Multi-chromosomal CGP-evolved RNN for signal reconstruction
A multi-chromosomal structure for neuro-evolution of recurrent neural networks (RNNs) with Cartesian genetic programming (CGP) architecture is presented to develop a signal reconstruction model. The group behaviour of multi-chromosomes evolved together is explored in terms of computational and struc...
Gespeichert in:
| Veröffentlicht in: | Neural computing & applications Jg. 33; H. 20; S. 13265 - 13285 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer London
01.10.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A multi-chromosomal structure for neuro-evolution of recurrent neural networks (RNNs) with Cartesian genetic programming (CGP) architecture is presented to develop a signal reconstruction model. The group behaviour of multi-chromosomes evolved together is explored in terms of computational and structural complexity, and accurate reconstruction of the corrupted signal. Signal reconstruction modelling is done through prediction of missing samples, and a sliding window mechanism is utilized to recover long segments of missing samples in periodic and aperiodic corrupted signals. The proposed model is compared with the conventional single chromosome-based Cartesian Genetic Programming-evolved Recurrent Neural Network (CGPRNN) architecture as well as state-of-the-art machine learning algorithms, i.e. linear regression, random forest and long short-term memory deep learning neural network. Diverse network architectures of the proposed Multi-Chromosomal Cartesian Genetic Programming-evolved Recurrent Neural Network (MC-CGPRNN) are evolved to explore the robustness of algorithm in terms of optimization of hyper parameters, evolutionary speed and generalization ability. The proposed algorithm is trained and tested on speech signal with both periodic and aperiodic noise. The best trained network is also evaluated on standard music signals achieving remarkable results. Experimental results show that the proposed MC-CGPRNN algorithm achieved SNR of 25.23 dB for speech signal, 29.92 dB for guitar signal and 28.45 dB for flute signal in case of 50% missing samples showing best SNR improvement in comparison with its counterparts for time domain signal reconstruction. |
|---|---|
| AbstractList | A multi-chromosomal structure for neuro-evolution of recurrent neural networks (RNNs) with Cartesian genetic programming (CGP) architecture is presented to develop a signal reconstruction model. The group behaviour of multi-chromosomes evolved together is explored in terms of computational and structural complexity, and accurate reconstruction of the corrupted signal. Signal reconstruction modelling is done through prediction of missing samples, and a sliding window mechanism is utilized to recover long segments of missing samples in periodic and aperiodic corrupted signals. The proposed model is compared with the conventional single chromosome-based Cartesian Genetic Programming-evolved Recurrent Neural Network (CGPRNN) architecture as well as state-of-the-art machine learning algorithms, i.e. linear regression, random forest and long short-term memory deep learning neural network. Diverse network architectures of the proposed Multi-Chromosomal Cartesian Genetic Programming-evolved Recurrent Neural Network (MC-CGPRNN) are evolved to explore the robustness of algorithm in terms of optimization of hyper parameters, evolutionary speed and generalization ability. The proposed algorithm is trained and tested on speech signal with both periodic and aperiodic noise. The best trained network is also evaluated on standard music signals achieving remarkable results. Experimental results show that the proposed MC-CGPRNN algorithm achieved SNR of 25.23 dB for speech signal, 29.92 dB for guitar signal and 28.45 dB for flute signal in case of 50% missing samples showing best SNR improvement in comparison with its counterparts for time domain signal reconstruction. A multi-chromosomal structure for neuro-evolution of recurrent neural networks (RNNs) with Cartesian genetic programming (CGP) architecture is presented to develop a signal reconstruction model. The group behaviour of multi-chromosomes evolved together is explored in terms of computational and structural complexity, and accurate reconstruction of the corrupted signal. Signal reconstruction modelling is done through prediction of missing samples, and a sliding window mechanism is utilized to recover long segments of missing samples in periodic and aperiodic corrupted signals. The proposed model is compared with the conventional single chromosome-based Cartesian Genetic Programming-evolved Recurrent Neural Network (CGPRNN) architecture as well as state-of-the-art machine learning algorithms, i.e. linear regression, random forest and long short-term memory deep learning neural network. Diverse network architectures of the proposed Multi-Chromosomal Cartesian Genetic Programming-evolved Recurrent Neural Network (MC-CGPRNN) are evolved to explore the robustness of algorithm in terms of optimization of hyper parameters, evolutionary speed and generalization ability. The proposed algorithm is trained and tested on speech signal with both periodic and aperiodic noise. The best trained network is also evaluated on standard music signals achieving remarkable results. Experimental results show that the proposed MC-CGPRNN algorithm achieved SNR of 25.23 dB for speech signal, 29.92 dB for guitar signal and 28.45 dB for flute signal in case of 50% missing samples showing best SNR improvement in comparison with its counterparts for time domain signal reconstruction. |
| Author | Khan, Gul Muhammad Khan, Nadia Masood |
| Author_xml | – sequence: 1 givenname: Nadia Masood orcidid: 0000-0001-8647-8539 surname: Khan fullname: Khan, Nadia Masood email: nadiakhan@uetpeshawar.edu.pk organization: School of Engineering and Computing Sciences, Durham University, National Center of Artificial Intelligence (NCAI), Electrical Engineering Department, University of Engineering and Technology (UET) Peshawar – sequence: 2 givenname: Gul Muhammad surname: Khan fullname: Khan, Gul Muhammad email: gk502@uetpeshawar.edu.pk organization: National Center of Artificial Intelligence (NCAI), Electrical Engineering Department, University of Engineering and Technology (UET) Peshawar |
| BookMark | eNp9kE9LAzEUxINUsK1-AU8LnqMvfzeLJylahVpF9BzSJFu3bDc12Rb89u6yguChh-EdZn6PYSZo1ITGI3RJ4JoA5DcJQFCCoZcoBMP8BI0JZwwzEGqExlDwzpKcnaFJShsA4FKJMbp93tdthe1nDNuQwtbU2Wz-iv0h1AfvsrflMitDzFK1bjorehua1Ma9bavQnKPT0tTJX_zeKfp4uH-fPeLFy_xpdrfAlpGixZ47Z3NXlKWXQlHFrRUOGDcKnPRk5aWX0hS5EVYa6om1sDK0FFLSFVfOsSm6Gv7uYvja-9TqTdjHrk_SVChBaV4I0qXUkLIxpBR9qW3Vmr5nG01VawK6n0oPU2no1U-leYfSf-guVlsTv49DbIBSF27WPv61OkL9ANnSfbY |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2023_120586 crossref_primary_10_1109_ACCESS_2022_3154362 crossref_primary_10_3390_app142311153 |
| Cites_doi | 10.1109/TGRS.2011.2171691 10.1007/s10710-016-9268-6 10.1007/978-3-642-17310-3_2 10.1016/S0169-7439(97)00061-0 10.1145/3071178.3071229 10.1162/neco.1997.9.8.1735 10.1016/j.asoc.2018.09.013 10.1162/artl.2009.15.2.15202 10.1371/journal.pone.0198313 10.1016/j.oregeorev.2015.01.001 10.1207/s15516709cog1402_1 10.1109/TNN.2002.1021887 10.1007/978-3-540-46239-2_9 10.1109/ISDA.2010.5687197 10.1038/s42256-018-0006-z 10.1016/j.ejor.2017.05.026 10.1145/3321707.3321795 10.1109/TSMC.2016.2523927 10.1016/j.ieri.2014.09.083 10.1016/j.neucom.2009.11.030 10.1007/978-3-642-25832-9_5 10.1007/978-3-319-67997-6_10 10.1007/BF01305237 10.1002/j.1538-7305.1948.tb01338.x 10.1162/isal_a_00196 10.1145/2908812.2908941 10.1109/ICMLA.2017.0-100 10.1016/j.neucom.2015.04.032 10.1016/j.powtec.2019.10.065 10.1162/106365602320169811 10.1007/s00521-019-04158-0 10.1038/323533a0 10.1080/10426914.2019.1643476 10.1016/j.neucom.2018.06.050 10.1007/978-3-030-03493-1_62 10.1007/978-3-319-77553-1_1 10.1007/978-3-030-49186-4_18 10.1049/cp:19951094 10.1016/j.ces.2020.115585 10.1016/S0166-4115(97)80111-2 10.1088/0266-5611/13/6/015 10.1007/s10462-011-9270-6 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-021-05953-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 13285 |
| ExternalDocumentID | 10_1007_s00521_021_05953_4 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-e4ddc7d9ffe658284cc5d034a80d6e1be6e66a97a5c6a2e1cc0ba2f5662b48dd3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640857400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Tue Nov 04 23:03:37 EST 2025 Tue Nov 18 22:35:46 EST 2025 Sat Nov 29 02:59:20 EST 2025 Fri Feb 21 02:47:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | Neuro-evolution Signal reconstruction Recurrent neural network Linear Regression Machine learning Random Forest |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-e4ddc7d9ffe658284cc5d034a80d6e1be6e66a97a5c6a2e1cc0ba2f5662b48dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8647-8539 |
| PQID | 2585227951 |
| PQPubID | 2043988 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2585227951 crossref_citationtrail_10_1007_s00521_021_05953_4 crossref_primary_10_1007_s00521_021_05953_4 springer_journals_10_1007_s00521_021_05953_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20211000 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2021 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Khan NM, Khan GM, Matthews P (2020) AI based real-time signal reconstruction for wind farm with SCADA sensor failure. In: IFIP international conference on artificial intelligence applications and innovations. Springer, pp 207–218 Akinci K, Philippides A (2019) Evolving recurrent neural network controllers by incremental fitness shaping. In: The 2018 conference on artificial life: a hybrid of the European conference on artificial life (ECAL) and the international conference on the synthesis and simulation of living systems (ALIFE). MIT Press, pp 416–423 Fogel DB (1995) Evolutionary computation. Toward a new philosophy of machine intelligence. In: IEEE evolutionary computation Rodriguez-GalianoVSanchez-CastilloMChica-OlmoMChica-RivasMJOGRMachine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machinesOre Geol Rev20157180481810.1016/j.oregeorev.2015.01.001 RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsNature1986323608853353610.1038/323533a0 Ebner PP, Eltelt A (2020) Audio inpainting with generative adversarial network. In: arXiv preprint arXiv:2003.07704 Suganuma M, Shirakawa S, Nagao T (2017) A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the genetic and evolutionary computation conference, pp 497–504 MiriyalaSSMitraKDeep learning based system identification of industrial integrated grinding circuitsPowder Technol202036092193610.1016/j.powtec.2019.10.065 ShannonCEA mathematical theory of communicationBell Syst Tech J19482733794232628610.1002/j.1538-7305.1948.tb01338.x Khan NM, Khan GM (2017). Audio signal reconstruction using Cartesian genetic programming evolved artificial neural network (CGPANN). In: 2017 16th IEEE international conference on machine learning and applications (ICMLA). IEEE, pp 568–573 Salimans T, Ho J, Chen X, Sidor S, Sutskever I (2017) Evolution strategies as a scalable alternative to reinforcement learning. In: arXiv preprint arXiv:1703.03864 Ororbia A, ElSaid A, Desell T (2019) Investigating recurrent neural network memory structures using neuro-evolution. In: Proceedings of the genetic and evolutionary computation conference, pp 446–455 HuYHHwangJ-NHandbook of neural network signal processing2001Boca RatonCRC Press Inapakurthi RK, Miriyala SS, Mitra K (2020) Recurrent neural networks based modelling of industrial grinding operation. In: Chemical engineering science 219, p 115585 DengJSchullerBEybenFSchullerDZhangZFrancoisHEunmiOExploiting time-frequency patterns with LSTM-RNNs for low-bitrate audio restorationNeural Comput Appl20203241095110710.1007/s00521-019-04158-0 RehmanMKhanGMMahmudSAForeign currency exchange rates prediction using CGP and recurrent neural networkIERI Proc20141023924410.1016/j.ieri.2014.09.083 Khan GM, Ahmad A (2018) Breaking the stereotypical dogma of artificial neural networks with Cartesian genetic programming. In: Inspired by nature, pp 213–233 Sharman KC, Esparcia Alcazar AI, Li Y (1995) Evolving signal processing algorithms by genetic programming WangZLanLVuceticSMixture model for multiple instance regression and applications in remote sensingIEEE Trans Geosci Remote Sens2011502226223710.1109/TGRS.2011.2171691 De Jong KA (2002) Evolutionary computation: a unified perspective GersFASchraudolphNNSchmidhuberJLearning precise timing with LSTM recurrent networksJ Mach Learn Res2002311514319660561088.68717 Such FP, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J (2017) Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. In: arXiv preprint arXiv:1712.06567 Miller JF (2017) Cartesian genetic programming. In: Cartesian genetic programming. Springer, pp 17–34 SvozilDKvasnickaVPospichalJIntroduction to multi-layer feed-forward neural networksChemom Intell Lab Syst1997391436210.1016/S0169-7439(97)00061-0 XiaX-GNashedMZA method with error estimates for band-limited signal extrapolation from inaccurate dataInverse Probl19971361641148400810.1088/0266-5611/13/6/015 MiriyalaSSMitraKMulti-objective optimization of iron ore induration process using optimal neural networksMater Manuf Process202035553754410.1080/10426914.2019.1643476 ZhuLWangJHeXZhaoYAn inertial projection neural network for sparse signal reconstruction via l1–2 minimizationNeurocomputing2018315899510.1016/j.neucom.2018.06.050 DingSLiHChunyangSJunzhaoYuJinFEvolutionary artificial neural networks: a reviewArtif Intell Rev201339325126010.1007/s10462-011-9270-6 Miller JF, Thomson P (2000) Cartesian genetic programming. In: European conference on genetic programming. Springer, pp 121– 132 Rawal A, Miikkulainen R (2018) From nodes to networks: evolving recurrent neural networks. In: arXiv preprint arXiv:1803.04439 (2018) Bjerring L, Frank E (2011) Beyond trees: adopting MITI to learn rules and ensemble classifiers for multi-instance data. In: Proceedings of 14th Australasian conference on artificial intelligence. Springer, pp 41–50 NisanNPseudorandom generators for space-bounded computationCombinatorica1992124449461119473510.1007/BF01305237 GuoDZhangYXiaoZMaoMLiuJCommon nature of learning between BP-type and Hopfield-type neural networksNeurocomputing201516757858610.1016/j.neucom.2015.04.032 PetukhovaTOjkicDMcEwenBDeardonRPoljakZAssessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, CanadaPLoS ONE2018136e019831310.1371/journal.pone.0198313 KhanGMZafariFDynamic feedback neuroevolutionary networks for forecasting the highly fluctuating electrical loadsGenet Program Evol Mach201617439140810.1007/s10710-016-9268-6 StanleyKOCluneJLehmanJMiikkulainenRDesigning neural networks through neuroevolutionNat Mach Intell201911243510.1038/s42256-018-0006-z CocchiGUnciniASubband neural networks prediction for on-line audio signal recoveryIEEE Trans Neural Netw200213486787610.1109/TNN.2002.1021887 ElSaidAEREl JamiyFHigginsJWildBDesellTOptimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibrationAppl Soft Comput20187396999110.1016/j.asoc.2018.09.013 StanleyKOMiikkulainenREvolving neural networks through augmenting topologiesEvolut Comput20021029912710.1162/106365602320169811 ElmanJLFinding structure in timeCognit Sci199014217921110.1207/s15516709cog1402_1 HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735 MiriyalaSSSubramanianVRMitraKTRANSFORM-ANN for online optimization of complex industrial processes: casting process as case studyEur J Oper Res20182641294309368701710.1016/j.ejor.2017.05.026 Esparcia-Alcazar AI, Sharman K (1997) Evolving recurrent neural network architectures by genetic programming. In: Genetic programming, pp 89–94 Jordan MI (1997) Serial order: a parallel distributed processing approach. In: Advances in psychology, vol 121. Elsevier, pp 471–475 Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp 3104–3112 PedregosaFScikit-learn: machine learning in PythonJ Mach Learn Res2011122825283028543481280.68189 TaiebSBSorjamaaABontempiGMultipleoutput modeling for multi-step-ahead time series forecastingNeurocomputing20107310–121950195710.1016/j.neucom.2009.11.030 Khan NM, Khan GM (2018) Signal reconstruction using evolvable recurrent neural networks. In: International conference on intelligent data engineering and automated learning. Springer, pp 594–602 StallmannCFEngelbrechtAPGramophone noise detection and reconstruction using time delay artificial neural networksIEEE Trans Syst Man Cybern Syst201747689390510.1109/TSMC.2016.2523927 StanleyKOD’AmbrosioDBGauciJA hypercubebased encoding for evolving large-scale neural networksArtif Life200915218521210.1162/artl.2009.15.2.15202 Khan MM, Khan GM, Miller JF (2010) Efficient representation of recurrent neural networks for Markovian/nonMarkovian non-linear control problems. In: 2010 10th international conference on intelligent systems design and applications. IEEE, pp 615–620 Rawal A, Miikkulainen R (2016) Evolving deep LSTM-based memory networks using an information maximization objective. In: Proceedings of the genetic and evolutionary computation conference 2016, pp 501–508 Assunção F, Lourenço N, Machado P, Ribeiro B (2018) Using GP is neat: evolving compositional pattern production functions. In: European conference on genetic programming. Springer, pp 3–18 S Hochreiter (5953_CR15) 1997; 9 5953_CR26 CE Shannon (5953_CR40) 1948; 27 S Ding (5953_CR7) 2013; 39 YH Hu (5953_CR16) 2001 T Petukhova (5953_CR33) 2018; 13 D Guo (5953_CR14) 2015; 167 5953_CR21 X-G Xia (5953_CR52) 1997; 13 5953_CR23 5953_CR22 5953_CR25 5953_CR24 N Nisan (5953_CR30) 1992; 12 DE Rumelhart (5953_CR38) 1986; 323 GM Khan (5953_CR20) 2016; 17 V Rodriguez-Galiano (5953_CR37) 2015; 71 M Rehman (5953_CR36) 2014; 10 Z Wang (5953_CR51) 2011; 50 L Zhu (5953_CR53) 2018; 315 G Cocchi (5953_CR4) 2002; 13 5953_CR39 D Svozil (5953_CR49) 1997; 39 CF Stallmann (5953_CR42) 2017; 47 5953_CR31 5953_CR34 KO Stanley (5953_CR45) 2002; 10 5953_CR35 J Deng (5953_CR6) 2020; 32 KO Stanley (5953_CR43) 2019; 1 5953_CR48 SS Miriyala (5953_CR29) 2018; 264 AER ElSaid (5953_CR10) 2018; 73 5953_CR41 5953_CR47 5953_CR46 F Pedregosa (5953_CR32) 2011; 12 SS Miriyala (5953_CR28) 2020; 35 5953_CR8 5953_CR5 SS Miriyala (5953_CR27) 2020; 360 5953_CR1 KO Stanley (5953_CR44) 2009; 15 5953_CR3 5953_CR18 5953_CR2 5953_CR17 5953_CR19 SB Taieb (5953_CR50) 2010; 73 5953_CR12 5953_CR11 JL Elman (5953_CR9) 1990; 14 FA Gers (5953_CR13) 2002; 3 |
| References_xml | – reference: ElmanJLFinding structure in timeCognit Sci199014217921110.1207/s15516709cog1402_1 – reference: DengJSchullerBEybenFSchullerDZhangZFrancoisHEunmiOExploiting time-frequency patterns with LSTM-RNNs for low-bitrate audio restorationNeural Comput Appl20203241095110710.1007/s00521-019-04158-0 – reference: WangZLanLVuceticSMixture model for multiple instance regression and applications in remote sensingIEEE Trans Geosci Remote Sens2011502226223710.1109/TGRS.2011.2171691 – reference: MiriyalaSSMitraKMulti-objective optimization of iron ore induration process using optimal neural networksMater Manuf Process202035553754410.1080/10426914.2019.1643476 – reference: Rawal A, Miikkulainen R (2018) From nodes to networks: evolving recurrent neural networks. In: arXiv preprint arXiv:1803.04439 (2018) – reference: Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp 3104–3112 – reference: Khan NM, Khan GM (2017). Audio signal reconstruction using Cartesian genetic programming evolved artificial neural network (CGPANN). In: 2017 16th IEEE international conference on machine learning and applications (ICMLA). IEEE, pp 568–573 – reference: HuYHHwangJ-NHandbook of neural network signal processing2001Boca RatonCRC Press – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735 – reference: Khan MM, Khan GM, Miller JF (2010) Efficient representation of recurrent neural networks for Markovian/nonMarkovian non-linear control problems. In: 2010 10th international conference on intelligent systems design and applications. IEEE, pp 615–620 – reference: KhanGMZafariFDynamic feedback neuroevolutionary networks for forecasting the highly fluctuating electrical loadsGenet Program Evol Mach201617439140810.1007/s10710-016-9268-6 – reference: TaiebSBSorjamaaABontempiGMultipleoutput modeling for multi-step-ahead time series forecastingNeurocomputing20107310–121950195710.1016/j.neucom.2009.11.030 – reference: Akinci K, Philippides A (2019) Evolving recurrent neural network controllers by incremental fitness shaping. In: The 2018 conference on artificial life: a hybrid of the European conference on artificial life (ECAL) and the international conference on the synthesis and simulation of living systems (ALIFE). MIT Press, pp 416–423 – reference: ShannonCEA mathematical theory of communicationBell Syst Tech J19482733794232628610.1002/j.1538-7305.1948.tb01338.x – reference: Ororbia A, ElSaid A, Desell T (2019) Investigating recurrent neural network memory structures using neuro-evolution. In: Proceedings of the genetic and evolutionary computation conference, pp 446–455 – reference: Esparcia-Alcazar AI, Sharman K (1997) Evolving recurrent neural network architectures by genetic programming. In: Genetic programming, pp 89–94 – reference: StanleyKOMiikkulainenREvolving neural networks through augmenting topologiesEvolut Comput20021029912710.1162/106365602320169811 – reference: StanleyKOCluneJLehmanJMiikkulainenRDesigning neural networks through neuroevolutionNat Mach Intell201911243510.1038/s42256-018-0006-z – reference: Such FP, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J (2017) Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. In: arXiv preprint arXiv:1712.06567 – reference: ElSaidAEREl JamiyFHigginsJWildBDesellTOptimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibrationAppl Soft Comput20187396999110.1016/j.asoc.2018.09.013 – reference: PedregosaFScikit-learn: machine learning in PythonJ Mach Learn Res2011122825283028543481280.68189 – reference: Sharman KC, Esparcia Alcazar AI, Li Y (1995) Evolving signal processing algorithms by genetic programming – reference: Salimans T, Ho J, Chen X, Sidor S, Sutskever I (2017) Evolution strategies as a scalable alternative to reinforcement learning. In: arXiv preprint arXiv:1703.03864 – reference: StallmannCFEngelbrechtAPGramophone noise detection and reconstruction using time delay artificial neural networksIEEE Trans Syst Man Cybern Syst201747689390510.1109/TSMC.2016.2523927 – reference: Assunção F, Lourenço N, Machado P, Ribeiro B (2018) Using GP is neat: evolving compositional pattern production functions. In: European conference on genetic programming. Springer, pp 3–18 – reference: MiriyalaSSSubramanianVRMitraKTRANSFORM-ANN for online optimization of complex industrial processes: casting process as case studyEur J Oper Res20182641294309368701710.1016/j.ejor.2017.05.026 – reference: PetukhovaTOjkicDMcEwenBDeardonRPoljakZAssessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, CanadaPLoS ONE2018136e019831310.1371/journal.pone.0198313 – reference: DingSLiHChunyangSJunzhaoYuJinFEvolutionary artificial neural networks: a reviewArtif Intell Rev201339325126010.1007/s10462-011-9270-6 – reference: CocchiGUnciniASubband neural networks prediction for on-line audio signal recoveryIEEE Trans Neural Netw200213486787610.1109/TNN.2002.1021887 – reference: Inapakurthi RK, Miriyala SS, Mitra K (2020) Recurrent neural networks based modelling of industrial grinding operation. In: Chemical engineering science 219, p 115585 – reference: GuoDZhangYXiaoZMaoMLiuJCommon nature of learning between BP-type and Hopfield-type neural networksNeurocomputing201516757858610.1016/j.neucom.2015.04.032 – reference: Fogel DB (1995) Evolutionary computation. Toward a new philosophy of machine intelligence. In: IEEE evolutionary computation – reference: GersFASchraudolphNNSchmidhuberJLearning precise timing with LSTM recurrent networksJ Mach Learn Res2002311514319660561088.68717 – reference: Khan NM, Khan GM, Matthews P (2020) AI based real-time signal reconstruction for wind farm with SCADA sensor failure. In: IFIP international conference on artificial intelligence applications and innovations. Springer, pp 207–218 – reference: RehmanMKhanGMMahmudSAForeign currency exchange rates prediction using CGP and recurrent neural networkIERI Proc20141023924410.1016/j.ieri.2014.09.083 – reference: Miller JF, Thomson P (2000) Cartesian genetic programming. In: European conference on genetic programming. Springer, pp 121– 132 – reference: Suganuma M, Shirakawa S, Nagao T (2017) A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the genetic and evolutionary computation conference, pp 497–504 – reference: Rodriguez-GalianoVSanchez-CastilloMChica-OlmoMChica-RivasMJOGRMachine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machinesOre Geol Rev20157180481810.1016/j.oregeorev.2015.01.001 – reference: Bjerring L, Frank E (2011) Beyond trees: adopting MITI to learn rules and ensemble classifiers for multi-instance data. In: Proceedings of 14th Australasian conference on artificial intelligence. Springer, pp 41–50 – reference: Jordan MI (1997) Serial order: a parallel distributed processing approach. In: Advances in psychology, vol 121. Elsevier, pp 471–475 – reference: MiriyalaSSMitraKDeep learning based system identification of industrial integrated grinding circuitsPowder Technol202036092193610.1016/j.powtec.2019.10.065 – reference: ZhuLWangJHeXZhaoYAn inertial projection neural network for sparse signal reconstruction via l1–2 minimizationNeurocomputing2018315899510.1016/j.neucom.2018.06.050 – reference: De Jong KA (2002) Evolutionary computation: a unified perspective – reference: XiaX-GNashedMZA method with error estimates for band-limited signal extrapolation from inaccurate dataInverse Probl19971361641148400810.1088/0266-5611/13/6/015 – reference: Ebner PP, Eltelt A (2020) Audio inpainting with generative adversarial network. In: arXiv preprint arXiv:2003.07704 – reference: Khan GM, Ahmad A (2018) Breaking the stereotypical dogma of artificial neural networks with Cartesian genetic programming. In: Inspired by nature, pp 213–233 – reference: StanleyKOD’AmbrosioDBGauciJA hypercubebased encoding for evolving large-scale neural networksArtif Life200915218521210.1162/artl.2009.15.2.15202 – reference: SvozilDKvasnickaVPospichalJIntroduction to multi-layer feed-forward neural networksChemom Intell Lab Syst1997391436210.1016/S0169-7439(97)00061-0 – reference: RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsNature1986323608853353610.1038/323533a0 – reference: Khan NM, Khan GM (2018) Signal reconstruction using evolvable recurrent neural networks. In: International conference on intelligent data engineering and automated learning. Springer, pp 594–602 – reference: NisanNPseudorandom generators for space-bounded computationCombinatorica1992124449461119473510.1007/BF01305237 – reference: Miller JF (2017) Cartesian genetic programming. In: Cartesian genetic programming. Springer, pp 17–34 – reference: Rawal A, Miikkulainen R (2016) Evolving deep LSTM-based memory networks using an information maximization objective. In: Proceedings of the genetic and evolutionary computation conference 2016, pp 501–508 – ident: 5953_CR5 – volume: 50 start-page: 2226 year: 2011 ident: 5953_CR51 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2011.2171691 – volume: 17 start-page: 391 issue: 4 year: 2016 ident: 5953_CR20 publication-title: Genet Program Evol Mach doi: 10.1007/s10710-016-9268-6 – ident: 5953_CR25 doi: 10.1007/978-3-642-17310-3_2 – volume: 39 start-page: 43 issue: 1 year: 1997 ident: 5953_CR49 publication-title: Chemom Intell Lab Syst doi: 10.1016/S0169-7439(97)00061-0 – ident: 5953_CR47 doi: 10.1145/3071178.3071229 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 5953_CR15 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 73 start-page: 969 year: 2018 ident: 5953_CR10 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.09.013 – volume: 15 start-page: 185 issue: 2 year: 2009 ident: 5953_CR44 publication-title: Artif Life doi: 10.1162/artl.2009.15.2.15202 – volume: 13 start-page: e0198313 issue: 6 year: 2018 ident: 5953_CR33 publication-title: PLoS ONE doi: 10.1371/journal.pone.0198313 – volume: 71 start-page: 804 year: 2015 ident: 5953_CR37 publication-title: Ore Geol Rev doi: 10.1016/j.oregeorev.2015.01.001 – volume: 14 start-page: 179 issue: 2 year: 1990 ident: 5953_CR9 publication-title: Cognit Sci doi: 10.1207/s15516709cog1402_1 – volume: 13 start-page: 867 issue: 4 year: 2002 ident: 5953_CR4 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2002.1021887 – ident: 5953_CR26 doi: 10.1007/978-3-540-46239-2_9 – ident: 5953_CR21 doi: 10.1109/ISDA.2010.5687197 – ident: 5953_CR48 – volume: 1 start-page: 24 issue: 1 year: 2019 ident: 5953_CR43 publication-title: Nat Mach Intell doi: 10.1038/s42256-018-0006-z – volume: 264 start-page: 294 issue: 1 year: 2018 ident: 5953_CR29 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2017.05.026 – ident: 5953_CR31 doi: 10.1145/3321707.3321795 – volume: 47 start-page: 893 issue: 6 year: 2017 ident: 5953_CR42 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2016.2523927 – ident: 5953_CR12 – volume: 10 start-page: 239 year: 2014 ident: 5953_CR36 publication-title: IERI Proc doi: 10.1016/j.ieri.2014.09.083 – volume: 3 start-page: 115 year: 2002 ident: 5953_CR13 publication-title: J Mach Learn Res – volume: 73 start-page: 1950 issue: 10–12 year: 2010 ident: 5953_CR50 publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.11.030 – ident: 5953_CR3 doi: 10.1007/978-3-642-25832-9_5 – ident: 5953_CR19 doi: 10.1007/978-3-319-67997-6_10 – volume: 12 start-page: 449 issue: 4 year: 1992 ident: 5953_CR30 publication-title: Combinatorica doi: 10.1007/BF01305237 – volume: 27 start-page: 379 issue: 3 year: 1948 ident: 5953_CR40 publication-title: Bell Syst Tech J doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: 5953_CR1 doi: 10.1162/isal_a_00196 – ident: 5953_CR34 doi: 10.1145/2908812.2908941 – ident: 5953_CR22 doi: 10.1109/ICMLA.2017.0-100 – volume: 167 start-page: 578 year: 2015 ident: 5953_CR14 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.032 – volume: 360 start-page: 921 year: 2020 ident: 5953_CR27 publication-title: Powder Technol doi: 10.1016/j.powtec.2019.10.065 – volume: 10 start-page: 99 issue: 2 year: 2002 ident: 5953_CR45 publication-title: Evolut Comput doi: 10.1162/106365602320169811 – volume: 32 start-page: 1095 issue: 4 year: 2020 ident: 5953_CR6 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04158-0 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 5953_CR38 publication-title: Nature doi: 10.1038/323533a0 – volume-title: Handbook of neural network signal processing year: 2001 ident: 5953_CR16 – ident: 5953_CR11 – volume: 35 start-page: 537 issue: 5 year: 2020 ident: 5953_CR28 publication-title: Mater Manuf Process doi: 10.1080/10426914.2019.1643476 – volume: 315 start-page: 89 year: 2018 ident: 5953_CR53 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.050 – ident: 5953_CR46 – ident: 5953_CR8 – ident: 5953_CR23 doi: 10.1007/978-3-030-03493-1_62 – volume: 12 start-page: 2825 year: 2011 ident: 5953_CR32 publication-title: J Mach Learn Res – ident: 5953_CR2 doi: 10.1007/978-3-319-77553-1_1 – ident: 5953_CR24 doi: 10.1007/978-3-030-49186-4_18 – ident: 5953_CR35 – ident: 5953_CR41 doi: 10.1049/cp:19951094 – ident: 5953_CR17 doi: 10.1016/j.ces.2020.115585 – ident: 5953_CR39 – ident: 5953_CR18 doi: 10.1016/S0166-4115(97)80111-2 – volume: 13 start-page: 1641 issue: 6 year: 1997 ident: 5953_CR52 publication-title: Inverse Probl doi: 10.1088/0266-5611/13/6/015 – volume: 39 start-page: 251 issue: 3 year: 2013 ident: 5953_CR7 publication-title: Artif Intell Rev doi: 10.1007/s10462-011-9270-6 |
| SSID | ssj0004685 |
| Score | 2.2838464 |
| Snippet | A multi-chromosomal structure for neuro-evolution of recurrent neural networks (RNNs) with Cartesian genetic programming (CGP) architecture is presented to... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13265 |
| SubjectTerms | Algorithms Artificial Intelligence Cartesian coordinates Chromosomes Computational Biology/Bioinformatics Computational Science and Engineering Computer architecture Computer Science Data Mining and Knowledge Discovery Deep learning Genetic algorithms Image Processing and Computer Vision Machine learning Neural networks Optimization Original Article Probability and Statistics in Computer Science Programming Recurrent neural networks Signal reconstruction Speech |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPXixPrFaZQ_eNLh57i4eRIqPg5QiKsXLkk2yKGhb3dLfbybNtirYi4dcNg-WTDKZZGa-D6HjMjHEqIJjTpTG3KoSF5ol2ErKWaGIYh5L7-ku6XbTfj_rhQe3KoRV1jrRK2oz1PBGfkadXQtod4JcjD4wsEaBdzVQaCyjFUBJAOqGnnj-lhfpKTndDQaiezgLSTM-dQ7eQ91XKCITDPOfB9Pc2vzlIPXnznXzv3-8gdaDxRldTpfIJlqygy3UrNkcorC5t9G5z8XF-gUC9Krhu-vTuelh6_TXxJrovtuNnIEbQcCHq_IX6Rn47A56vL566NziQK2AtdtzY2y5MToxWVlaCY4zrrUwMeMqjY20pLDSSqmyRAktFbVE67hQtHS2Hy14agzbRY3BcGD3UBQbK117QSXNuNP8SlhLVJkqxsAeSVuI1POa64A7DvQXb_kMMdnLIo-hgCxy3kInsz6jKerGwtbtWgB52IFVPp_9FjqtRTiv_nu0_cWjHaA1CqvGx_O1UcNNtD1Eq3oyfq0-j_z6-wL57t_i priority: 102 providerName: ProQuest |
| Title | Multi-chromosomal CGP-evolved RNN for signal reconstruction |
| URI | https://link.springer.com/article/10.1007/s00521-021-05953-4 https://www.proquest.com/docview/2585227951 |
| Volume | 33 |
| WOSCitedRecordID | wos000640857400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8Mw9OE2D16cnzidowdvGmiTNG3xpGPTg5QydQwvJU1SFHQTO_b7TbK2U1FBDznlJZT38r76vgBO8kB6kmcUUY8LRBXPUSZIgBTDlGTc48T20hvfBHEcTiZRUhaFFVW2exWStJK6LnYzfzC162uWH_kE0Qa0tLoLzcCG0e34QzWkHcSp_RaT00NJWSrz_R2f1dHKxvwSFrXaZtj-33duwWZpXToXy-ewDWtqugPtanKDUzLyLpzbulskHk0yXjF70Wf6VwlSWlYtlHRGcexoY9YxyR16yzrNdaPZPbgfDu7616gco4CE5q85UlRKEcgozxUzQTIqhC9dQnnoSqa8TDHFGI8C7gvGsfKEcDOOc23n4YyGUpJ9aE5nU3UAjisV0_A-ZjiiWspzXymP5yEnxNgeYQe8CpupKHuMm1EXz2ndHdliJ3XNMthJaQdO6zOvyw4bv0J3KyKlJbcVKdY-j-mE6HsdOKuIstr--bbDv4EfwQY2dLW5fF1oasSrY1gXi_lT8daD1uUgTkY9aCT-Q8--yXefndhC |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LTtwwcMSjEly6pQWxLS05wKlYJLbjJKpQVVFeYolWFUWIS3DsiUCiu9su2qo_1W_E4012WyS4ceDgS2yPFM94ZjxPgI0qsZHVpWQy0oZJ1BUrjUgYKi5FqSMtfC29s06S5-n5edadgb9NLgyFVTY80TNq2zdkI9_mTq-landx9Hnwk1HXKPKuNi00xmRxjH9-uyfbcOfoq8PvJuf7e6e7h6zuKsCMI7dbhtJak9isqlCRz0gaE9tQSJ2GVmFUokKldJbo2CjNMTImLDWvnNrDS5laKxzcWZiXkod0i7rxxT95mL4FqHsxUTSRFHWSjk_VI_ur-0ojzmLB5P-CcKrd3nPIejm333puJ_QKXtYadfBlfAWWYAZ7r6HVdKsIaub1Bj75XGNmrigAcdj_4fbsHnQZOv48Qht8y_PAKfABBbS4KW8omBTXXYbvT_ILKzDX6_dwFYLQonLrY654Jp1k0zFipKtUC0H6VtqGqMFjYeq66tTe46aYVIT2uC9CGoT7Qrbh42TPYFxV5NHVaw3Ci5rDDIspttuw1ZDMdPphaG8fh7YOC4enJ52ic5Qfv4NFThTrYxfXYM4dOr6HF2Z0ez389cHTfgCXT01Kd661QAY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1D74psGmSdMWn2Q6FUcZfoy9lTRJUdBuuLG_3yRruykqiA95yiWUu1xy17v7HcBxFkgseUoRxVwgqniGUkECpJhHScoxJxZLr9cJ4jjs96PuXBW_zXYvQ5LTmgaD0pSPz4YyO6sK38zfTO0Gm-FHPkF0EZaoSaQ3_vpDb64y0jbl1D6Mye-hpCib-X6Pz0_TzN78EiK1L0-7_v9vXoe1wup0LqbHZAMWVL4J9bKjg1Mo-Bac23pcJJ5Nkt5o8KbXtK67SOk7bKKkcx_HjjZyHZP0oaesM10B0G7DU_vqsXWDivYKSGi9GyNFpRSBjLJMMRM8o0L40iWUh65kCqeKKcZ4FHBfMO4pLISbci_T9p-X0lBKsgO1fJCrXXBcqZim9z3mRVTf_txXCvMs5IQYmyRsAC45m4gCe9y0wHhNKtRky53ENcNwJ6ENOKnWDKfIG79SN0uBJYUWjhJP-0IGIdHHDTgtBTSb_nm3vb-RH8FK97KddG7ju31Y9YyIbbpfE2paBuoAlsVk_DJ6P7SH8wOqnuFw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-chromosomal+CGP-evolved+RNN+for+signal+reconstruction&rft.jtitle=Neural+computing+%26+applications&rft.au=Khan%2C+Nadia+Masood&rft.au=Khan%2C+Gul+Muhammad&rft.date=2021-10-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=20&rft.spage=13265&rft.epage=13285&rft_id=info:doi/10.1007%2Fs00521-021-05953-4&rft.externalDocID=10_1007_s00521_021_05953_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |