De-noising boosting methods for variable selection and estimation subject to error-prone variables

Boosting is one of the most powerful statistical learning methods that combines multiple weak learners into a strong learner. The main idea of boosting is to sequentially apply the algorithm to enhance its performance. Recently, boosting methods have been implemented to handle variable selection. Ho...

Full description

Saved in:
Bibliographic Details
Published in:Statistics and computing Vol. 33; no. 2
Main Author: Chen, Li-Pang
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2023
Springer Nature B.V
Subjects:
ISSN:0960-3174, 1573-1375
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Boosting is one of the most powerful statistical learning methods that combines multiple weak learners into a strong learner. The main idea of boosting is to sequentially apply the algorithm to enhance its performance. Recently, boosting methods have been implemented to handle variable selection. However, little work has been available to deal with complex data such as measurement error in covariates. In this paper, we adopt the boosting method to do variable selection, especially in the presence of measurement error. We develop two different approximated correction approaches to deal with different types of responses, and meanwhile, eliminate measurement error effects. In addition, the proposed algorithms are easy to implement and are able to derive precise estimators. Throughout numerical studies under various settings, the proposed method outperforms other competitive approaches.
AbstractList Boosting is one of the most powerful statistical learning methods that combines multiple weak learners into a strong learner. The main idea of boosting is to sequentially apply the algorithm to enhance its performance. Recently, boosting methods have been implemented to handle variable selection. However, little work has been available to deal with complex data such as measurement error in covariates. In this paper, we adopt the boosting method to do variable selection, especially in the presence of measurement error. We develop two different approximated correction approaches to deal with different types of responses, and meanwhile, eliminate measurement error effects. In addition, the proposed algorithms are easy to implement and are able to derive precise estimators. Throughout numerical studies under various settings, the proposed method outperforms other competitive approaches.
ArticleNumber 38
Author Chen, Li-Pang
Author_xml – sequence: 1
  givenname: Li-Pang
  surname: Chen
  fullname: Chen, Li-Pang
  email: lchen723@nccu.edu.tw
  organization: Department of Statistics, National Chengchi University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOTZHfTPUr9hIKX3kM-ZuuWNqnJVvDfm3ZFwUNPmWHeJ_POOyEjHzwScs3glgHIu8QY55wCF5QBh4aKMzJmlcytkNWIjKGpgQomywsySWkNwFgtyjExD0h96FLnV4UJIfWHYov9e3CpaEMsPnXstNlgkXCDtu-CL7R3BWblVh_btDfrPCn6UGCMIdJdzOZ-wXRJzlu9SXj1807J8ulxOX-hi7fn1_n9glrBmp5ircHOSic5b1rDqlo0dqY5tjUiGqwcQ27BSRRgSgNCulpLbrEsnXbgxJTcDN_m9R_77E-twz76vFFxKXnd8AZkVs0GlY0hpYitsl1_vKOPutsoBuoQqBoCVTlQdQxUiYzyf-gu5gzi12lIDFDKYr_C-OfqBPUNXFOMmA
CitedBy_id crossref_primary_10_1371_journal_pone_0324395
crossref_primary_10_1007_s10463_025_00940_1
crossref_primary_10_1007_s11222_023_10357_6
crossref_primary_10_1177_09622802251316963
crossref_primary_10_1007_s42519_025_00461_3
crossref_primary_10_1007_s11222_025_10663_1
crossref_primary_10_1080_03610918_2025_2496305
crossref_primary_10_1002_sim_70163
Cites_doi 10.1002/sim.8130
10.1080/01621459.1996.10476682
10.1080/01621459.1997.10474001
10.1111/j.1541-0420.2006.00578.x
10.1214/20-EJS1762
10.1214/07-STS242A
10.1016/j.spl.2020.108931
10.1080/10618600.2018.1425626
10.1002/(SICI)1097-0258(19970130)16:2<169::AID-SIM478>3.0.CO;2-M
10.1111/biom.13331
10.1080/00949655.2020.1800705
10.1080/10618600.2016.1247005
10.1198/016214506000000735
10.1111/biom.13112
10.1214/aos/1176349155
10.3150/09-BEJ205
10.1214/009053604000000067
10.1198/jasa.2011.tm10098
10.1198/016214501753382273
10.1111/j.1467-9868.2005.00503.x
10.1201/9781420010138
10.1007/s10463-020-00755-2
10.1111/j.2517-6161.1996.tb02080.x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11222-023-10209-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
ExternalDocumentID 10_1007_s11222_023_10209_3
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-e6a0c84d7229fb15639c8a2ef6eeebe5d1e2c0d7e30b4b037d6a72ce44dad0d3
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000926499800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
IngestDate Thu Oct 02 16:27:09 EDT 2025
Tue Nov 18 21:44:22 EST 2025
Sat Nov 29 03:32:44 EST 2025
Fri Feb 21 02:43:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords SIMEX
Regression calibration
Error correction
Statistical learning
Mismeasurement
Generalized linear models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e6a0c84d7229fb15639c8a2ef6eeebe5d1e2c0d7e30b4b037d6a72ce44dad0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2772692907
PQPubID 2043829
ParticipantIDs proquest_journals_2772692907
crossref_citationtrail_10_1007_s11222_023_10209_3
crossref_primary_10_1007_s11222_023_10209_3
springer_journals_10_1007_s11222_023_10209_3
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chen (CR8) 2020; 90
Wolfson (CR25) 2011; 106
Sørensen, Hellton, Frigessi, Thoresen (CR21) 2018; 27
Hastie (CR16) 2007; 22
Carroll, Fan, Gijbels, Wand (CR6) 1997; 92
Ma, Li (CR19) 2010; 16
CR12
Chen, Yi (CR11) 2021; 77
Chen, Yi (CR10) 2020; 14
Carroll, Küchenhoff, Lombard, Stefanski (CR5) 1996; 91
Tutz, Binder (CR23) 2006; 62
Fan, Li (CR14) 2001; 96
Hall, Li (CR15) 1993; 21
Küchenhoff, Carroll (CR18) 1997; 16
Efron, Hastie, Johnstone, Tibshirani (CR13) 2004; 32
Hastie, Tibshirani, Friedman (CR17) 2009
Wang (CR24) 2000; 10
Candes, Tao (CR4) 2007; 35
Nghiem, Potgieter (CR20) 2019; 75
Zou (CR26) 2006; 101
Carroll, Ruppert, Stefanski, Crainiceanu (CR7) 2006
Brown, Miller, Wolfson (CR1) 2017; 26
Bühlmann, Hothorn (CR3) 2007; 22
Chen (CR9) 2021; 168
Tibshirani (CR22) 1996; 58
Zou, Hastie (CR27) 2005; 67
Brown, Weaver, Wolfson (CR2) 2019; 38
G Tutz (10209_CR23) 2006; 62
Ø Sørensen (10209_CR21) 2018; 27
RJ Carroll (10209_CR7) 2006
L-P Chen (10209_CR9) 2021; 168
L-P Chen (10209_CR11) 2021; 77
E Candes (10209_CR4) 2007; 35
10209_CR12
P Bühlmann (10209_CR3) 2007; 22
B Efron (10209_CR13) 2004; 32
L-P Chen (10209_CR8) 2020; 90
L Nghiem (10209_CR20) 2019; 75
Y Ma (10209_CR19) 2010; 16
B Brown (10209_CR1) 2017; 26
R Tibshirani (10209_CR22) 1996; 58
H Zou (10209_CR26) 2006; 101
RJ Carroll (10209_CR5) 1996; 91
T Hastie (10209_CR16) 2007; 22
RJ Carroll (10209_CR6) 1997; 92
J Wolfson (10209_CR25) 2011; 106
CY Wang (10209_CR24) 2000; 10
L-P Chen (10209_CR10) 2020; 14
J Fan (10209_CR14) 2001; 96
H Zou (10209_CR27) 2005; 67
B Brown (10209_CR2) 2019; 38
T Hastie (10209_CR17) 2009
H Küchenhoff (10209_CR18) 1997; 16
P Hall (10209_CR15) 1993; 21
References_xml – volume: 38
  start-page: 2705
  year: 2019
  end-page: 2718
  ident: CR2
  article-title: MEBoost: variable selection in the presence of measurement error
  publication-title: Stat. Med.
  doi: 10.1002/sim.8130
– volume: 91
  start-page: 242
  year: 1996
  end-page: 250
  ident: CR5
  article-title: Asymptotics for the SIMEX estimator in nonlinear measurement error models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1996.10476682
– volume: 92
  start-page: 477
  year: 1997
  end-page: 489
  ident: CR6
  article-title: Generalized partially linear single-index models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1997.10474001
– volume: 62
  start-page: 961
  year: 2006
  end-page: 071
  ident: CR23
  article-title: Generalized additive modeling with implicit variable selection by likelihood-based boosting
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00578.x
– ident: CR12
– volume: 14
  start-page: 4054
  year: 2020
  end-page: 4109
  ident: CR10
  article-title: Model selection and model averaging for analysis of truncated and censored data with measurement error
  publication-title: Electron. J. Stat.
  doi: 10.1214/20-EJS1762
– volume: 22
  start-page: 513
  year: 2007
  end-page: 515
  ident: CR16
  article-title: Comment: Boosting algorithms: regularization, prediction and model fitting
  publication-title: Stat. Sci.
  doi: 10.1214/07-STS242A
– volume: 168
  start-page: 108931
  year: 2021
  ident: CR9
  article-title: Ultrahigh-dimensional sufficient dimension reduction with measurement error in covariates
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2020.108931
– volume: 27
  start-page: 739
  year: 2018
  end-page: 749
  ident: CR21
  article-title: Covariate selection in high-dimensional generalized linear models with measurement error
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2018.1425626
– volume: 16
  start-page: 169
  year: 1997
  end-page: 188
  ident: CR18
  article-title: Segmented regression with errors in predictors: semi-parametric and parametric methods
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19970130)16:2<169::AID-SIM478>3.0.CO;2-M
– volume: 35
  start-page: 2313
  year: 2007
  end-page: 2404
  ident: CR4
  article-title: The Dantzig selector: statistical estimation when p is much larger than n (with discussion)
  publication-title: Ann. Stat.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR22
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 77
  start-page: 956
  year: 2021
  end-page: 969
  ident: CR11
  article-title: Analysis of noisy survival data with graphical proportional hazards measurement error models
  publication-title: Biometrics
  doi: 10.1111/biom.13331
– volume: 90
  start-page: 3261
  year: 2020
  end-page: 3300
  ident: CR8
  article-title: Variable selection and estimation for the additive hazards model subject to left-truncation, right-censoring and measurement error in covariates
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2020.1800705
– volume: 26
  start-page: 579
  year: 2017
  end-page: 588
  ident: CR1
  article-title: ThrEEBoost: thresholded boosting for variable selection and prediction via estimating equations
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2016.1247005
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: CR26
  article-title: The adaptive lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– volume: 75
  start-page: 1133
  year: 2019
  end-page: 1144
  ident: CR20
  article-title: Simulation-selection-extrapolation: estimation in high-dimensional errors-in-variables models
  publication-title: Biometrics
  doi: 10.1111/biom.13112
– volume: 21
  start-page: 867
  year: 1993
  end-page: 889
  ident: CR15
  article-title: On almost linearity of low-dimensional projections from high-dimensional data
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176349155
– volume: 10
  start-page: 905
  year: 2000
  end-page: 921
  ident: CR24
  article-title: Flexible regression calibration for covariate measurement error with longitudinal surrogate variables
  publication-title: Stat. Sin.
– volume: 16
  start-page: 274
  year: 2010
  end-page: 300
  ident: CR19
  article-title: Variable selection in measurement error models
  publication-title: Bernoulli
  doi: 10.3150/09-BEJ205
– volume: 32
  start-page: 409
  year: 2004
  end-page: 499
  ident: CR13
  article-title: Least angle regression
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– year: 2009
  ident: CR17
  publication-title: The Elements of Statistical Learning. Data Mining, Inference, and Prediction
– volume: 106
  start-page: 296
  year: 2011
  end-page: 305
  ident: CR25
  article-title: EEBoost: a general method for prediction and variable selection based on estimating equation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2011.tm10098
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  ident: CR14
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 22
  start-page: 477
  year: 2007
  end-page: 505
  ident: CR3
  article-title: Boosting algorithms: regularization, prediction and model fitting
  publication-title: Stat. Sci.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: CR27
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– year: 2006
  ident: CR7
  publication-title: Measurement Error in Nonlinear Model
  doi: 10.1201/9781420010138
– volume: 16
  start-page: 169
  year: 1997
  ident: 10209_CR18
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19970130)16:2<169::AID-SIM478>3.0.CO;2-M
– volume: 32
  start-page: 409
  year: 2004
  ident: 10209_CR13
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– volume: 10
  start-page: 905
  year: 2000
  ident: 10209_CR24
  publication-title: Stat. Sin.
– volume: 35
  start-page: 2313
  year: 2007
  ident: 10209_CR4
  publication-title: Ann. Stat.
– volume: 96
  start-page: 1348
  year: 2001
  ident: 10209_CR14
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 21
  start-page: 867
  year: 1993
  ident: 10209_CR15
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176349155
– volume: 26
  start-page: 579
  year: 2017
  ident: 10209_CR1
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2016.1247005
– volume: 91
  start-page: 242
  year: 1996
  ident: 10209_CR5
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1996.10476682
– volume: 77
  start-page: 956
  year: 2021
  ident: 10209_CR11
  publication-title: Biometrics
  doi: 10.1111/biom.13331
– volume: 22
  start-page: 477
  year: 2007
  ident: 10209_CR3
  publication-title: Stat. Sci.
– volume: 168
  start-page: 108931
  year: 2021
  ident: 10209_CR9
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2020.108931
– volume: 90
  start-page: 3261
  year: 2020
  ident: 10209_CR8
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2020.1800705
– volume: 67
  start-page: 301
  year: 2005
  ident: 10209_CR27
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 10209_CR12
  doi: 10.1007/s10463-020-00755-2
– volume: 27
  start-page: 739
  year: 2018
  ident: 10209_CR21
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2018.1425626
– volume: 75
  start-page: 1133
  year: 2019
  ident: 10209_CR20
  publication-title: Biometrics
  doi: 10.1111/biom.13112
– volume: 62
  start-page: 961
  year: 2006
  ident: 10209_CR23
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00578.x
– volume-title: The Elements of Statistical Learning. Data Mining, Inference, and Prediction
  year: 2009
  ident: 10209_CR17
– volume: 58
  start-page: 267
  year: 1996
  ident: 10209_CR22
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 101
  start-page: 1418
  year: 2006
  ident: 10209_CR26
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– volume: 14
  start-page: 4054
  year: 2020
  ident: 10209_CR10
  publication-title: Electron. J. Stat.
  doi: 10.1214/20-EJS1762
– volume: 106
  start-page: 296
  year: 2011
  ident: 10209_CR25
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2011.tm10098
– volume: 22
  start-page: 513
  year: 2007
  ident: 10209_CR16
  publication-title: Stat. Sci.
  doi: 10.1214/07-STS242A
– volume: 16
  start-page: 274
  year: 2010
  ident: 10209_CR19
  publication-title: Bernoulli
  doi: 10.3150/09-BEJ205
– volume: 38
  start-page: 2705
  year: 2019
  ident: 10209_CR2
  publication-title: Stat. Med.
  doi: 10.1002/sim.8130
– volume: 92
  start-page: 477
  year: 1997
  ident: 10209_CR6
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1997.10474001
– volume-title: Measurement Error in Nonlinear Model
  year: 2006
  ident: 10209_CR7
  doi: 10.1201/9781420010138
SSID ssj0011634
Score 2.3923264
Snippet Boosting is one of the most powerful statistical learning methods that combines multiple weak learners into a strong learner. The main idea of boosting is to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Error analysis
Error correction
Original Paper
Probability and Statistics in Computer Science
Statistical methods
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
Title De-noising boosting methods for variable selection and estimation subject to error-prone variables
URI https://link.springer.com/article/10.1007/s11222-023-10209-3
https://www.proquest.com/docview/2772692907
Volume 33
WOSCitedRecordID wos000926499800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcBgHBgPEYKAcuEGktOnziICJCxOCCe1W5VUJCXWo3fb7cfoUCJDg3CRt4zj-vji2AS4kcmNuooAGaRohQeEBFb6SVEfMCF8L5qdeWWwinE6j-Tx-rIPCiua2e-OSLHfqLtjNQVtG0cbg1uFaj_0mbKG5i6w6Pj2_tL4DRBhl0ijE5rjDhF4dKvP9GJ_NUYcxv7hFS2szGfzvO_dgt0aX5LpaDvuwYbIhDJrKDaRW5CHsPLTZWosh9C3irBI2H4C8NTRbvNojBIIIvLDXoklVZ7ogiHDJGtm1jbciRVlCB-VKRKaJzdZRhUGSYiXt6Q5ZLojJ80VO8Ycz03YsDmE2uZvd3NO6EANVqKFLagLBVOTp0HXjVCLj47GKhGvSwBhcBL52jKuYDg1n0pOMhzoQoauM52mhmeZH0MvwPcdAkARrLlmsPeQxsRLSMco4yJmk76ZSqRE4jTgSVScpt7Uy3pIuvbKd3gSnNymnN-EjuGz7vFcpOn5tPW6knNTqWiQucowAgSILR3DVSLV7_PNoJ39rfgp9W66-uvkzht4yX5kz2FZrFHJ-Xi7jDyvK7S8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFJwPTqfidGoefNNAem8fRR0TtyE6ZG8lt4IgnbTbfr8nvWwoKuhzk7TNSXK-L-cGcCGQGzs69KmfJCESFMen3JOCqpBp7inOvMQtik0Eo1E4mUSPVVBYXnu71ybJ4qReBbtZqMso6hg8OmxjsV-HDRc1lnHke3p-WdoOEGEUSaMQm-MJE7hVqMz3Y3xWRyuM-cUsWmibXut_37kLOxW6JNflctiDNZ22oVVXbiDVRm7D9nCZrTVvQ9MgzjJh8z6IW03T6au5QiCIwHPjFk3KOtM5QYRLFsiuTbwVyYsSOihXwlNFTLaOMgyS5HNhbnfIbEp0lk0zij-c6mXH_ADGvbvxTZ9WhRioxB06o9rnTIauCmw7SgQyPieSIbd14muNi8BTlrYlU4F2mHAFcwLl88CW2nUVV0w5h9BI8T1HQJAEK0ewSLnIYyLJhaWltpAzCc9OhJQdsGpxxLJKUm5qZbzFq_TKZnpjnN64mN7Y6cDlss97maLj19bdWspxtV3z2EaO4SNQZEEHrmqprh7_PNrx35qfw1Z_PBzEg_vRwwk0Ten60guoC41ZNtensCkXKPDsrFjSH1He8BM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFJkPTqfidGoefNNgem8fRR2KOgYO2VvJrSBIN9ptv9-TXjYVFcTnJmmbk-R8X5LzHYAzgdzY0aFP_SQJkaA4PuWeFFSFTHNPceYlbpFsIuj3w9EoGnyI4i9uu9dHkmVMg1FpSqeXE5VcLgPfLPRrFP0NLiO2Ob1fhTXXJA0yfP35ZXGOgGijEJBCnI6rTeBWYTPft_HZNS3x5pcj0sLz9Fr__-Zt2KpQJ7kqh8kOrOi0Da06owOpJngbNp8WKq55G5oGiZZCzrsgbjRNx69ma4EgMs_NdWlS5p_OCSJfMkfWbeKwSF6k1kF7E54qYlQ8yvBIks-E2fUh0zHRWTbOKP58qhcV8z0Y9m6H13e0StBAJc7cKdU-ZzJ0VWDbUSKQCTqRDLmtE19rHByesrQtmQq0w4QrmBMonwe21K6ruGLK2YdGiu85AILkWDmCRcpFfhNJLiwttYVcSnh2IqTsgFWbJpaVeLnJofEWL2WXTffG2L1x0b2x04HzRZ1JKd3xa-lubfG4msZ5bCP38BFAsqADF7WFl49_bu3wb8VPYWNw04sf7_sPR9A0Ge3Ly0FdaEyzmT6GdTlHe2cnxeh-B0Xw-Pc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De-noising+boosting+methods+for+variable+selection+and+estimation+subject+to+error-prone+variables&rft.jtitle=Statistics+and+computing&rft.au=Chen%2C+Li-Pang&rft.date=2023-04-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=33&rft.issue=2&rft_id=info:doi/10.1007%2Fs11222-023-10209-3&rft.externalDocID=10_1007_s11222_023_10209_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon