Fast Proximal Gradient Methods for Nonsmooth Convex Optimization for Tomographic Image Reconstruction

The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction. Convergence properties of the sequence of objective function values are derived, including a O 1 / k 2 non-asymptotic...

Full description

Saved in:
Bibliographic Details
Published in:Sensing and imaging Vol. 21; no. 1
Main Authors: Helou, Elias S., Zibetti, Marcelo V. W., Herman, Gabor T.
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2020
Springer Nature B.V
Subjects:
ISSN:1557-2064, 1557-2072
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction. Convergence properties of the sequence of objective function values are derived, including a O 1 / k 2 non-asymptotic bound. The presented theory broadens current knowledge and explains the convergence behavior of certain methods that are known to present good practical performance. Numerical experimentation involving computerized tomography image reconstruction shows the methods to be competitive in practical scenarios. Experimental comparison with Algebraic Reconstruction Techniques are performed uncovering certain behaviors of accelerated Proximal Gradient algorithms that apparently have not yet been noticed when these are applied to tomographic image reconstruction.
AbstractList The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction. Convergence properties of the sequence of objective function values are derived, including a O1/k2 non-asymptotic bound. The presented theory broadens current knowledge and explains the convergence behavior of certain methods that are known to present good practical performance. Numerical experimentation involving computerized tomography image reconstruction shows the methods to be competitive in practical scenarios. Experimental comparison with Algebraic Reconstruction Techniques are performed uncovering certain behaviors of accelerated Proximal Gradient algorithms that apparently have not yet been noticed when these are applied to tomographic image reconstruction.
The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction. Convergence properties of the sequence of objective function values are derived, including a O 1 / k 2 non-asymptotic bound. The presented theory broadens current knowledge and explains the convergence behavior of certain methods that are known to present good practical performance. Numerical experimentation involving computerized tomography image reconstruction shows the methods to be competitive in practical scenarios. Experimental comparison with Algebraic Reconstruction Techniques are performed uncovering certain behaviors of accelerated Proximal Gradient algorithms that apparently have not yet been noticed when these are applied to tomographic image reconstruction.
ArticleNumber 45
Author Helou, Elias S.
Herman, Gabor T.
Zibetti, Marcelo V. W.
Author_xml – sequence: 1
  givenname: Elias S.
  orcidid: 0000-0001-5157-3851
  surname: Helou
  fullname: Helou, Elias S.
  email: elias@icmc.usp.br
  organization: Instituto de Ciências Matemáticas e de Computação
– sequence: 2
  givenname: Marcelo V. W.
  orcidid: 0000-0003-2856-3625
  surname: Zibetti
  fullname: Zibetti, Marcelo V. W.
  organization: Center for Advanced Imaging Innovation and Research (CAI²R), New York University School of Medicine
– sequence: 3
  givenname: Gabor T.
  surname: Herman
  fullname: Herman, Gabor T.
  organization: PhD Program in Computer Science, City University of New York
BookMark eNp9kM9PwjAUxxujiYD-A56aeJ7219btaIggCYoxeG66rYMR1s62GOSvt2NGEw8cXvoOn897r98hONdGKwBuMLrDCPF7hzEhKEJdIYqy6HAGBjiOeUQQJ-e_fcIuwdC5DUKMsSQZADWRzsNXa_Z1I7dwamVZK-3hs_JrUzpYGQtfjHaNMX4Nx0Z_qj1ctL5u6oP0tdFHYmkas7KyXdcFnDVypeCbKoLl7a7ooCtwUcmtU9c_7wi8Tx6X46dovpjOxg_zqKA485FK4qokaYw5V4liBS2LkiDJaZZnXMY5TsLZiUIyzynNS5qhlLCM8YpIVWac0BG47ee21nzslPNiY3ZWh5WCMIZokoYBgUp7qrDGOasqUdT--BlvZb0VGIkuVNGHKlBXXajiEFTyT21tCM5-nZZoL7kA65Wyf1edsL4BEUiNjQ
CitedBy_id crossref_primary_10_1088_1361_6560_acbe90
crossref_primary_10_1007_s11228_024_00718_2
Cites_doi 10.1137/S1052623403428208
10.1088/1361-6420/33/4/044011
10.1109/TCI.2018.2882681
10.1109/TIP.2009.2028250
10.1088/0266-5611/27/10/105008
10.1109/TSP.2006.881199
10.1137/080716542
10.1118/1.4745566
10.1088/1361-6420/aaa49b
10.1561/2400000003
10.1137/0723046
10.1109/42.241889
10.1007/978-3-662-02796-7
10.1007/s00365-007-9003-x
10.1364/JOSAA.16.000679
10.1088/0031-9155/44/11/311
10.1007/978-1-84628-723-7
10.1137/16M108104X
10.1109/TIP.2007.909319
10.1007/978-1-4419-8853-9
10.1109/TSP.2009.2016892
10.1109/ICIP.2015.7351490
10.1007/s10107-015-0949-3
10.1109/NSSMIC.1999.842846
10.1109/TIT.2006.871582
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
K9.
DOI 10.1007/s11220-020-00309-z
DatabaseName CrossRef
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1557-2072
ExternalDocumentID 10_1007_s11220_020_00309_z
GrantInformation_xml – fundername: CNPq
  grantid: 310893/2019-4
– fundername: National Institutes of Health
  grantid: R01-AR06023; R01-AR067156
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: FAPESP
  grantid: 2013/07375-0; 2016/24286-9
– fundername: National Institutes of Health
  grantid: R01-AR068966
  funderid: http://dx.doi.org/10.13039/100000002
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
7X7
88I
8AO
8FE
8FG
8FI
8FJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M2P
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P62
P9P
PF0
PQQKQ
PROAC
PT4
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S0W
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z88
ZMTXR
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEUYN
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
M7S
PHGZM
PHGZT
PQGLB
PTHSS
K9.
ID FETCH-LOGICAL-c319t-e65fd285177e6e4c3dcd20a739b97a5b160446e0abb33bd390824947f2aed9723
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566085600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1557-2064
IngestDate Mon Oct 06 17:43:03 EDT 2025
Sat Nov 29 03:32:41 EST 2025
Tue Nov 18 22:07:44 EST 2025
Fri Feb 21 02:34:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Computerized tomography imaging
Iterative algorithms
Convex optimization
Proximal gradient methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e65fd285177e6e4c3dcd20a739b97a5b160446e0abb33bd390824947f2aed9723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5157-3851
0000-0003-2856-3625
PQID 2440368044
PQPubID 40116
ParticipantIDs proquest_journals_2440368044
crossref_citationtrail_10_1007_s11220_020_00309_z
crossref_primary_10_1007_s11220_020_00309_z
springer_journals_10_1007_s11220_020_00309_z
PublicationCentury 2000
PublicationDate 20201200
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Sensing and imaging
PublicationTitleAbbrev Sens Imaging
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Taylor, Hendrickx, cois Glineur (CR23) 2017; 27
CR18
CR17
Beck, Teboulle (CR3) 2009; 18
Garduño, Herman (CR9) 2017; 33
CR12
Zibetti, Lin, Herman (CR27) 2018; 34
CR10
Yamagishi, Yamada (CR25) 2011; 27
Herman, Meyer (CR14) 1993; 12
Erdoǧan, Fessler (CR8) 1999; 44
Nesterov (CR21) 2004
Herman (CR13) 2009
Zhang, Hager (CR26) 2004; 14
Bioucas-Dias, Figueiredo (CR4) 2007; 16
Parikh, Boyd (CR22) 2014; 1
CR5
Zibetti, Helou, Regatte, Herman (CR28) 2019; 5
Drori, Teboulle (CR6) 2014; 145
Hiriart-Urruty, Lemaréchal (CR16) 1993
Engl, Hanke, Neubauer (CR7) 2000
Grippo, Lampariello, Lucidi (CR11) 1986; 23
Nesterov (CR20) 1983; 27
Herman, Garduño, Davidi, Censor (CR15) 2012; 39
Beck, Teboulle (CR2) 2009; 2
Aharon, Elad, Bruckstein (CR1) 2006; 54
Narayan, Herman (CR19) 1999; 16
Wright, Nowak, Figueiredo (CR24) 2009; 57
H Erdoǧan (309_CR8) 1999; 44
YE Nesterov (309_CR20) 1983; 27
A Beck (309_CR3) 2009; 18
H Zhang (309_CR26) 2004; 14
JB Hiriart-Urruty (309_CR16) 1993
GT Herman (309_CR15) 2012; 39
M Aharon (309_CR1) 2006; 54
309_CR10
309_CR12
AB Taylor (309_CR23) 2017; 27
GT Herman (309_CR14) 1993; 12
309_CR18
309_CR17
E Garduño (309_CR9) 2017; 33
YE Nesterov (309_CR21) 2004
A Beck (309_CR2) 2009; 2
MVW Zibetti (309_CR27) 2018; 34
L Grippo (309_CR11) 1986; 23
M Yamagishi (309_CR25) 2011; 27
JM Bioucas-Dias (309_CR4) 2007; 16
MVW Zibetti (309_CR28) 2019; 5
SJ Wright (309_CR24) 2009; 57
N Parikh (309_CR22) 2014; 1
309_CR5
Y Drori (309_CR6) 2014; 145
GT Herman (309_CR13) 2009
TK Narayan (309_CR19) 1999; 16
HW Engl (309_CR7) 2000
References_xml – volume: 14
  start-page: 1043
  issue: 4
  year: 2004
  end-page: 1056
  ident: CR26
  article-title: A nonmonotone line search technique and its application to unconstrained optimization
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623403428208
– ident: CR18
– volume: 33
  start-page: 44011
  issue: 4
  year: 2017
  end-page: 44024
  ident: CR9
  article-title: Computerized tomography with total variation and with shearlets
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/33/4/044011
– volume: 5
  start-page: 109
  issue: 1
  year: 2019
  end-page: 119
  ident: CR28
  article-title: Monotone FISTA with variable acceleration for compressed sensing magnetic resonance imaging
  publication-title: IEEE Transactions on Computational Imaging
  doi: 10.1109/TCI.2018.2882681
– volume: 18
  start-page: 2419
  issue: 11
  year: 2009
  end-page: 2434
  ident: CR3
  article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2009.2028250
– volume: 27
  start-page: 105008
  issue: 10
  year: 2011
  ident: CR25
  article-title: Over-relaxation of the fast iterative shrinkage-thresholding algorithm with variable stepsize
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/27/10/105008
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  end-page: 4322
  ident: CR1
  article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2006.881199
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  ident: CR2
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM Journal on Imaging Sciences
  doi: 10.1137/080716542
– volume: 39
  start-page: 5532
  issue: 9
  year: 2012
  end-page: 5546
  ident: CR15
  article-title: Superiorization: An optimization heuristic for medical physics
  publication-title: Medical Physics
  doi: 10.1118/1.4745566
– volume: 34
  start-page: 34001
  issue: 3
  year: 2018
  end-page: 340026
  ident: CR27
  article-title: Total variation superiorized conjugate gradient method for image reconstruction
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aaa49b
– ident: CR12
– year: 2000
  ident: CR7
  publication-title: Regularization of inverse problems
– ident: CR10
– volume: 27
  start-page: 372
  issue: 3
  year: 1983
  end-page: 376
  ident: CR20
  article-title: A method for solving a convex programming problem with convergence rate
  publication-title: Soviet Mathematics Doklady
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  end-page: 239
  ident: CR22
  article-title: Proximal algorithms
  publication-title: Foundations and Trends in Optimization
  doi: 10.1561/2400000003
– volume: 23
  start-page: 707
  issue: 4
  year: 1986
  end-page: 716
  ident: CR11
  article-title: A nonmonotone line search technique for Newton’s method
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/0723046
– volume: 12
  start-page: 600
  issue: 3
  year: 1993
  end-page: 609
  ident: CR14
  article-title: Algebraic reconstruction techniques can be made computationally efficient
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.241889
– year: 1993
  ident: CR16
  publication-title: Convex analysis and minimization algorithms
  doi: 10.1007/978-3-662-02796-7
– volume: 145
  start-page: 451
  issue: 1–2
  year: 2014
  end-page: 482
  ident: CR6
  article-title: Performance of first-order methods for smooth convex minimization: a novel approach
  publication-title: Mathematical Programming
  doi: 10.1007/s00365-007-9003-x
– volume: 16
  start-page: 679
  issue: 3
  year: 1999
  end-page: 693
  ident: CR19
  article-title: Prediction of human observer performance by numerical observers: An experimental study
  publication-title: Journal of the Optical Society of America A
  doi: 10.1364/JOSAA.16.000679
– volume: 44
  start-page: 2835
  issue: 11
  year: 1999
  end-page: 2851
  ident: CR8
  article-title: Ordered subsets algorithms for transmission tomography
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/44/11/311
– year: 2009
  ident: CR13
  publication-title: Fundamentals of Computerized Tomography: Image Reconstruction from Projections
  doi: 10.1007/978-1-84628-723-7
– ident: CR17
– volume: 27
  start-page: 1283
  issue: 3
  year: 2017
  end-page: 1313
  ident: CR23
  article-title: Exact worst-case performance of first-order methods for composite convex optimization
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/16M108104X
– volume: 16
  start-page: 29923004
  issue: 12
  year: 2007
  ident: CR4
  article-title: A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2007.909319
– ident: CR5
– year: 2004
  ident: CR21
  publication-title: Introductory Lectures on Convex Optimization: A Basic Course
  doi: 10.1007/978-1-4419-8853-9
– volume: 57
  start-page: 2479
  issue: 7
  year: 2009
  end-page: 2493
  ident: CR24
  article-title: Sparse reconstruction by separable approximation
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2009.2016892
– volume: 27
  start-page: 372
  issue: 3
  year: 1983
  ident: 309_CR20
  publication-title: Soviet Mathematics Doklady
– ident: 309_CR17
  doi: 10.1109/ICIP.2015.7351490
– volume: 34
  start-page: 34001
  issue: 3
  year: 2018
  ident: 309_CR27
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aaa49b
– volume: 23
  start-page: 707
  issue: 4
  year: 1986
  ident: 309_CR11
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/0723046
– volume: 57
  start-page: 2479
  issue: 7
  year: 2009
  ident: 309_CR24
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2009.2016892
– volume: 44
  start-page: 2835
  issue: 11
  year: 1999
  ident: 309_CR8
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/44/11/311
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  ident: 309_CR22
  publication-title: Foundations and Trends in Optimization
  doi: 10.1561/2400000003
– volume: 27
  start-page: 105008
  issue: 10
  year: 2011
  ident: 309_CR25
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/27/10/105008
– volume-title: Fundamentals of Computerized Tomography: Image Reconstruction from Projections
  year: 2009
  ident: 309_CR13
  doi: 10.1007/978-1-84628-723-7
– ident: 309_CR18
  doi: 10.1007/s10107-015-0949-3
– volume: 27
  start-page: 1283
  issue: 3
  year: 2017
  ident: 309_CR23
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/16M108104X
– volume: 12
  start-page: 600
  issue: 3
  year: 1993
  ident: 309_CR14
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.241889
– volume: 18
  start-page: 2419
  issue: 11
  year: 2009
  ident: 309_CR3
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2009.2028250
– volume: 39
  start-page: 5532
  issue: 9
  year: 2012
  ident: 309_CR15
  publication-title: Medical Physics
  doi: 10.1118/1.4745566
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 309_CR2
  publication-title: SIAM Journal on Imaging Sciences
  doi: 10.1137/080716542
– volume: 33
  start-page: 44011
  issue: 4
  year: 2017
  ident: 309_CR9
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/33/4/044011
– volume-title: Convex analysis and minimization algorithms
  year: 1993
  ident: 309_CR16
  doi: 10.1007/978-3-662-02796-7
– volume: 14
  start-page: 1043
  issue: 4
  year: 2004
  ident: 309_CR26
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623403428208
– volume: 16
  start-page: 29923004
  issue: 12
  year: 2007
  ident: 309_CR4
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2007.909319
– volume-title: Regularization of inverse problems
  year: 2000
  ident: 309_CR7
– volume: 5
  start-page: 109
  issue: 1
  year: 2019
  ident: 309_CR28
  publication-title: IEEE Transactions on Computational Imaging
  doi: 10.1109/TCI.2018.2882681
– ident: 309_CR12
  doi: 10.1109/NSSMIC.1999.842846
– ident: 309_CR5
  doi: 10.1109/TIT.2006.871582
– volume-title: Introductory Lectures on Convex Optimization: A Basic Course
  year: 2004
  ident: 309_CR21
  doi: 10.1007/978-1-4419-8853-9
– volume: 16
  start-page: 679
  issue: 3
  year: 1999
  ident: 309_CR19
  publication-title: Journal of the Optical Society of America A
  doi: 10.1364/JOSAA.16.000679
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 309_CR1
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2006.881199
– volume: 145
  start-page: 451
  issue: 1–2
  year: 2014
  ident: 309_CR6
  publication-title: Mathematical Programming
  doi: 10.1007/s00365-007-9003-x
– ident: 309_CR10
SSID ssj0044466
Score 2.1908162
Snippet The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Computational geometry
Computed tomography
Convergence
Convex analysis
Convexity
Electrical Engineering
Engineering
Experimentation
Image reconstruction
Imaging
Microwaves
Optimization
Original Paper
Radiology
RF and Optical Engineering
Title Fast Proximal Gradient Methods for Nonsmooth Convex Optimization for Tomographic Image Reconstruction
URI https://link.springer.com/article/10.1007/s11220-020-00309-z
https://www.proquest.com/docview/2440368044
Volume 21
WOSCitedRecordID wos000566085600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1557-2072
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044466
  issn: 1557-2064
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfi_CIPvmmhH2mzPMpwKugc-MHeSpKmMLCbrEPEv95LlloVFfS5SWh7l7vfcXe_AzhSzFciCBOPozp4VMa5J_NImGb3IJYhZ9mcZ_aK9fud4ZAPXFNYWVW7VylJa6nrZrcgxFDHhDs2f-e9LsJSbNhmTIx--1DZX-oylOgoGepAQl2rzPdnfHZHNcb8kha13qbX_N97rsOaQ5fkdK4OG7Cgxy1oOqRJ3D0uW7D6gYZwE3RPlDMymE5eRgXuPp_aMrAZubbTpUuCuJb0UTuLCYqVdE2d-gu5QVtTuCZOu-JuUszpr0eKXBZopogJbWuC2i24753ddS88N37BU3gvZ55O4jwLEZExphNNVZSpLPQFi7jkTMQySEwyWPtCyiiSWWSGp1NOWR4KnZlhZtvQGE_GegdIwDqc5SLIBGVUCImoTJlpo4L7kaAiaUNQSSFVjpvcjMh4TGtWZfNXUz-0bKY-T1_bcPy-52nOzPHr6v1KuKm7pWWK0AYdeAc_ow0nlTDrxz-ftvu35XuwEhp9sFUw-9DAH68PYFk9z0bl9NBq7xu4jelq
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8AvXB-YnzMw--aaEfWbM8ijgVtyk4xbeSpCkM7CbrkOFf7yVLrYoK-twktL3L3e-4u98BHCnmKxGEscdRHTwqG5kns0iYZvegIUPO0inPbJt1u83HR37rmsKKstq9TElaS101uwUhhjom3LH5O-91FuapGbNjYvS7h9L-UpehREfJUAdi6lplvj_jszuqMOaXtKj1Nq3a_95zFVYcuiSnU3VYgxk9WIeaQ5rE3eNiHZY_0BBugG6JYkxuR8NJP8fdFyNbBjYmHTtduiCIa0kXtTMfoljJmalTn5AbtDW5a-K0K3rDfEp_3VfkKkczRUxoWxHUbsJ967x3dum58Quewns59nTcyNIQERljOtZURalKQ1-wiEvOREMGsUkGa19IGUUyjczwdMopy0KhUzPMbAvmBsOB3gYSsCZnmQhSQRkVQiIqU2baqOB-JKiI6xCUUkiU4yY3IzKekopV2fzVxA8tm6nPk9c6HL_veZ4yc_y6eq8UbuJuaZEgtEEH3sTPqMNJKczq8c-n7fxt-SEsXvY67aR91b3ehaXQ6IatiNmDORSC3ocF9TLuF6MDq8lvscvsTg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4xQNN4gNGB1tENP_C2ReSHG9ePqNCtousqYFPfIttxpEqkRU2EUP_6nR1nKYghTXuObSW5O993urvvAE4U85UIwtjjqA4eld3Mk1kkTLN70JUhZ2nFMzti43FvOuWTtS5-W-1epySrngbD0jQvT-_S7LRpfAtCDHtM6GNzed7qFWxRjGRMUdfV9a_6LqYuW4lOk6E-xNS1zTx_xmPX1ODNJylS63kGe___zm9h16FOclapyT5s6HkL9hwCJc6-ixbsrNETvgM9EEVJJsvFwyzH3V-XtjysJN_t1OmCIN4lY9TafIHiJn1Tv_5AfuAdlLvmTrviZpFXtNgzRYY5Xl_EhLwNce0B_Bxc3PS_eW4sg6fQXktPx90sDRGpMaZjTVWUqjT0BYu45Ex0ZRCbJLH2hZRRJNPIDFWnnLIsFDo1Q84OYXO-mOv3QALW4ywTQSooo0JIRGvKTCEV3I8EFXEbgloiiXKc5WZ0xm3SsC2bv5r4oWU59XmyasPnP3vuKsaOF1d3akEnznqLBCEPOvYefkYbvtSCbR7__bQP_7b8GF5PzgfJaDi-PII3oVENWyjTgU2Ugf4I2-q-nBXLT1apfwNPtvUy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Proximal+Gradient+Methods+for+Nonsmooth+Convex+Optimization+for+Tomographic+Image+Reconstruction&rft.jtitle=Sensing+and+imaging&rft.au=Helou%2C+Elias+S&rft.au=Zibetti+Marcelo+V+W&rft.au=Herman%2C+Gabor+T&rft.date=2020-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1557-2064&rft.eissn=1557-2072&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1007%2Fs11220-020-00309-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-2064&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-2064&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-2064&client=summon