FhVLAD: Fine-grained quantization and encoding high-order descriptor statistics for scalable image retrieval

We are interested in the encoding of local descriptors of an image ( e.g. SIFT) to design a compact representation vector and thereby address scalable image retrieval. We revisit the implicit design choices in the popular vector of locally aggregated descriptors (VLAD), which aggregates the residual...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 80; číslo 28-29; s. 35495 - 35520
Hlavní autoři: Bhowmick, Alexy, Saharia, Sarat, Hazarika, Shyamanta M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2021
Springer Nature B.V
Témata:
ISSN:1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We are interested in the encoding of local descriptors of an image ( e.g. SIFT) to design a compact representation vector and thereby address scalable image retrieval. We revisit the implicit design choices in the popular vector of locally aggregated descriptors (VLAD), which aggregates the residuals of descriptors to the codewords. VLAD’s use of a coarse codebook and first-order descriptor statistics in residual computation results in less discriminative residuals. To address this problem, we propose a division of codebook feature space using a novel fine-grained quantization strategy. After quantization, we embed the resulting residuals with high-order statistics of descriptor distribution. Experiments on three challenging image retrieval datasets (INRIA Holidays, UKBench, Oxford 5k) confirm the improved discriminative power of our novel encoding method called FhVLAD. We observe superior accuracy to baseline and competitive performance to state-of-the-art techniques with a limited increase in dimension.
AbstractList We are interested in the encoding of local descriptors of an image (e.g. SIFT) to design a compact representation vector and thereby address scalable image retrieval. We revisit the implicit design choices in the popular vector of locally aggregated descriptors (VLAD), which aggregates the residuals of descriptors to the codewords. VLAD’s use of a coarse codebook and first-order descriptor statistics in residual computation results in less discriminative residuals. To address this problem, we propose a division of codebook feature space using a novel fine-grained quantization strategy. After quantization, we embed the resulting residuals with high-order statistics of descriptor distribution. Experiments on three challenging image retrieval datasets (INRIA Holidays, UKBench, Oxford 5k) confirm the improved discriminative power of our novel encoding method called FhVLAD. We observe superior accuracy to baseline and competitive performance to state-of-the-art techniques with a limited increase in dimension.
We are interested in the encoding of local descriptors of an image ( e.g. SIFT) to design a compact representation vector and thereby address scalable image retrieval. We revisit the implicit design choices in the popular vector of locally aggregated descriptors (VLAD), which aggregates the residuals of descriptors to the codewords. VLAD’s use of a coarse codebook and first-order descriptor statistics in residual computation results in less discriminative residuals. To address this problem, we propose a division of codebook feature space using a novel fine-grained quantization strategy. After quantization, we embed the resulting residuals with high-order statistics of descriptor distribution. Experiments on three challenging image retrieval datasets (INRIA Holidays, UKBench, Oxford 5k) confirm the improved discriminative power of our novel encoding method called FhVLAD. We observe superior accuracy to baseline and competitive performance to state-of-the-art techniques with a limited increase in dimension.
Author Hazarika, Shyamanta M.
Saharia, Sarat
Bhowmick, Alexy
Author_xml – sequence: 1
  givenname: Alexy
  orcidid: 0000-0003-2334-5856
  surname: Bhowmick
  fullname: Bhowmick, Alexy
  email: alexy.bhowmick@gmail.com
  organization: Department of Computer Science and Engineering, Assam Don Bosco University, Department of Computer Science and Engineering, Tezpur University
– sequence: 2
  givenname: Sarat
  surname: Saharia
  fullname: Saharia, Sarat
  organization: Department of Computer Science and Engineering, Tezpur University
– sequence: 3
  givenname: Shyamanta M.
  surname: Hazarika
  fullname: Hazarika, Shyamanta M.
  organization: Biomimetic Robotics and Artificial Intelligence Lab, Department of Mechanical Engineering, Indian Institute of Technology
BookMark eNp9kE1LAzEQhoMoWD_-gKeA5-gk2d10vZVqVSh4Ua8hm2S3KWu2TVJBf73RFQQPPc1MeJ_M8JygQz94i9AFhSsKIK4jpVAwAgxIbmpKxAGa0FJwIgSjh7nnUyCiBHqMTmJcA9CqZMUE9YvV63J2e4MXzlvSBZWLwdud8sl9quQGj5U32Ho9GOc7vHLdigzB2ICNjTq4TRoCjilHY3I64vZ71KpXTW-xe1OdxcGm4Oy76s_QUav6aM9_6yl6Wdw9zx_I8un-cT5bEs1pnYgtp4VmpqG1rXnVtsBNrRko3YIRjSpY0_C2Ncpww3nJy4bl2ZaiqhWFJr-cosvx300Ytjsbk1wPu-DzSskqKKoKSmA5xcaUDkOMwbZyE_LB4UNSkN9W5WhVZqvyx6oUGZr-g7RLP55SdtfvR_mIxrzHdzb8XbWH-gIHK4-p
CitedBy_id crossref_primary_10_1007_s11042_025_21097_2
crossref_primary_10_1007_s13735_021_00215_4
Cites_doi 10.1023/B:VISI.0000029664.99615.94
10.1109/ICCV.2003.1238663
10.1145/2502081.2502171
10.1007/978-3-319-10590-1_38
10.1109/CVPR.2010.5540039
10.1109/MCSE.2018.108164530
10.1007/s11042-015-2524-6
10.3169/mta.4.251
10.1109/ICIP.2016.7532906
10.1109/CVPR.2016.175
10.1016/j.neucom.2017.11.022
10.1007/s11042-019-07771-2
10.1111/coin.12202
10.1109/CVPRW.2015.7301272
10.1080/00031305.1988.10475539
10.1186/s13640-018-0247-0
10.3390/e18080311
10.1007/s11263-009-0285-2
10.1109/TPAMI.2011.235
10.1109/ICCV.2015.19
10.1109/CVPR.2007.383266
10.1109/CVPR.2013.207
10.1007/s11042-015-2819-7
10.1109/CVPR.2008.4587635
10.1023/B:VISI.0000027790.02288.f2
10.1109/TIP.2017.2688133
10.1007/978-3-642-33709-3_55
10.1109/ICIP.2015.7351684
10.1109/TCSVT.2015.2409693
10.1109/CVPR.2014.417
10.1016/j.neucom.2015.08.076
10.1007/978-3-319-10578-9_43
10.1007/978-3-642-15561-1_11
10.1109/VCIP.2014.7051576
10.1007/11744023_32
10.1109/ICCV.2017.374
10.1109/CVPR.2009.5206757
10.1109/CVPR.2007.383172
10.1109/CVPRW.2014.131
10.1109/CVPR.2006.264
10.1109/TPAMI.2013.237
10.1109/ICIP.2014.7025610
10.1109/TPAMI.2017.2711011
10.1109/CVPR.2010.5540009
10.1109/CVPR.2012.6248018
10.1007/978-3-642-15555-0_11
10.1109/CVPR.2006.68
10.1007/978-3-030-34869-4_61
10.1109/CVPR.2010.5540018
10.1007/978-3-319-10584-0_26
10.1109/TPAMI.2016.2613873
10.1016/j.neucom.2016.12.002
10.5244/C.27.99
10.1007/978-3-540-88682-2_24
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-020-10491-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Statistics
EISSN 1573-7721
EndPage 35520
ExternalDocumentID 10_1007_s11042_020_10491_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-e584c2db19e936ff03d9c20acf0d7ba42bb3ffdad3d33535b2b3fe5769a10b353
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613993900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Wed Nov 05 00:47:25 EST 2025
Tue Nov 18 22:24:17 EST 2025
Sat Nov 29 06:20:09 EST 2025
Fri Feb 21 02:47:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28-29
Keywords VLAD
Fine-grained
Residual
High-order
Image retrieval
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e584c2db19e936ff03d9c20acf0d7ba42bb3ffdad3d33535b2b3fe5769a10b353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2334-5856
PQID 2604660502
PQPubID 54626
PageCount 26
ParticipantIDs proquest_journals_2604660502
crossref_primary_10_1007_s11042_020_10491_7
crossref_citationtrail_10_1007_s11042_020_10491_7
springer_journals_10_1007_s11042_020_10491_7
PublicationCentury 2000
PublicationDate 20211100
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Bhowmick A, Saharia S, Hazarika SM (2019) Encoding high-Order statistics in VLAD for scalable image retrieval. In: Deka B, Maji P, Mitra S, Bhattacharyya DK, Bora PK, Pal SK (eds) Pattern recognition and machine intelligence, lecture notes in computer science. Springer International Publishing, Cham, pp 559–566
Eggert C, Romberg S, Lienhart R (2014) Improving VLAD: Hierarchical coding and a refined local coordinate system. In: 2014 IEEE international conference on image processing (ICIP), pp 3018–3022
MironicăIDuţăICIonescuBSebeNA modified vector of locally aggregated descriptors approach for fast video classificationMultimedia Tools and Applications201675159045907210.1007/s11042-015-2819-7
WeiXSLuoJHWuJZhouZHSelective convolutional descriptor aggregation for fine-Grained image retrievalIEEE Trans Image Process201726628682881364867610.1109/TIP.2017.2688133
Ng JYH, Yang F, Davis LS (2015) Exploiting local features from deep networks for image retrieval. In: 2015 IEEE Conference on computer vision and pattern recognition workshops (CVPRW). IEEE, Boston, pp 53–61
Zhao WL, Gravier G, Jégou H (2013) Oriented pooling for dense and non-dense rotation-invariant features. In: Burghardt T, Damen D, Mayol-Cuevas WW, Mirmehdi M (eds) British Machine Vision Conference, BMVC 2013, Bristol, UK, September 9-13, 2013, BMVA Press
Perronnin F, Dance C (2007) Fisher kernels on visual vocabularies for image categorization. In: 2007 IEEE conference on computer vision and pattern recognition, pp 1–8
Liu L, Wang L, Liu X (2011) In Defense of Soft-assignment Coding. In: Proceedings of the 2011 international conference on computer vision, ICCV ’11. IEEE Computer Society, Washington, pp 2486–2493
GaoWZhuYZhangWZhangKGaoHA hierarchical recurrent approach to predict scene graphs from a visual-attention-oriented perspectiveComput Intell2019353496516399649510.1111/coin.12202
MikolajczykKSchmidCScale & affine invariant interest point detectorsInt J Comput Vision2004601638610.1023/B:VISI.0000027790.02288.f2
Wang Y, Duan LY, Lin J, Wang Z, Huang T (2015) Hierarchical multi-VLAD for image retrieval. In: 2015 IEEE international conference on image processing (ICIP), pp 4629–4633
Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2008) Lost in quantization: Improving particular object retrieval in large scale image databases. In: 2008 IEEE conference on computer vision and pattern recognition, pp 1–8
ZhouQWangCLiuPLiQWangYChenSDistribution entropy boosted VLAD for image retrievalEntropy201618831110.3390/e18080311
BalandaKPMacGillivrayHLKurtosis: a critical reviewThe American Statistician1988422111119
Gong Y, Wang L, Guo R, Lazebnik S (2014) Multi-scale orderless pooling of deep convolutional activation features. In: Fleet DJ, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision - ECCV 2014 - 13th european conference, zurich, switzerland, september 6-12, 2014, proceedings, Part VII, Springer, Lecture Notes in Computer Science, vol 8695, pp 392–407
Babenko A, Lempitsky V (2015) Aggregating local deep features for image retrieval. In: Proceedings of the 2015 IEEE international conference on computer vision (ICCV), IEEE Computer Society, USA, ICCV ’15, pp 1269–1277
Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the 2014 IEEE conference on computer vision and pattern recognition workshops, IEEE Computer Society, USA, CVPRW ’14, pp 512–519
LiuPMiaoZGuoHWangYAiNAdding spatial distribution clue to aggregated vector in image retrievalEURASIP J Image Video Process201820181910.1186/s13640-018-0247-0
Noh H, Araujo A, Sim J, Weyand T, Han B (2017) Large-Scale image retrieval with attentive deep local features. In: IEEE International conference on computer vision, ICCV 2017, venice, italy, October 22-29, 2017, pp 3476–3485
YuWYangKYaoHSunXXuPExploiting the complementary strengths of multi-layer CNN features for image retrievalNeurocomputing201723723524110.1016/j.neucom.2016.12.002
Perronnin F, Liu Y, Sánchez J, Poirier H (2010) Large-scale image retrieval with compressed Fisher vectors. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 3384–3391
Sivic J, Zisserman A (2003) Video Google: a text retrieval approach to object matching in videos. In: Proceedings Ninth IEEE international conference on computer vision, vol 2, pp 1470–1477
Bay H, Tuytelaars T, Gool LV (2006) SURF: speeded up robust features. In: Computer vision – ECCV 2006, Lecture Notes in Computer Science. springer, Berlin, pp 404–417
Razavian AS, Sullivan J, Carlsson S, Maki A (2016) Visual instance retrieval with deep convolutional networks. arXiv:14126574 [cs]
Delhumeau J, Gosselin PH, Jégou H, Pérez P (2013) Revisiting the VLAD image representation, ACM, New York
LiQPengQYanCMultiple VLAD encoding of CNNs for image classificationComput Sci Eng2018202526310.1109/MCSE.2018.108164530
Peng X, Wang L, Qiao Y, Peng Q (2014) Boosting VLAD with supervised dictionary learning and high-Order statistics. In: Computer vision – ECCV 2014, Lecture Notes in Computer Science. Springer, Cham, pp 660–674
BishopCPattern recognition and machine learning information science and statistics2006New YorkSpringer1107.68072
Jegou H, Douze M, Schmid C, Pérez P (2010) Aggregating local descriptors into a compact image representation. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 3304–3311
LongXLuHPengYWangXFengSImage classification based on improved VLADMultimedia Tools and Applications201675105533555510.1007/s11042-015-2524-6
JegouHDouzeMSchmidCImproving bag-of-features for large scale image searchInt J Comput Vis201087331633610.1007/s11263-009-0285-2
Arandjelović R, Zisserman A (2012) Three things everyone should know to improve object retrieval. In: 2012 IEEE conference on computer vision and pattern recognition, pp 2911–2918
LiuZHouqiangLWengangZTingRQiTMaking residual vector distribution uniform for distinctive image representationIEEE Trans Circ Syst Video Technol201626237538410.1109/TCSVT.2015.2409693
Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and fast spatial matching. In: 2007 IEEE conference on computer vision and pattern recognition, pp 1–8
Arandjelovic R, Zisserman A (2013) All About VLAD. In: 2013 IEEE conference on computer vision and pattern recognition, pp 1578–1585
Mairal J, Koniusz P, Harchaoui Z, Schmid C (2014) Convolutional kernel networks. In: Proceedings of the 27th international conference on neural information processing systems, NIPS’14, vol 2. MIT Press, Cambridge, pp 2627–2635
LoweDGDistinctive image features from scale-Invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94
Sattler T, Havlena M, Schindler K, Pollefeys M (2016) Large-scale location recognition and the geometric burstiness problem. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 1582–1590 . https://doi.org/10.1109/CVPR.2016.175
Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained Linear Coding for image classification. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 3360–3367
Zhou X, Yu K, Zhang T, Huang TS (2010) Image classification using super-Vector coding of local image descriptors. In: Computer vision – ECCV 2010, Lecture Notes in Computer Science. Springer, Berlin, pp 141–154
Paulin M, Douze M, Harchaoui Z, Mairal J, Perronin F, Schmid C (2015) Local convolutional features with unsupervised training for image retrieval. In: 2015 IEEE international conference on computer vision (ICCV), pp 91–99
Perronnin F, Sánchez J, Mensink T (2010) Improving the fisher kernel for large-scale image classification. In: Proceedings of the 11th European conference on computer vision: Part IV, ECCV’10. Springer, Berlin, pp 143–156
Tolias G, Sicre R, Jégou H (2016) Particular object retrieval with integral max-pooling of CNN activations. In: 4th international conference on learning representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings
Zhou R, Yuan Q, Gu X, Zhang D (2014) Spatial pyramid VLAD. In: 2014 IEEE visual communications and image processing conference, pp 342–345
Jegou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large scale image search. In: Proceedings of the 10th European conference on computer vision: Part I, Springer, Berlin, Heidelberg, ECCV ’08, pp 304–317
ShenXLinZBrandtJWuYSpatially-Constrained similarity measurefor large-Scale object retrievalIEEE Trans Pattern Anal Mach Intell20143661229124110.1109/TPAMI.2013.237
Jegou H, Chum O (2012) Negative evidences and co-occurences in image retrieval: the benefit of PCA and whitening. In: Computer vision – ECCV 2012, Lecture Notes in Computer Science. Springer, Berlin, pp 774–787
JegouHPerronninFDouzeMSánchezJPérezPSchmidCAggregating local image descriptors into compact codesIEEE Trans Pattern Anal Mach Intell20123491704171610.1109/TPAMI.2011.235
LiuZWangSTianQFine-residual VLAD for Image RetrievalNeurocomput2016173P31183119110.1016/j.neucom.2015.08.076
ArandjelovićRGronatPToriiAPajdlaTSivicJNetVLAD: CNN architecture for weakly supervised place recognitionIEEE Trans Pattern Anal Mach Intell20184061437145110.1109/TPAMI.2017.2711011conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence
Jegou H, Zisserman A (2014) Triangulation embedding and democratic aggregation for image search. In: Proc IEEE Conf computer vision and patter recognition, pp 3310–3317
Babenko A, Slesarev A, Chigorin A, Lempitsky VS (2014) Neural codes for image retrieval. In: Computer vision - ECCV 2014 - 13th european conference, zurich, Switzerland, September 6-12, 2014, Proceedings Part I, pp 584–599
Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: 2006 IEEE Computer society conference on computer vision and pattern recognition (CVPR’06), vol 2, pp 2161–2168
TzelepiMTefasADeep convolutional learni
W Yu (10491_CR55) 2017; 237
P Liu (10491_CR25) 2018; 2018
10491_CR42
10491_CR41
I Mironică (10491_CR32) 2016; 75
10491_CR40
10491_CR1
X Shen (10491_CR46) 2014; 36
Z Wu (10491_CR53) 2019; 78
10491_CR3
10491_CR4
10491_CR5
M Tzelepi (10491_CR49) 2018; 275
10491_CR7
Z Liu (10491_CR27) 2016; 173
10491_CR8
DG Lowe (10491_CR29) 2004; 60
SS Husain (10491_CR15) 2016; 39
10491_CR35
10491_CR34
10491_CR33
10491_CR39
10491_CR38
10491_CR37
10491_CR36
Z Liu (10491_CR26) 2016; 26
10491_CR51
10491_CR50
H Jegou (10491_CR21) 2012; 34
10491_CR45
10491_CR44
10491_CR43
10491_CR48
10491_CR47
10491_CR60
10491_CR20
Q Li (10491_CR23) 2018; 20
XS Wei (10491_CR52) 2017; 26
10491_CR18
10491_CR57
10491_CR12
10491_CR56
10491_CR11
10491_CR10
10491_CR54
10491_CR17
10491_CR16
10491_CR59
10491_CR14
R Arandjelović (10491_CR2) 2018; 40
Q Zhou (10491_CR58) 2016; 18
H Jegou (10491_CR19) 2010; 87
K Mikolajczyk (10491_CR31) 2004; 60
10491_CR30
W Gao (10491_CR13) 2019; 35
KP Balanda (10491_CR6) 1988; 42
10491_CR24
10491_CR22
C Bishop (10491_CR9) 2006
X Long (10491_CR28) 2016; 75
References_xml – reference: Zheng J, Chen JC, Bodla N, Patel VM, Chellappa R (2016) VLAD encoded Deep Convolutional features for unconstrained face verification. In: 2016 23rd international conference on pattern recognition (ICPR), pp 4101–4106
– reference: Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and fast spatial matching. In: 2007 IEEE conference on computer vision and pattern recognition, pp 1–8
– reference: Gong Y, Wang L, Guo R, Lazebnik S (2014) Multi-scale orderless pooling of deep convolutional activation features. In: Fleet DJ, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision - ECCV 2014 - 13th european conference, zurich, switzerland, september 6-12, 2014, proceedings, Part VII, Springer, Lecture Notes in Computer Science, vol 8695, pp 392–407
– reference: JegouHDouzeMSchmidCImproving bag-of-features for large scale image searchInt J Comput Vis201087331633610.1007/s11263-009-0285-2
– reference: BalandaKPMacGillivrayHLKurtosis: a critical reviewThe American Statistician1988422111119
– reference: Zhou R, Yuan Q, Gu X, Zhang D (2014) Spatial pyramid VLAD. In: 2014 IEEE visual communications and image processing conference, pp 342–345
– reference: Eggert C, Romberg S, Lienhart R (2014) Improving VLAD: Hierarchical coding and a refined local coordinate system. In: 2014 IEEE international conference on image processing (ICIP), pp 3018–3022
– reference: Noh H, Araujo A, Sim J, Weyand T, Han B (2017) Large-Scale image retrieval with attentive deep local features. In: IEEE International conference on computer vision, ICCV 2017, venice, italy, October 22-29, 2017, pp 3476–3485
– reference: Perronnin F, Liu Y, Sánchez J, Poirier H (2010) Large-scale image retrieval with compressed Fisher vectors. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 3384–3391
– reference: MironicăIDuţăICIonescuBSebeNA modified vector of locally aggregated descriptors approach for fast video classificationMultimedia Tools and Applications201675159045907210.1007/s11042-015-2819-7
– reference: LiuZHouqiangLWengangZTingRQiTMaking residual vector distribution uniform for distinctive image representationIEEE Trans Circ Syst Video Technol201626237538410.1109/TCSVT.2015.2409693
– reference: Perronnin F, Dance C (2007) Fisher kernels on visual vocabularies for image categorization. In: 2007 IEEE conference on computer vision and pattern recognition, pp 1–8
– reference: Bhowmick A, Saharia S, Hazarika SM (2019) Encoding high-Order statistics in VLAD for scalable image retrieval. In: Deka B, Maji P, Mitra S, Bhattacharyya DK, Bora PK, Pal SK (eds) Pattern recognition and machine intelligence, lecture notes in computer science. Springer International Publishing, Cham, pp 559–566
– reference: Babenko A, Slesarev A, Chigorin A, Lempitsky VS (2014) Neural codes for image retrieval. In: Computer vision - ECCV 2014 - 13th european conference, zurich, Switzerland, September 6-12, 2014, Proceedings Part I, pp 584–599
– reference: Zhou X, Yu K, Zhang T, Huang TS (2010) Image classification using super-Vector coding of local image descriptors. In: Computer vision – ECCV 2010, Lecture Notes in Computer Science. Springer, Berlin, pp 141–154
– reference: Jegou H, Chum O (2012) Negative evidences and co-occurences in image retrieval: the benefit of PCA and whitening. In: Computer vision – ECCV 2012, Lecture Notes in Computer Science. Springer, Berlin, pp 774–787
– reference: WuZYuJA multi-level descriptor using ultra-deep feature for image retrievalMultimedia Tools and Applications20197818256552567210.1007/s11042-019-07771-2
– reference: Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. In: 2009 IEEE conference on computer vision and pattern recognition, pp 1794–1801
– reference: LiuZWangSTianQFine-residual VLAD for Image RetrievalNeurocomput2016173P31183119110.1016/j.neucom.2015.08.076
– reference: Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2008) Lost in quantization: Improving particular object retrieval in large scale image databases. In: 2008 IEEE conference on computer vision and pattern recognition, pp 1–8
– reference: BishopCPattern recognition and machine learning information science and statistics2006New YorkSpringer1107.68072
– reference: Mairal J, Koniusz P, Harchaoui Z, Schmid C (2014) Convolutional kernel networks. In: Proceedings of the 27th international conference on neural information processing systems, NIPS’14, vol 2. MIT Press, Cambridge, pp 2627–2635
– reference: TzelepiMTefasADeep convolutional learning for Content Based Image RetrievalNeurocomputing20182752467247810.1016/j.neucom.2017.11.022
– reference: LongXLuHPengYWangXFengSImage classification based on improved VLADMultimedia Tools and Applications201675105533555510.1007/s11042-015-2524-6
– reference: Paulin M, Douze M, Harchaoui Z, Mairal J, Perronin F, Schmid C (2015) Local convolutional features with unsupervised training for image retrieval. In: 2015 IEEE international conference on computer vision (ICCV), pp 91–99
– reference: Wang Y, Duan LY, Lin J, Wang Z, Huang T (2015) Hierarchical multi-VLAD for image retrieval. In: 2015 IEEE international conference on image processing (ICIP), pp 4629–4633
– reference: Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 2006 IEEE computer society conference on computer vision and pattern recognition - Volume 2, IEEE Computer Society, USA, CVPR ’06, pp 2169–2178
– reference: Perronnin F, Sánchez J, Mensink T (2010) Improving the fisher kernel for large-scale image classification. In: Proceedings of the 11th European conference on computer vision: Part IV, ECCV’10. Springer, Berlin, pp 143–156
– reference: YuWYangKYaoHSunXXuPExploiting the complementary strengths of multi-layer CNN features for image retrievalNeurocomputing201723723524110.1016/j.neucom.2016.12.002
– reference: Peng X, Wang L, Qiao Y, Peng Q (2014) Boosting VLAD with supervised dictionary learning and high-Order statistics. In: Computer vision – ECCV 2014, Lecture Notes in Computer Science. Springer, Cham, pp 660–674
– reference: Liu L, Wang L, Liu X (2011) In Defense of Soft-assignment Coding. In: Proceedings of the 2011 international conference on computer vision, ICCV ’11. IEEE Computer Society, Washington, pp 2486–2493
– reference: Tolias G, Sicre R, Jégou H (2016) Particular object retrieval with integral max-pooling of CNN activations. In: 4th international conference on learning representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings
– reference: WeiXSLuoJHWuJZhouZHSelective convolutional descriptor aggregation for fine-Grained image retrievalIEEE Trans Image Process201726628682881364867610.1109/TIP.2017.2688133
– reference: Jegou H, Douze M, Schmid C, Pérez P (2010) Aggregating local descriptors into a compact image representation. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 3304–3311
– reference: GaoWZhuYZhangWZhangKGaoHA hierarchical recurrent approach to predict scene graphs from a visual-attention-oriented perspectiveComput Intell2019353496516399649510.1111/coin.12202
– reference: Arandjelovic R, Zisserman A (2013) All About VLAD. In: 2013 IEEE conference on computer vision and pattern recognition, pp 1578–1585
– reference: ShenXLinZBrandtJWuYSpatially-Constrained similarity measurefor large-Scale object retrievalIEEE Trans Pattern Anal Mach Intell20143661229124110.1109/TPAMI.2013.237
– reference: JegouHPerronninFDouzeMSánchezJPérezPSchmidCAggregating local image descriptors into compact codesIEEE Trans Pattern Anal Mach Intell20123491704171610.1109/TPAMI.2011.235
– reference: LoweDGDistinctive image features from scale-Invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94
– reference: Sattler T, Havlena M, Schindler K, Pollefeys M (2016) Large-scale location recognition and the geometric burstiness problem. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 1582–1590 . https://doi.org/10.1109/CVPR.2016.175
– reference: Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: 2006 IEEE Computer society conference on computer vision and pattern recognition (CVPR’06), vol 2, pp 2161–2168
– reference: Razavian AS, Sullivan J, Carlsson S, Maki A (2016) Visual instance retrieval with deep convolutional networks. arXiv:14126574 [cs]
– reference: LiQPengQYanCMultiple VLAD encoding of CNNs for image classificationComput Sci Eng2018202526310.1109/MCSE.2018.108164530
– reference: Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the 2014 IEEE conference on computer vision and pattern recognition workshops, IEEE Computer Society, USA, CVPRW ’14, pp 512–519
– reference: Delhumeau J, Gosselin PH, Jégou H, Pérez P (2013) Revisiting the VLAD image representation, ACM, New York
– reference: MikolajczykKSchmidCScale & affine invariant interest point detectorsInt J Comput Vision2004601638610.1023/B:VISI.0000027790.02288.f2
– reference: Babenko A, Lempitsky V (2015) Aggregating local deep features for image retrieval. In: Proceedings of the 2015 IEEE international conference on computer vision (ICCV), IEEE Computer Society, USA, ICCV ’15, pp 1269–1277
– reference: Jegou H, Zisserman A (2014) Triangulation embedding and democratic aggregation for image search. In: Proc IEEE Conf computer vision and patter recognition, pp 3310–3317
– reference: LiuPMiaoZGuoHWangYAiNAdding spatial distribution clue to aggregated vector in image retrievalEURASIP J Image Video Process201820181910.1186/s13640-018-0247-0
– reference: Csurka G, Dance CR, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: In workshop on statistical learning in computer vision, ECCV, pp 1–22
– reference: Zhao WL, Gravier G, Jégou H (2013) Oriented pooling for dense and non-dense rotation-invariant features. In: Burghardt T, Damen D, Mayol-Cuevas WW, Mirmehdi M (eds) British Machine Vision Conference, BMVC 2013, Bristol, UK, September 9-13, 2013, BMVA Press
– reference: Sivic J, Zisserman A (2003) Video Google: a text retrieval approach to object matching in videos. In: Proceedings Ninth IEEE international conference on computer vision, vol 2, pp 1470–1477
– reference: ZhouQWangCLiuPLiQWangYChenSDistribution entropy boosted VLAD for image retrievalEntropy201618831110.3390/e18080311
– reference: Jegou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large scale image search. In: Proceedings of the 10th European conference on computer vision: Part I, Springer, Berlin, Heidelberg, ECCV ’08, pp 304–317
– reference: Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained Linear Coding for image classification. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 3360–3367
– reference: ArandjelovićRGronatPToriiAPajdlaTSivicJNetVLAD: CNN architecture for weakly supervised place recognitionIEEE Trans Pattern Anal Mach Intell20184061437145110.1109/TPAMI.2017.2711011conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Ng JYH, Yang F, Davis LS (2015) Exploiting local features from deep networks for image retrieval. In: 2015 IEEE Conference on computer vision and pattern recognition workshops (CVPRW). IEEE, Boston, pp 53–61
– reference: HusainSSBoberMImproving large-Scale image retrieval through robust aggregation of local descriptorsIEEE Trans Pattern Anal Mach Intell20163991783179610.1109/TPAMI.2016.2613873
– reference: Bay H, Tuytelaars T, Gool LV (2006) SURF: speeded up robust features. In: Computer vision – ECCV 2006, Lecture Notes in Computer Science. springer, Berlin, pp 404–417
– reference: Arandjelović R, Zisserman A (2012) Three things everyone should know to improve object retrieval. In: 2012 IEEE conference on computer vision and pattern recognition, pp 2911–2918
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 10491_CR29
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 10491_CR47
  doi: 10.1109/ICCV.2003.1238663
– ident: 10491_CR11
  doi: 10.1145/2502081.2502171
– ident: 10491_CR5
  doi: 10.1007/978-3-319-10590-1_38
– ident: 10491_CR20
  doi: 10.1109/CVPR.2010.5540039
– volume: 20
  start-page: 52
  issue: 2
  year: 2018
  ident: 10491_CR23
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2018.108164530
– volume: 75
  start-page: 5533
  issue: 10
  year: 2016
  ident: 10491_CR28
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-015-2524-6
– ident: 10491_CR44
  doi: 10.3169/mta.4.251
– ident: 10491_CR57
  doi: 10.1109/ICIP.2016.7532906
– ident: 10491_CR30
– ident: 10491_CR45
  doi: 10.1109/CVPR.2016.175
– volume: 275
  start-page: 2467
  year: 2018
  ident: 10491_CR49
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.022
– volume: 78
  start-page: 25655
  issue: 18
  year: 2019
  ident: 10491_CR53
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-019-07771-2
– ident: 10491_CR24
– volume: 35
  start-page: 496
  issue: 3
  year: 2019
  ident: 10491_CR13
  publication-title: Comput Intell
  doi: 10.1111/coin.12202
– ident: 10491_CR33
  doi: 10.1109/CVPRW.2015.7301272
– volume: 42
  start-page: 111
  issue: 2
  year: 1988
  ident: 10491_CR6
  publication-title: The American Statistician
  doi: 10.1080/00031305.1988.10475539
– volume: 2018
  start-page: 9
  issue: 1
  year: 2018
  ident: 10491_CR25
  publication-title: EURASIP J Image Video Process
  doi: 10.1186/s13640-018-0247-0
– volume: 18
  start-page: 311
  issue: 8
  year: 2016
  ident: 10491_CR58
  publication-title: Entropy
  doi: 10.3390/e18080311
– volume: 87
  start-page: 316
  issue: 3
  year: 2010
  ident: 10491_CR19
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-009-0285-2
– volume: 34
  start-page: 1704
  issue: 9
  year: 2012
  ident: 10491_CR21
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.235
– ident: 10491_CR36
  doi: 10.1109/ICCV.2015.19
– ident: 10491_CR48
– ident: 10491_CR38
  doi: 10.1109/CVPR.2007.383266
– ident: 10491_CR3
  doi: 10.1109/CVPR.2013.207
– volume: 75
  start-page: 9045
  issue: 15
  year: 2016
  ident: 10491_CR32
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-015-2819-7
– ident: 10491_CR42
  doi: 10.1109/CVPR.2008.4587635
– volume: 60
  start-page: 63
  issue: 1
  year: 2004
  ident: 10491_CR31
  publication-title: Int J Comput Vision
  doi: 10.1023/B:VISI.0000027790.02288.f2
– volume: 26
  start-page: 2868
  issue: 6
  year: 2017
  ident: 10491_CR52
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2688133
– ident: 10491_CR16
  doi: 10.1007/978-3-642-33709-3_55
– ident: 10491_CR51
  doi: 10.1109/ICIP.2015.7351684
– volume: 26
  start-page: 375
  issue: 2
  year: 2016
  ident: 10491_CR26
  publication-title: IEEE Trans Circ Syst Video Technol
  doi: 10.1109/TCSVT.2015.2409693
– ident: 10491_CR17
  doi: 10.1109/CVPR.2014.417
– volume: 173
  start-page: 1183
  issue: P3
  year: 2016
  ident: 10491_CR27
  publication-title: Neurocomput
  doi: 10.1016/j.neucom.2015.08.076
– ident: 10491_CR37
  doi: 10.1007/978-3-319-10578-9_43
– ident: 10491_CR40
  doi: 10.1007/978-3-642-15561-1_11
– ident: 10491_CR59
  doi: 10.1109/VCIP.2014.7051576
– ident: 10491_CR7
  doi: 10.1007/11744023_32
– ident: 10491_CR35
  doi: 10.1109/ICCV.2017.374
– ident: 10491_CR54
  doi: 10.1109/CVPR.2009.5206757
– ident: 10491_CR41
  doi: 10.1109/CVPR.2007.383172
– ident: 10491_CR43
  doi: 10.1109/CVPRW.2014.131
– ident: 10491_CR10
– ident: 10491_CR34
  doi: 10.1109/CVPR.2006.264
– volume-title: Pattern recognition and machine learning information science and statistics
  year: 2006
  ident: 10491_CR9
– volume: 36
  start-page: 1229
  issue: 6
  year: 2014
  ident: 10491_CR46
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.237
– ident: 10491_CR12
  doi: 10.1109/ICIP.2014.7025610
– volume: 40
  start-page: 1437
  issue: 6
  year: 2018
  ident: 10491_CR2
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2711011
– ident: 10491_CR4
– ident: 10491_CR39
  doi: 10.1109/CVPR.2010.5540009
– ident: 10491_CR1
  doi: 10.1109/CVPR.2012.6248018
– ident: 10491_CR60
  doi: 10.1007/978-3-642-15555-0_11
– ident: 10491_CR22
  doi: 10.1109/CVPR.2006.68
– ident: 10491_CR8
  doi: 10.1007/978-3-030-34869-4_61
– ident: 10491_CR50
  doi: 10.1109/CVPR.2010.5540018
– ident: 10491_CR14
  doi: 10.1007/978-3-319-10584-0_26
– volume: 39
  start-page: 1783
  issue: 9
  year: 2016
  ident: 10491_CR15
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2613873
– volume: 237
  start-page: 235
  year: 2017
  ident: 10491_CR55
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.002
– ident: 10491_CR56
  doi: 10.5244/C.27.99
– ident: 10491_CR18
  doi: 10.1007/978-3-540-88682-2_24
SSID ssj0016524
Score 2.2688658
Snippet We are interested in the encoding of local descriptors of an image ( e.g. SIFT) to design a compact representation vector and thereby address scalable image...
We are interested in the encoding of local descriptors of an image (e.g. SIFT) to design a compact representation vector and thereby address scalable image...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35495
SubjectTerms 1166: Advances of machine learning in data analytics and visual information processing
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Image management
Image retrieval
Measurement
Multimedia Information Systems
Special Purpose and Application-Based Systems
Statistics
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBRwFRXvLABhax0yQNC0JAhQRCDIDYIscPQIIWWsrv585xWkCChS2OHSvSd_adH_d9ALsmEZntOMeNdoa30edw1bGaa5VqY1XprPKU-ZfZ1VXn_j6_Dhtuw3Ctsp4T_URt-pr2yA8w7m6nGHtH8uj1jZNqFJ2uBgmNaZgRUgqy84uMj08R0iSI2nYijp5RhKSZKnVOUGIKLZ7wIRc8--6YJtHmjwNS73e6i__94yVYCBEnO65MZBmmbK8Ji7WaAwuDuwnzX6gJmzBHUWhF4rwCz93Hu8vj00PWxQb8gVQlrGFvI0QlpHEy1TOMODHJFTLiQOae1JMZW81L_QEbjntkjopoHZS3xZ5ecE5jAy_thXa_Crfds5uTcx5kGrjG8fvOLcYwWppS5DaPU-ei2ORaRkq7yGSlasuyjJ0zysQmjpM4KSWWLa5zciWiEt-sQaPX79l1YBGWdOLriCowUbpM4yxXrm1ItF22QNQYFTpwmJOUxnMxYV8mXAvEtfC4FlkL9sbfvFYMHn-23qrBLMJoHhYTJFuwX5vDpPr33jb-7m0T5iRdkfGpjVvQeB-M7DbM6g9EY7DjbfkTBeH6ag
  priority: 102
  providerName: ProQuest
Title FhVLAD: Fine-grained quantization and encoding high-order descriptor statistics for scalable image retrieval
URI https://link.springer.com/article/10.1007/s11042-020-10491-7
https://www.proquest.com/docview/2604660502
Volume 80
WOSCitedRecordID wos000613993900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTgMxDLVo4QAHdkRZqhy4QaRZOhu3UlohUUrFDpdRJgsglRa68P04aYYCAiS4ROMkE0V2HMdK_AywIwI3krFSVHAlaAVtDmWx5JSzkAvJMiWZgcxvRq1WfHOTtG1Q2CB_7Z5fSZqdehLs5upQEu3u4Efi0qgA02juYq2OZ-dX73cHYWBT2cYORXvo2lCZ78f4bI4mZ8wv16LG2jQW_jfPRZi3p0tSHS-HJZiS3WVYyDM3EKvIyzD3AYZwBTqNh6tm9XCfNLCO3uukEVKQlxEy3UZpEtYVRENeaktHNMQxNZidRMjxttPrEx2aNEZ9JkqTKHwdlkUen3DLIn2TuQuX9SpcNuoXtSNqszBQjuo5pBKPKNwTmZvIxA-VcnyRcM9hXDkiyljFyzJfKcGEL3w_8IPMQ1qiG5Mw18mwZg2K3V5XrgNxkOKBadNIgAHjWehHCVMVoXOyeyVwc2Gk3EKU60wZnXQCrqyZmyJzU8PcNCrB7vs_z2OAjl97b-UyTq2yDlJ06SohunUOTmAvl-mk-efRNv7WfRNmPf0ixkQybkFx2B_JbZjhryidfhkK0fVtGaYP6q32GVLHEcXyxKnp0jvFsh3clc1SfwO7f_Kp
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL2KClLLgkCgIlCKF7CiFjOeVwYJoSglStQQdRGq7AaPH22lkKRJC-Kn-Ebu9cwkbSWyy4LdWOPxwj734bHvOQBvdeQnpmUt18pqHmLM4bJlFFcyVtrI3BrpKPMHyXDYGo_T0xr8qWph6Fpl5ROdo9YzRf_IP2DeHcaYe3vi8_yKk2oUna5WEhoFLE7M71-4ZVt-6h_j-r4Tovtl1OnxUlWAK4TbNTcYcpXQuZ-aNIit9QKdKuFJZT2d5DIUeR5Yq6UOdBBEQZQLbBtMy1Ppe7lTiUCX_yAM0RzoqqDXWZ1axFEpotvyOEZivyzSKUr1fCqEoc0aPqQ-T-4GwnV2e-9A1sW5bv1_m6En8LjMqFm7MIGnUDPTBtQrtQpWOq8GPLpFvdiAPcqyC5LqZzDpXpwN2scfWRc78HNSzTCaXd0g6soyVSanmhHnJ4V6RhzP3JGWMm0KvztbsOVqRGapieinujR2-QN9Nls46TK06-fwbSvTsQ8709nUvADmYUtF7h1RIUZS5XGQpNKGmkTpRRP8ChOZKjnaSSpkkq3ZpQlHGeIoczjKkia8X30zLxhKNvY-qMCTld5qma2R04SjCn7r1_8e7eXm0d7Abm_0dZAN-sOTV7An6DqQK-M8gJ3rxY15DQ_VT1yZxaGzIwbftw3Lv_EvWdE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL1CgBAseEypGJ5ewKq1SJxJMqlUIcQQgWY0YtFW7ILjR1sJZmAGWvFr_bre6zgzUKnsWLCLFccL-9yHY99zAPZ1HKambS3XymrewpjDZdsormSitJGlNdJR5vfSfr99eZldzMCfuhaGrlXWPtE5aj1U9I_8EPPuVoK5dyAOrb8WcdHJj27vOClI0UlrLadRQaRrHn_j9m38-byDa30gRH765eSMe4UBrhB699xg-FVCl2FmsiixNoh0pkQglQ10WsqWKMvIWi11pKMojuJSYNtgip7JMCidYgS6_zmMwjHZWDflkxOMJPaCuu2AY1QOfcFOVbYXUlEMbdzwIQt5-jwoTjPdfw5nXczLV97ybK3Css-02XFlGmswYwYNWKlVLJh3ag1YekLJ2IBFyr4r8up3cJ3_-NY77nxiOXbg30lNw2h294Bo9OWrTA40Iy5QSgEYcT9zR2bKtKn88XDExpMRmaUmWgXVq7GfN-jL2chJmqG9r8PXV5mO9zA7GA7MBrAAWyp274giMZaqTKI0k7alSaxeNCGs8VEoz91OEiLXxZR1mjBVIKYKh6kibcKHyTe3FXPJi723ayAV3ouNiymKmvCxhuL09f9H23x5tD1YQDQWvfN-dwsWBd0SctWd2zB7P3owOzCvfuHCjHadSTG4em1U_gWuQGJ3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FhVLAD%3A+Fine-grained+quantization+and+encoding+high-order+descriptor+statistics+for+scalable+image+retrieval&rft.jtitle=Multimedia+tools+and+applications&rft.au=Bhowmick%2C+Alexy&rft.au=Saharia%2C+Sarat&rft.au=Hazarika%2C+Shyamanta+M.&rft.date=2021-11-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=28-29&rft.spage=35495&rft.epage=35520&rft_id=info:doi/10.1007%2Fs11042-020-10491-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_020_10491_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon