQ54o4zCn-biiRpEiIxNooSvgFzueKleBnRqB3Kej2tGEkhRRklqUpKICO8M5j4P6I7-OXiugkTpe1EtHuKjAbgGu0e2fV1v5fbVNmDy7umikjXrzfBWmAgr2sUmaazDW7z6bdZhQL_27XnfDUgmD278G3QccWEyR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V05T8MwFH5CgBAMlFOU0wNMYJHEOZoBIQRUVEUVA0hswbGdCgkKtIWKv8av4z3XoYAEGwNThtjO4e9dfhfAtlap0p5CSkuV4WEsU14zHh1z-ImIRSED49lmE0mrVbu-Ti_G4K3MhaGwypInWkatHxSdke-j3h2Sk0D4-4ULi7g4qR8-PnHqIEWe1rKdxhAiTfM6QPOtd9A4wb3eCYL66eXxGXcdBrhC6PW5iY0SuYxyje9boKUihQ6EMImQaa4SX-so9zSVNFFBKGWYmCAtSMXXSRqbiA5Dkf1PoBSOiMaaCf_wYMSRa6hb8zhKZd8l7AzT9nxKiiHDjQgi5OKrUBxput-cs1bm1Sv_-W_NwazTtNnRkDTmYcx0FmDmqN111UbMAlTKnhbMsTgc8KlA4yI0GvfIbzmJes0GJLdYm3pqMEVGB0VZWWAzyh5oM4rgd5SMD6ZKofZi4-yX4OpPPnYZxjsPHbMCTBU69_IceaVMwoLm44oaRY2MTaCFroJf7n6mXGV2ahByl41qShNiMkRMZhGTiSrsfsx5HNYl-XX0egmTzPGoXjbCSBX2SqCNbv-82urvq23BFGItO2-0mmswHVAMkM3dXIfxfvfZbMCkeunf9rqblmAY3Pw15t4BhT5VNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-based+wheat+grain+classification+using+convolutional+neural+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Lingwal+Surabhi&rft.au=Bhatia%2C+Komal+Kumar&rft.au=Tomer+Manjeet+Singh&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=28-29&rft.spage=35441&rft.epage=35465&rft_id=info:doi/10.1007%2Fs11042-020-10174-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon