Fast Proximal Gradient Methods for Nonsmooth Convex Optimization for Tomographic Image Reconstruction
The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction. Convergence properties of the sequence of objective function values are derived, including a O 1 / k 2 non-asymptotic...
Saved in:
| Published in: | Sensing and imaging Vol. 21; no. 1 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1557-2064, 1557-2072 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction. Convergence properties of the sequence of objective function values are derived, including a
O
1
/
k
2
non-asymptotic bound. The presented theory broadens current knowledge and explains the convergence behavior of certain methods that are known to present good practical performance. Numerical experimentation involving computerized tomography image reconstruction shows the methods to be competitive in practical scenarios. Experimental comparison with Algebraic Reconstruction Techniques are performed uncovering certain behaviors of accelerated Proximal Gradient algorithms that apparently have not yet been noticed when these are applied to tomographic image reconstruction. |
|---|---|
| AbstractList | The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction. Convergence properties of the sequence of objective function values are derived, including a O1/k2 non-asymptotic bound. The presented theory broadens current knowledge and explains the convergence behavior of certain methods that are known to present good practical performance. Numerical experimentation involving computerized tomography image reconstruction shows the methods to be competitive in practical scenarios. Experimental comparison with Algebraic Reconstruction Techniques are performed uncovering certain behaviors of accelerated Proximal Gradient algorithms that apparently have not yet been noticed when these are applied to tomographic image reconstruction. The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction. Convergence properties of the sequence of objective function values are derived, including a O 1 / k 2 non-asymptotic bound. The presented theory broadens current knowledge and explains the convergence behavior of certain methods that are known to present good practical performance. Numerical experimentation involving computerized tomography image reconstruction shows the methods to be competitive in practical scenarios. Experimental comparison with Algebraic Reconstruction Techniques are performed uncovering certain behaviors of accelerated Proximal Gradient algorithms that apparently have not yet been noticed when these are applied to tomographic image reconstruction. |
| ArticleNumber | 45 |
| Author | Helou, Elias S. Herman, Gabor T. Zibetti, Marcelo V. W. |
| Author_xml | – sequence: 1 givenname: Elias S. orcidid: 0000-0001-5157-3851 surname: Helou fullname: Helou, Elias S. email: elias@icmc.usp.br organization: Instituto de Ciências Matemáticas e de Computação – sequence: 2 givenname: Marcelo V. W. orcidid: 0000-0003-2856-3625 surname: Zibetti fullname: Zibetti, Marcelo V. W. organization: Center for Advanced Imaging Innovation and Research (CAI²R), New York University School of Medicine – sequence: 3 givenname: Gabor T. surname: Herman fullname: Herman, Gabor T. organization: PhD Program in Computer Science, City University of New York |
| BookMark | eNp9kM9PwjAUxxujiYD-A56aeJ7219btaIggCYoxeG66rYMR1s62GOSvt2NGEw8cXvoOn897r98hONdGKwBuMLrDCPF7hzEhKEJdIYqy6HAGBjiOeUQQJ-e_fcIuwdC5DUKMsSQZADWRzsNXa_Z1I7dwamVZK-3hs_JrUzpYGQtfjHaNMX4Nx0Z_qj1ctL5u6oP0tdFHYmkas7KyXdcFnDVypeCbKoLl7a7ooCtwUcmtU9c_7wi8Tx6X46dovpjOxg_zqKA485FK4qokaYw5V4liBS2LkiDJaZZnXMY5TsLZiUIyzynNS5qhlLCM8YpIVWac0BG47ee21nzslPNiY3ZWh5WCMIZokoYBgUp7qrDGOasqUdT--BlvZb0VGIkuVNGHKlBXXajiEFTyT21tCM5-nZZoL7kA65Wyf1edsL4BEUiNjQ |
| CitedBy_id | crossref_primary_10_1088_1361_6560_acbe90 crossref_primary_10_1007_s11228_024_00718_2 |
| Cites_doi | 10.1137/S1052623403428208 10.1088/1361-6420/33/4/044011 10.1109/TCI.2018.2882681 10.1109/TIP.2009.2028250 10.1088/0266-5611/27/10/105008 10.1109/TSP.2006.881199 10.1137/080716542 10.1118/1.4745566 10.1088/1361-6420/aaa49b 10.1561/2400000003 10.1137/0723046 10.1109/42.241889 10.1007/978-3-662-02796-7 10.1007/s00365-007-9003-x 10.1364/JOSAA.16.000679 10.1088/0031-9155/44/11/311 10.1007/978-1-84628-723-7 10.1137/16M108104X 10.1109/TIP.2007.909319 10.1007/978-1-4419-8853-9 10.1109/TSP.2009.2016892 10.1109/ICIP.2015.7351490 10.1007/s10107-015-0949-3 10.1109/NSSMIC.1999.842846 10.1109/TIT.2006.871582 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION K9. |
| DOI | 10.1007/s11220-020-00309-z |
| DatabaseName | CrossRef ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1557-2072 |
| ExternalDocumentID | 10_1007_s11220_020_00309_z |
| GrantInformation_xml | – fundername: CNPq grantid: 310893/2019-4 – fundername: National Institutes of Health grantid: R01-AR06023; R01-AR067156 funderid: http://dx.doi.org/10.13039/100000002 – fundername: FAPESP grantid: 2013/07375-0; 2016/24286-9 – fundername: National Institutes of Health grantid: R01-AR068966 funderid: http://dx.doi.org/10.13039/100000002 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 7X7 88I 8AO 8FE 8FG 8FI 8FJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M2P M4Y MA- N2Q NPVJJ NQJWS NU0 O93 O9J OAM P62 P9P PF0 PQQKQ PROAC PT4 Q2X QOS R89 R9I RIG RNS ROL RPX RSV S0W S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z88 ZMTXR ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEUYN AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION M7S PHGZM PHGZT PQGLB PTHSS K9. |
| ID | FETCH-LOGICAL-c319t-e65fd285177e6e4c3dcd20a739b97a5b160446e0abb33bd390824947f2aed9723 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566085600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1557-2064 |
| IngestDate | Mon Oct 06 17:43:03 EDT 2025 Sat Nov 29 03:32:41 EST 2025 Tue Nov 18 22:07:44 EST 2025 Fri Feb 21 02:34:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Computerized tomography imaging Iterative algorithms Convex optimization Proximal gradient methods |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-e65fd285177e6e4c3dcd20a739b97a5b160446e0abb33bd390824947f2aed9723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5157-3851 0000-0003-2856-3625 |
| PQID | 2440368044 |
| PQPubID | 40116 |
| ParticipantIDs | proquest_journals_2440368044 crossref_citationtrail_10_1007_s11220_020_00309_z crossref_primary_10_1007_s11220_020_00309_z springer_journals_10_1007_s11220_020_00309_z |
| PublicationCentury | 2000 |
| PublicationDate | 20201200 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Sensing and imaging |
| PublicationTitleAbbrev | Sens Imaging |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Taylor, Hendrickx, cois Glineur (CR23) 2017; 27 CR18 CR17 Beck, Teboulle (CR3) 2009; 18 Garduño, Herman (CR9) 2017; 33 CR12 Zibetti, Lin, Herman (CR27) 2018; 34 CR10 Yamagishi, Yamada (CR25) 2011; 27 Herman, Meyer (CR14) 1993; 12 Erdoǧan, Fessler (CR8) 1999; 44 Nesterov (CR21) 2004 Herman (CR13) 2009 Zhang, Hager (CR26) 2004; 14 Bioucas-Dias, Figueiredo (CR4) 2007; 16 Parikh, Boyd (CR22) 2014; 1 CR5 Zibetti, Helou, Regatte, Herman (CR28) 2019; 5 Drori, Teboulle (CR6) 2014; 145 Hiriart-Urruty, Lemaréchal (CR16) 1993 Engl, Hanke, Neubauer (CR7) 2000 Grippo, Lampariello, Lucidi (CR11) 1986; 23 Nesterov (CR20) 1983; 27 Herman, Garduño, Davidi, Censor (CR15) 2012; 39 Beck, Teboulle (CR2) 2009; 2 Aharon, Elad, Bruckstein (CR1) 2006; 54 Narayan, Herman (CR19) 1999; 16 Wright, Nowak, Figueiredo (CR24) 2009; 57 H Erdoǧan (309_CR8) 1999; 44 YE Nesterov (309_CR20) 1983; 27 A Beck (309_CR3) 2009; 18 H Zhang (309_CR26) 2004; 14 JB Hiriart-Urruty (309_CR16) 1993 GT Herman (309_CR15) 2012; 39 M Aharon (309_CR1) 2006; 54 309_CR10 309_CR12 AB Taylor (309_CR23) 2017; 27 GT Herman (309_CR14) 1993; 12 309_CR18 309_CR17 E Garduño (309_CR9) 2017; 33 YE Nesterov (309_CR21) 2004 A Beck (309_CR2) 2009; 2 MVW Zibetti (309_CR27) 2018; 34 L Grippo (309_CR11) 1986; 23 M Yamagishi (309_CR25) 2011; 27 JM Bioucas-Dias (309_CR4) 2007; 16 MVW Zibetti (309_CR28) 2019; 5 SJ Wright (309_CR24) 2009; 57 N Parikh (309_CR22) 2014; 1 309_CR5 Y Drori (309_CR6) 2014; 145 GT Herman (309_CR13) 2009 TK Narayan (309_CR19) 1999; 16 HW Engl (309_CR7) 2000 |
| References_xml | – volume: 14 start-page: 1043 issue: 4 year: 2004 end-page: 1056 ident: CR26 article-title: A nonmonotone line search technique and its application to unconstrained optimization publication-title: SIAM Journal on Optimization doi: 10.1137/S1052623403428208 – ident: CR18 – volume: 33 start-page: 44011 issue: 4 year: 2017 end-page: 44024 ident: CR9 article-title: Computerized tomography with total variation and with shearlets publication-title: Inverse Problems doi: 10.1088/1361-6420/33/4/044011 – volume: 5 start-page: 109 issue: 1 year: 2019 end-page: 119 ident: CR28 article-title: Monotone FISTA with variable acceleration for compressed sensing magnetic resonance imaging publication-title: IEEE Transactions on Computational Imaging doi: 10.1109/TCI.2018.2882681 – volume: 18 start-page: 2419 issue: 11 year: 2009 end-page: 2434 ident: CR3 article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2009.2028250 – volume: 27 start-page: 105008 issue: 10 year: 2011 ident: CR25 article-title: Over-relaxation of the fast iterative shrinkage-thresholding algorithm with variable stepsize publication-title: Inverse Problems doi: 10.1088/0266-5611/27/10/105008 – volume: 54 start-page: 4311 issue: 11 year: 2006 end-page: 4322 ident: CR1 article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2006.881199 – volume: 2 start-page: 183 issue: 1 year: 2009 end-page: 202 ident: CR2 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM Journal on Imaging Sciences doi: 10.1137/080716542 – volume: 39 start-page: 5532 issue: 9 year: 2012 end-page: 5546 ident: CR15 article-title: Superiorization: An optimization heuristic for medical physics publication-title: Medical Physics doi: 10.1118/1.4745566 – volume: 34 start-page: 34001 issue: 3 year: 2018 end-page: 340026 ident: CR27 article-title: Total variation superiorized conjugate gradient method for image reconstruction publication-title: Inverse Problems doi: 10.1088/1361-6420/aaa49b – ident: CR12 – year: 2000 ident: CR7 publication-title: Regularization of inverse problems – ident: CR10 – volume: 27 start-page: 372 issue: 3 year: 1983 end-page: 376 ident: CR20 article-title: A method for solving a convex programming problem with convergence rate publication-title: Soviet Mathematics Doklady – volume: 1 start-page: 127 issue: 3 year: 2014 end-page: 239 ident: CR22 article-title: Proximal algorithms publication-title: Foundations and Trends in Optimization doi: 10.1561/2400000003 – volume: 23 start-page: 707 issue: 4 year: 1986 end-page: 716 ident: CR11 article-title: A nonmonotone line search technique for Newton’s method publication-title: SIAM Journal on Numerical Analysis doi: 10.1137/0723046 – volume: 12 start-page: 600 issue: 3 year: 1993 end-page: 609 ident: CR14 article-title: Algebraic reconstruction techniques can be made computationally efficient publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.241889 – year: 1993 ident: CR16 publication-title: Convex analysis and minimization algorithms doi: 10.1007/978-3-662-02796-7 – volume: 145 start-page: 451 issue: 1–2 year: 2014 end-page: 482 ident: CR6 article-title: Performance of first-order methods for smooth convex minimization: a novel approach publication-title: Mathematical Programming doi: 10.1007/s00365-007-9003-x – volume: 16 start-page: 679 issue: 3 year: 1999 end-page: 693 ident: CR19 article-title: Prediction of human observer performance by numerical observers: An experimental study publication-title: Journal of the Optical Society of America A doi: 10.1364/JOSAA.16.000679 – volume: 44 start-page: 2835 issue: 11 year: 1999 end-page: 2851 ident: CR8 article-title: Ordered subsets algorithms for transmission tomography publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/44/11/311 – year: 2009 ident: CR13 publication-title: Fundamentals of Computerized Tomography: Image Reconstruction from Projections doi: 10.1007/978-1-84628-723-7 – ident: CR17 – volume: 27 start-page: 1283 issue: 3 year: 2017 end-page: 1313 ident: CR23 article-title: Exact worst-case performance of first-order methods for composite convex optimization publication-title: SIAM Journal on Optimization doi: 10.1137/16M108104X – volume: 16 start-page: 29923004 issue: 12 year: 2007 ident: CR4 article-title: A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2007.909319 – ident: CR5 – year: 2004 ident: CR21 publication-title: Introductory Lectures on Convex Optimization: A Basic Course doi: 10.1007/978-1-4419-8853-9 – volume: 57 start-page: 2479 issue: 7 year: 2009 end-page: 2493 ident: CR24 article-title: Sparse reconstruction by separable approximation publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2009.2016892 – volume: 27 start-page: 372 issue: 3 year: 1983 ident: 309_CR20 publication-title: Soviet Mathematics Doklady – ident: 309_CR17 doi: 10.1109/ICIP.2015.7351490 – volume: 34 start-page: 34001 issue: 3 year: 2018 ident: 309_CR27 publication-title: Inverse Problems doi: 10.1088/1361-6420/aaa49b – volume: 23 start-page: 707 issue: 4 year: 1986 ident: 309_CR11 publication-title: SIAM Journal on Numerical Analysis doi: 10.1137/0723046 – volume: 57 start-page: 2479 issue: 7 year: 2009 ident: 309_CR24 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2009.2016892 – volume: 44 start-page: 2835 issue: 11 year: 1999 ident: 309_CR8 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/44/11/311 – volume: 1 start-page: 127 issue: 3 year: 2014 ident: 309_CR22 publication-title: Foundations and Trends in Optimization doi: 10.1561/2400000003 – volume: 27 start-page: 105008 issue: 10 year: 2011 ident: 309_CR25 publication-title: Inverse Problems doi: 10.1088/0266-5611/27/10/105008 – volume-title: Fundamentals of Computerized Tomography: Image Reconstruction from Projections year: 2009 ident: 309_CR13 doi: 10.1007/978-1-84628-723-7 – ident: 309_CR18 doi: 10.1007/s10107-015-0949-3 – volume: 27 start-page: 1283 issue: 3 year: 2017 ident: 309_CR23 publication-title: SIAM Journal on Optimization doi: 10.1137/16M108104X – volume: 12 start-page: 600 issue: 3 year: 1993 ident: 309_CR14 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.241889 – volume: 18 start-page: 2419 issue: 11 year: 2009 ident: 309_CR3 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2009.2028250 – volume: 39 start-page: 5532 issue: 9 year: 2012 ident: 309_CR15 publication-title: Medical Physics doi: 10.1118/1.4745566 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 309_CR2 publication-title: SIAM Journal on Imaging Sciences doi: 10.1137/080716542 – volume: 33 start-page: 44011 issue: 4 year: 2017 ident: 309_CR9 publication-title: Inverse Problems doi: 10.1088/1361-6420/33/4/044011 – volume-title: Convex analysis and minimization algorithms year: 1993 ident: 309_CR16 doi: 10.1007/978-3-662-02796-7 – volume: 14 start-page: 1043 issue: 4 year: 2004 ident: 309_CR26 publication-title: SIAM Journal on Optimization doi: 10.1137/S1052623403428208 – volume: 16 start-page: 29923004 issue: 12 year: 2007 ident: 309_CR4 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2007.909319 – volume-title: Regularization of inverse problems year: 2000 ident: 309_CR7 – volume: 5 start-page: 109 issue: 1 year: 2019 ident: 309_CR28 publication-title: IEEE Transactions on Computational Imaging doi: 10.1109/TCI.2018.2882681 – ident: 309_CR12 doi: 10.1109/NSSMIC.1999.842846 – ident: 309_CR5 doi: 10.1109/TIT.2006.871582 – volume-title: Introductory Lectures on Convex Optimization: A Basic Course year: 2004 ident: 309_CR21 doi: 10.1007/978-1-4419-8853-9 – volume: 16 start-page: 679 issue: 3 year: 1999 ident: 309_CR19 publication-title: Journal of the Optical Society of America A doi: 10.1364/JOSAA.16.000679 – volume: 54 start-page: 4311 issue: 11 year: 2006 ident: 309_CR1 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2006.881199 – volume: 145 start-page: 451 issue: 1–2 year: 2014 ident: 309_CR6 publication-title: Mathematical Programming doi: 10.1007/s00365-007-9003-x – ident: 309_CR10 |
| SSID | ssj0044466 |
| Score | 2.1908162 |
| Snippet | The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Computational geometry Computed tomography Convergence Convex analysis Convexity Electrical Engineering Engineering Experimentation Image reconstruction Imaging Microwaves Optimization Original Paper Radiology RF and Optical Engineering |
| Title | Fast Proximal Gradient Methods for Nonsmooth Convex Optimization for Tomographic Image Reconstruction |
| URI | https://link.springer.com/article/10.1007/s11220-020-00309-z https://www.proquest.com/docview/2440368044 |
| Volume | 21 |
| WOSCitedRecordID | wos000566085600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1557-2072 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044466 issn: 1557-2064 databaseCode: RSV dateStart: 20060301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfi_CIPvmmhH2mzPMpwKugc-MHeSpKmMLCbrEPEv95LlloVFfS5SWh7l7vfcXe_AzhSzFciCBOPozp4VMa5J_NImGb3IJYhZ9mcZ_aK9fud4ZAPXFNYWVW7VylJa6nrZrcgxFDHhDs2f-e9LsJSbNhmTIx--1DZX-oylOgoGepAQl2rzPdnfHZHNcb8kha13qbX_N97rsOaQ5fkdK4OG7Cgxy1oOqRJ3D0uW7D6gYZwE3RPlDMymE5eRgXuPp_aMrAZubbTpUuCuJb0UTuLCYqVdE2d-gu5QVtTuCZOu-JuUszpr0eKXBZopogJbWuC2i24753ddS88N37BU3gvZ55O4jwLEZExphNNVZSpLPQFi7jkTMQySEwyWPtCyiiSWWSGp1NOWR4KnZlhZtvQGE_GegdIwDqc5SLIBGVUCImoTJlpo4L7kaAiaUNQSSFVjpvcjMh4TGtWZfNXUz-0bKY-T1_bcPy-52nOzPHr6v1KuKm7pWWK0AYdeAc_ow0nlTDrxz-ftvu35XuwEhp9sFUw-9DAH68PYFk9z0bl9NBq7xu4jelq |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8AvXB-YnzMw--aaEfWbM8ijgVtyk4xbeSpCkM7CbrkOFf7yVLrYoK-twktL3L3e-4u98BHCnmKxGEscdRHTwqG5kns0iYZvegIUPO0inPbJt1u83HR37rmsKKstq9TElaS101uwUhhjom3LH5O-91FuapGbNjYvS7h9L-UpehREfJUAdi6lplvj_jszuqMOaXtKj1Nq3a_95zFVYcuiSnU3VYgxk9WIeaQ5rE3eNiHZY_0BBugG6JYkxuR8NJP8fdFyNbBjYmHTtduiCIa0kXtTMfoljJmalTn5AbtDW5a-K0K3rDfEp_3VfkKkczRUxoWxHUbsJ967x3dum58Quewns59nTcyNIQERljOtZURalKQ1-wiEvOREMGsUkGa19IGUUyjczwdMopy0KhUzPMbAvmBsOB3gYSsCZnmQhSQRkVQiIqU2baqOB-JKiI6xCUUkiU4yY3IzKekopV2fzVxA8tm6nPk9c6HL_veZ4yc_y6eq8UbuJuaZEgtEEH3sTPqMNJKczq8c-n7fxt-SEsXvY67aR91b3ehaXQ6IatiNmDORSC3ocF9TLuF6MDq8lvscvsTg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4xQNN4gNGB1tENP_C2ReSHG9ePqNCtousqYFPfIttxpEqkRU2EUP_6nR1nKYghTXuObSW5O993urvvAE4U85UIwtjjqA4eld3Mk1kkTLN70JUhZ2nFMzti43FvOuWTtS5-W-1epySrngbD0jQvT-_S7LRpfAtCDHtM6GNzed7qFWxRjGRMUdfV9a_6LqYuW4lOk6E-xNS1zTx_xmPX1ODNJylS63kGe___zm9h16FOclapyT5s6HkL9hwCJc6-ixbsrNETvgM9EEVJJsvFwyzH3V-XtjysJN_t1OmCIN4lY9TafIHiJn1Tv_5AfuAdlLvmTrviZpFXtNgzRYY5Xl_EhLwNce0B_Bxc3PS_eW4sg6fQXktPx90sDRGpMaZjTVWUqjT0BYu45Ex0ZRCbJLH2hZRRJNPIDFWnnLIsFDo1Q84OYXO-mOv3QALW4ywTQSooo0JIRGvKTCEV3I8EFXEbgloiiXKc5WZ0xm3SsC2bv5r4oWU59XmyasPnP3vuKsaOF1d3akEnznqLBCEPOvYefkYbvtSCbR7__bQP_7b8GF5PzgfJaDi-PII3oVENWyjTgU2Ugf4I2-q-nBXLT1apfwNPtvUy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Proximal+Gradient+Methods+for+Nonsmooth+Convex+Optimization+for+Tomographic+Image+Reconstruction&rft.jtitle=Sensing+and+imaging&rft.au=Helou%2C+Elias+S&rft.au=Zibetti+Marcelo+V+W&rft.au=Herman%2C+Gabor+T&rft.date=2020-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1557-2064&rft.eissn=1557-2072&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1007%2Fs11220-020-00309-z&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-2064&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-2064&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-2064&client=summon |