Multi-chromosomal CGP-evolved RNN for signal reconstruction

A multi-chromosomal structure for neuro-evolution of recurrent neural networks (RNNs) with Cartesian genetic programming (CGP) architecture is presented to develop a signal reconstruction model. The group behaviour of multi-chromosomes evolved together is explored in terms of computational and struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 33; H. 20; S. 13265 - 13285
Hauptverfasser: Khan, Nadia Masood, Khan, Gul Muhammad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.10.2021
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A multi-chromosomal structure for neuro-evolution of recurrent neural networks (RNNs) with Cartesian genetic programming (CGP) architecture is presented to develop a signal reconstruction model. The group behaviour of multi-chromosomes evolved together is explored in terms of computational and structural complexity, and accurate reconstruction of the corrupted signal. Signal reconstruction modelling is done through prediction of missing samples, and a sliding window mechanism is utilized to recover long segments of missing samples in periodic and aperiodic corrupted signals. The proposed model is compared with the conventional single chromosome-based Cartesian Genetic Programming-evolved Recurrent Neural Network (CGPRNN) architecture as well as state-of-the-art machine learning algorithms, i.e. linear regression, random forest and long short-term memory deep learning neural network. Diverse network architectures of the proposed Multi-Chromosomal Cartesian Genetic Programming-evolved Recurrent Neural Network (MC-CGPRNN) are evolved to explore the robustness of algorithm in terms of optimization of hyper parameters, evolutionary speed and generalization ability. The proposed algorithm is trained and tested on speech signal with both periodic and aperiodic noise. The best trained network is also evaluated on standard music signals achieving remarkable results. Experimental results show that the proposed MC-CGPRNN algorithm achieved SNR of 25.23 dB for speech signal, 29.92 dB for guitar signal and 28.45 dB for flute signal in case of 50% missing samples showing best SNR improvement in comparison with its counterparts for time domain signal reconstruction.
AbstractList A multi-chromosomal structure for neuro-evolution of recurrent neural networks (RNNs) with Cartesian genetic programming (CGP) architecture is presented to develop a signal reconstruction model. The group behaviour of multi-chromosomes evolved together is explored in terms of computational and structural complexity, and accurate reconstruction of the corrupted signal. Signal reconstruction modelling is done through prediction of missing samples, and a sliding window mechanism is utilized to recover long segments of missing samples in periodic and aperiodic corrupted signals. The proposed model is compared with the conventional single chromosome-based Cartesian Genetic Programming-evolved Recurrent Neural Network (CGPRNN) architecture as well as state-of-the-art machine learning algorithms, i.e. linear regression, random forest and long short-term memory deep learning neural network. Diverse network architectures of the proposed Multi-Chromosomal Cartesian Genetic Programming-evolved Recurrent Neural Network (MC-CGPRNN) are evolved to explore the robustness of algorithm in terms of optimization of hyper parameters, evolutionary speed and generalization ability. The proposed algorithm is trained and tested on speech signal with both periodic and aperiodic noise. The best trained network is also evaluated on standard music signals achieving remarkable results. Experimental results show that the proposed MC-CGPRNN algorithm achieved SNR of 25.23 dB for speech signal, 29.92 dB for guitar signal and 28.45 dB for flute signal in case of 50% missing samples showing best SNR improvement in comparison with its counterparts for time domain signal reconstruction.
A multi-chromosomal structure for neuro-evolution of recurrent neural networks (RNNs) with Cartesian genetic programming (CGP) architecture is presented to develop a signal reconstruction model. The group behaviour of multi-chromosomes evolved together is explored in terms of computational and structural complexity, and accurate reconstruction of the corrupted signal. Signal reconstruction modelling is done through prediction of missing samples, and a sliding window mechanism is utilized to recover long segments of missing samples in periodic and aperiodic corrupted signals. The proposed model is compared with the conventional single chromosome-based Cartesian Genetic Programming-evolved Recurrent Neural Network (CGPRNN) architecture as well as state-of-the-art machine learning algorithms, i.e. linear regression, random forest and long short-term memory deep learning neural network. Diverse network architectures of the proposed Multi-Chromosomal Cartesian Genetic Programming-evolved Recurrent Neural Network (MC-CGPRNN) are evolved to explore the robustness of algorithm in terms of optimization of hyper parameters, evolutionary speed and generalization ability. The proposed algorithm is trained and tested on speech signal with both periodic and aperiodic noise. The best trained network is also evaluated on standard music signals achieving remarkable results. Experimental results show that the proposed MC-CGPRNN algorithm achieved SNR of 25.23 dB for speech signal, 29.92 dB for guitar signal and 28.45 dB for flute signal in case of 50% missing samples showing best SNR improvement in comparison with its counterparts for time domain signal reconstruction.
Author Khan, Gul Muhammad
Khan, Nadia Masood
Author_xml – sequence: 1
  givenname: Nadia Masood
  orcidid: 0000-0001-8647-8539
  surname: Khan
  fullname: Khan, Nadia Masood
  email: nadiakhan@uetpeshawar.edu.pk
  organization: School of Engineering and Computing Sciences, Durham University, National Center of Artificial Intelligence (NCAI), Electrical Engineering Department, University of Engineering and Technology (UET) Peshawar
– sequence: 2
  givenname: Gul Muhammad
  surname: Khan
  fullname: Khan, Gul Muhammad
  email: gk502@uetpeshawar.edu.pk
  organization: National Center of Artificial Intelligence (NCAI), Electrical Engineering Department, University of Engineering and Technology (UET) Peshawar
BookMark eNp9kE9LAzEUxINUsK1-AU8LnqMvfzeLJylahVpF9BzSJFu3bDc12Rb89u6yguChh-EdZn6PYSZo1ITGI3RJ4JoA5DcJQFCCoZcoBMP8BI0JZwwzEGqExlDwzpKcnaFJShsA4FKJMbp93tdthe1nDNuQwtbU2Wz-iv0h1AfvsrflMitDzFK1bjorehua1Ma9bavQnKPT0tTJX_zeKfp4uH-fPeLFy_xpdrfAlpGixZ47Z3NXlKWXQlHFrRUOGDcKnPRk5aWX0hS5EVYa6om1sDK0FFLSFVfOsSm6Gv7uYvja-9TqTdjHrk_SVChBaV4I0qXUkLIxpBR9qW3Vmr5nG01VawK6n0oPU2no1U-leYfSf-guVlsTv49DbIBSF27WPv61OkL9ANnSfbY
CitedBy_id crossref_primary_10_1016_j_eswa_2023_120586
crossref_primary_10_1109_ACCESS_2022_3154362
crossref_primary_10_3390_app142311153
Cites_doi 10.1109/TGRS.2011.2171691
10.1007/s10710-016-9268-6
10.1007/978-3-642-17310-3_2
10.1016/S0169-7439(97)00061-0
10.1145/3071178.3071229
10.1162/neco.1997.9.8.1735
10.1016/j.asoc.2018.09.013
10.1162/artl.2009.15.2.15202
10.1371/journal.pone.0198313
10.1016/j.oregeorev.2015.01.001
10.1207/s15516709cog1402_1
10.1109/TNN.2002.1021887
10.1007/978-3-540-46239-2_9
10.1109/ISDA.2010.5687197
10.1038/s42256-018-0006-z
10.1016/j.ejor.2017.05.026
10.1145/3321707.3321795
10.1109/TSMC.2016.2523927
10.1016/j.ieri.2014.09.083
10.1016/j.neucom.2009.11.030
10.1007/978-3-642-25832-9_5
10.1007/978-3-319-67997-6_10
10.1007/BF01305237
10.1002/j.1538-7305.1948.tb01338.x
10.1162/isal_a_00196
10.1145/2908812.2908941
10.1109/ICMLA.2017.0-100
10.1016/j.neucom.2015.04.032
10.1016/j.powtec.2019.10.065
10.1162/106365602320169811
10.1007/s00521-019-04158-0
10.1038/323533a0
10.1080/10426914.2019.1643476
10.1016/j.neucom.2018.06.050
10.1007/978-3-030-03493-1_62
10.1007/978-3-319-77553-1_1
10.1007/978-3-030-49186-4_18
10.1049/cp:19951094
10.1016/j.ces.2020.115585
10.1016/S0166-4115(97)80111-2
10.1088/0266-5611/13/6/015
10.1007/s10462-011-9270-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-021-05953-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 13285
ExternalDocumentID 10_1007_s00521_021_05953_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-e4ddc7d9ffe658284cc5d034a80d6e1be6e66a97a5c6a2e1cc0ba2f5662b48dd3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640857400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 23:03:37 EST 2025
Tue Nov 18 22:35:46 EST 2025
Sat Nov 29 02:59:20 EST 2025
Fri Feb 21 02:47:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Neuro-evolution
Signal reconstruction
Recurrent neural network
Linear Regression
Machine learning
Random Forest
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e4ddc7d9ffe658284cc5d034a80d6e1be6e66a97a5c6a2e1cc0ba2f5662b48dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8647-8539
PQID 2585227951
PQPubID 2043988
PageCount 21
ParticipantIDs proquest_journals_2585227951
crossref_citationtrail_10_1007_s00521_021_05953_4
crossref_primary_10_1007_s00521_021_05953_4
springer_journals_10_1007_s00521_021_05953_4
PublicationCentury 2000
PublicationDate 20211000
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Khan NM, Khan GM, Matthews P (2020) AI based real-time signal reconstruction for wind farm with SCADA sensor failure. In: IFIP international conference on artificial intelligence applications and innovations. Springer, pp 207–218
Akinci K, Philippides A (2019) Evolving recurrent neural network controllers by incremental fitness shaping. In: The 2018 conference on artificial life: a hybrid of the European conference on artificial life (ECAL) and the international conference on the synthesis and simulation of living systems (ALIFE). MIT Press, pp 416–423
Fogel DB (1995) Evolutionary computation. Toward a new philosophy of machine intelligence. In: IEEE evolutionary computation
Rodriguez-GalianoVSanchez-CastilloMChica-OlmoMChica-RivasMJOGRMachine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machinesOre Geol Rev20157180481810.1016/j.oregeorev.2015.01.001
RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsNature1986323608853353610.1038/323533a0
Ebner PP, Eltelt A (2020) Audio inpainting with generative adversarial network. In: arXiv preprint arXiv:2003.07704
Suganuma M, Shirakawa S, Nagao T (2017) A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the genetic and evolutionary computation conference, pp 497–504
MiriyalaSSMitraKDeep learning based system identification of industrial integrated grinding circuitsPowder Technol202036092193610.1016/j.powtec.2019.10.065
ShannonCEA mathematical theory of communicationBell Syst Tech J19482733794232628610.1002/j.1538-7305.1948.tb01338.x
Khan NM, Khan GM (2017). Audio signal reconstruction using Cartesian genetic programming evolved artificial neural network (CGPANN). In: 2017 16th IEEE international conference on machine learning and applications (ICMLA). IEEE, pp 568–573
Salimans T, Ho J, Chen X, Sidor S, Sutskever I (2017) Evolution strategies as a scalable alternative to reinforcement learning. In: arXiv preprint arXiv:1703.03864
Ororbia A, ElSaid A, Desell T (2019) Investigating recurrent neural network memory structures using neuro-evolution. In: Proceedings of the genetic and evolutionary computation conference, pp 446–455
HuYHHwangJ-NHandbook of neural network signal processing2001Boca RatonCRC Press
Inapakurthi RK, Miriyala SS, Mitra K (2020) Recurrent neural networks based modelling of industrial grinding operation. In: Chemical engineering science 219, p 115585
DengJSchullerBEybenFSchullerDZhangZFrancoisHEunmiOExploiting time-frequency patterns with LSTM-RNNs for low-bitrate audio restorationNeural Comput Appl20203241095110710.1007/s00521-019-04158-0
RehmanMKhanGMMahmudSAForeign currency exchange rates prediction using CGP and recurrent neural networkIERI Proc20141023924410.1016/j.ieri.2014.09.083
Khan GM, Ahmad A (2018) Breaking the stereotypical dogma of artificial neural networks with Cartesian genetic programming. In: Inspired by nature, pp 213–233
Sharman KC, Esparcia Alcazar AI, Li Y (1995) Evolving signal processing algorithms by genetic programming
WangZLanLVuceticSMixture model for multiple instance regression and applications in remote sensingIEEE Trans Geosci Remote Sens2011502226223710.1109/TGRS.2011.2171691
De Jong KA (2002) Evolutionary computation: a unified perspective
GersFASchraudolphNNSchmidhuberJLearning precise timing with LSTM recurrent networksJ Mach Learn Res2002311514319660561088.68717
Such FP, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J (2017) Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. In: arXiv preprint arXiv:1712.06567
Miller JF (2017) Cartesian genetic programming. In: Cartesian genetic programming. Springer, pp 17–34
SvozilDKvasnickaVPospichalJIntroduction to multi-layer feed-forward neural networksChemom Intell Lab Syst1997391436210.1016/S0169-7439(97)00061-0
XiaX-GNashedMZA method with error estimates for band-limited signal extrapolation from inaccurate dataInverse Probl19971361641148400810.1088/0266-5611/13/6/015
MiriyalaSSMitraKMulti-objective optimization of iron ore induration process using optimal neural networksMater Manuf Process202035553754410.1080/10426914.2019.1643476
ZhuLWangJHeXZhaoYAn inertial projection neural network for sparse signal reconstruction via l1–2 minimizationNeurocomputing2018315899510.1016/j.neucom.2018.06.050
DingSLiHChunyangSJunzhaoYuJinFEvolutionary artificial neural networks: a reviewArtif Intell Rev201339325126010.1007/s10462-011-9270-6
Miller JF, Thomson P (2000) Cartesian genetic programming. In: European conference on genetic programming. Springer, pp 121– 132
Rawal A, Miikkulainen R (2018) From nodes to networks: evolving recurrent neural networks. In: arXiv preprint arXiv:1803.04439 (2018)
Bjerring L, Frank E (2011) Beyond trees: adopting MITI to learn rules and ensemble classifiers for multi-instance data. In: Proceedings of 14th Australasian conference on artificial intelligence. Springer, pp 41–50
NisanNPseudorandom generators for space-bounded computationCombinatorica1992124449461119473510.1007/BF01305237
GuoDZhangYXiaoZMaoMLiuJCommon nature of learning between BP-type and Hopfield-type neural networksNeurocomputing201516757858610.1016/j.neucom.2015.04.032
PetukhovaTOjkicDMcEwenBDeardonRPoljakZAssessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, CanadaPLoS ONE2018136e019831310.1371/journal.pone.0198313
KhanGMZafariFDynamic feedback neuroevolutionary networks for forecasting the highly fluctuating electrical loadsGenet Program Evol Mach201617439140810.1007/s10710-016-9268-6
StanleyKOCluneJLehmanJMiikkulainenRDesigning neural networks through neuroevolutionNat Mach Intell201911243510.1038/s42256-018-0006-z
CocchiGUnciniASubband neural networks prediction for on-line audio signal recoveryIEEE Trans Neural Netw200213486787610.1109/TNN.2002.1021887
ElSaidAEREl JamiyFHigginsJWildBDesellTOptimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibrationAppl Soft Comput20187396999110.1016/j.asoc.2018.09.013
StanleyKOMiikkulainenREvolving neural networks through augmenting topologiesEvolut Comput20021029912710.1162/106365602320169811
ElmanJLFinding structure in timeCognit Sci199014217921110.1207/s15516709cog1402_1
HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
MiriyalaSSSubramanianVRMitraKTRANSFORM-ANN for online optimization of complex industrial processes: casting process as case studyEur J Oper Res20182641294309368701710.1016/j.ejor.2017.05.026
Esparcia-Alcazar AI, Sharman K (1997) Evolving recurrent neural network architectures by genetic programming. In: Genetic programming, pp 89–94
Jordan MI (1997) Serial order: a parallel distributed processing approach. In: Advances in psychology, vol 121. Elsevier, pp 471–475
Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp 3104–3112
PedregosaFScikit-learn: machine learning in PythonJ Mach Learn Res2011122825283028543481280.68189
TaiebSBSorjamaaABontempiGMultipleoutput modeling for multi-step-ahead time series forecastingNeurocomputing20107310–121950195710.1016/j.neucom.2009.11.030
Khan NM, Khan GM (2018) Signal reconstruction using evolvable recurrent neural networks. In: International conference on intelligent data engineering and automated learning. Springer, pp 594–602
StallmannCFEngelbrechtAPGramophone noise detection and reconstruction using time delay artificial neural networksIEEE Trans Syst Man Cybern Syst201747689390510.1109/TSMC.2016.2523927
StanleyKOD’AmbrosioDBGauciJA hypercubebased encoding for evolving large-scale neural networksArtif Life200915218521210.1162/artl.2009.15.2.15202
Khan MM, Khan GM, Miller JF (2010) Efficient representation of recurrent neural networks for Markovian/nonMarkovian non-linear control problems. In: 2010 10th international conference on intelligent systems design and applications. IEEE, pp 615–620
Rawal A, Miikkulainen R (2016) Evolving deep LSTM-based memory networks using an information maximization objective. In: Proceedings of the genetic and evolutionary computation conference 2016, pp 501–508
Assunção F, Lourenço N, Machado P, Ribeiro B (2018) Using GP is neat: evolving compositional pattern production functions. In: European conference on genetic programming. Springer, pp 3–18
S Hochreiter (5953_CR15) 1997; 9
5953_CR26
CE Shannon (5953_CR40) 1948; 27
S Ding (5953_CR7) 2013; 39
YH Hu (5953_CR16) 2001
T Petukhova (5953_CR33) 2018; 13
D Guo (5953_CR14) 2015; 167
5953_CR21
X-G Xia (5953_CR52) 1997; 13
5953_CR23
5953_CR22
5953_CR25
5953_CR24
N Nisan (5953_CR30) 1992; 12
DE Rumelhart (5953_CR38) 1986; 323
GM Khan (5953_CR20) 2016; 17
V Rodriguez-Galiano (5953_CR37) 2015; 71
M Rehman (5953_CR36) 2014; 10
Z Wang (5953_CR51) 2011; 50
L Zhu (5953_CR53) 2018; 315
G Cocchi (5953_CR4) 2002; 13
5953_CR39
D Svozil (5953_CR49) 1997; 39
CF Stallmann (5953_CR42) 2017; 47
5953_CR31
5953_CR34
KO Stanley (5953_CR45) 2002; 10
5953_CR35
J Deng (5953_CR6) 2020; 32
KO Stanley (5953_CR43) 2019; 1
5953_CR48
SS Miriyala (5953_CR29) 2018; 264
AER ElSaid (5953_CR10) 2018; 73
5953_CR41
5953_CR47
5953_CR46
F Pedregosa (5953_CR32) 2011; 12
SS Miriyala (5953_CR28) 2020; 35
5953_CR8
5953_CR5
SS Miriyala (5953_CR27) 2020; 360
5953_CR1
KO Stanley (5953_CR44) 2009; 15
5953_CR3
5953_CR18
5953_CR2
5953_CR17
5953_CR19
SB Taieb (5953_CR50) 2010; 73
5953_CR12
5953_CR11
JL Elman (5953_CR9) 1990; 14
FA Gers (5953_CR13) 2002; 3
References_xml – reference: ElmanJLFinding structure in timeCognit Sci199014217921110.1207/s15516709cog1402_1
– reference: DengJSchullerBEybenFSchullerDZhangZFrancoisHEunmiOExploiting time-frequency patterns with LSTM-RNNs for low-bitrate audio restorationNeural Comput Appl20203241095110710.1007/s00521-019-04158-0
– reference: WangZLanLVuceticSMixture model for multiple instance regression and applications in remote sensingIEEE Trans Geosci Remote Sens2011502226223710.1109/TGRS.2011.2171691
– reference: MiriyalaSSMitraKMulti-objective optimization of iron ore induration process using optimal neural networksMater Manuf Process202035553754410.1080/10426914.2019.1643476
– reference: Rawal A, Miikkulainen R (2018) From nodes to networks: evolving recurrent neural networks. In: arXiv preprint arXiv:1803.04439 (2018)
– reference: Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp 3104–3112
– reference: Khan NM, Khan GM (2017). Audio signal reconstruction using Cartesian genetic programming evolved artificial neural network (CGPANN). In: 2017 16th IEEE international conference on machine learning and applications (ICMLA). IEEE, pp 568–573
– reference: HuYHHwangJ-NHandbook of neural network signal processing2001Boca RatonCRC Press
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
– reference: Khan MM, Khan GM, Miller JF (2010) Efficient representation of recurrent neural networks for Markovian/nonMarkovian non-linear control problems. In: 2010 10th international conference on intelligent systems design and applications. IEEE, pp 615–620
– reference: KhanGMZafariFDynamic feedback neuroevolutionary networks for forecasting the highly fluctuating electrical loadsGenet Program Evol Mach201617439140810.1007/s10710-016-9268-6
– reference: TaiebSBSorjamaaABontempiGMultipleoutput modeling for multi-step-ahead time series forecastingNeurocomputing20107310–121950195710.1016/j.neucom.2009.11.030
– reference: Akinci K, Philippides A (2019) Evolving recurrent neural network controllers by incremental fitness shaping. In: The 2018 conference on artificial life: a hybrid of the European conference on artificial life (ECAL) and the international conference on the synthesis and simulation of living systems (ALIFE). MIT Press, pp 416–423
– reference: ShannonCEA mathematical theory of communicationBell Syst Tech J19482733794232628610.1002/j.1538-7305.1948.tb01338.x
– reference: Ororbia A, ElSaid A, Desell T (2019) Investigating recurrent neural network memory structures using neuro-evolution. In: Proceedings of the genetic and evolutionary computation conference, pp 446–455
– reference: Esparcia-Alcazar AI, Sharman K (1997) Evolving recurrent neural network architectures by genetic programming. In: Genetic programming, pp 89–94
– reference: StanleyKOMiikkulainenREvolving neural networks through augmenting topologiesEvolut Comput20021029912710.1162/106365602320169811
– reference: StanleyKOCluneJLehmanJMiikkulainenRDesigning neural networks through neuroevolutionNat Mach Intell201911243510.1038/s42256-018-0006-z
– reference: Such FP, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J (2017) Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. In: arXiv preprint arXiv:1712.06567
– reference: ElSaidAEREl JamiyFHigginsJWildBDesellTOptimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibrationAppl Soft Comput20187396999110.1016/j.asoc.2018.09.013
– reference: PedregosaFScikit-learn: machine learning in PythonJ Mach Learn Res2011122825283028543481280.68189
– reference: Sharman KC, Esparcia Alcazar AI, Li Y (1995) Evolving signal processing algorithms by genetic programming
– reference: Salimans T, Ho J, Chen X, Sidor S, Sutskever I (2017) Evolution strategies as a scalable alternative to reinforcement learning. In: arXiv preprint arXiv:1703.03864
– reference: StallmannCFEngelbrechtAPGramophone noise detection and reconstruction using time delay artificial neural networksIEEE Trans Syst Man Cybern Syst201747689390510.1109/TSMC.2016.2523927
– reference: Assunção F, Lourenço N, Machado P, Ribeiro B (2018) Using GP is neat: evolving compositional pattern production functions. In: European conference on genetic programming. Springer, pp 3–18
– reference: MiriyalaSSSubramanianVRMitraKTRANSFORM-ANN for online optimization of complex industrial processes: casting process as case studyEur J Oper Res20182641294309368701710.1016/j.ejor.2017.05.026
– reference: PetukhovaTOjkicDMcEwenBDeardonRPoljakZAssessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, CanadaPLoS ONE2018136e019831310.1371/journal.pone.0198313
– reference: DingSLiHChunyangSJunzhaoYuJinFEvolutionary artificial neural networks: a reviewArtif Intell Rev201339325126010.1007/s10462-011-9270-6
– reference: CocchiGUnciniASubband neural networks prediction for on-line audio signal recoveryIEEE Trans Neural Netw200213486787610.1109/TNN.2002.1021887
– reference: Inapakurthi RK, Miriyala SS, Mitra K (2020) Recurrent neural networks based modelling of industrial grinding operation. In: Chemical engineering science 219, p 115585
– reference: GuoDZhangYXiaoZMaoMLiuJCommon nature of learning between BP-type and Hopfield-type neural networksNeurocomputing201516757858610.1016/j.neucom.2015.04.032
– reference: Fogel DB (1995) Evolutionary computation. Toward a new philosophy of machine intelligence. In: IEEE evolutionary computation
– reference: GersFASchraudolphNNSchmidhuberJLearning precise timing with LSTM recurrent networksJ Mach Learn Res2002311514319660561088.68717
– reference: Khan NM, Khan GM, Matthews P (2020) AI based real-time signal reconstruction for wind farm with SCADA sensor failure. In: IFIP international conference on artificial intelligence applications and innovations. Springer, pp 207–218
– reference: RehmanMKhanGMMahmudSAForeign currency exchange rates prediction using CGP and recurrent neural networkIERI Proc20141023924410.1016/j.ieri.2014.09.083
– reference: Miller JF, Thomson P (2000) Cartesian genetic programming. In: European conference on genetic programming. Springer, pp 121– 132
– reference: Suganuma M, Shirakawa S, Nagao T (2017) A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the genetic and evolutionary computation conference, pp 497–504
– reference: Rodriguez-GalianoVSanchez-CastilloMChica-OlmoMChica-RivasMJOGRMachine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machinesOre Geol Rev20157180481810.1016/j.oregeorev.2015.01.001
– reference: Bjerring L, Frank E (2011) Beyond trees: adopting MITI to learn rules and ensemble classifiers for multi-instance data. In: Proceedings of 14th Australasian conference on artificial intelligence. Springer, pp 41–50
– reference: Jordan MI (1997) Serial order: a parallel distributed processing approach. In: Advances in psychology, vol 121. Elsevier, pp 471–475
– reference: MiriyalaSSMitraKDeep learning based system identification of industrial integrated grinding circuitsPowder Technol202036092193610.1016/j.powtec.2019.10.065
– reference: ZhuLWangJHeXZhaoYAn inertial projection neural network for sparse signal reconstruction via l1–2 minimizationNeurocomputing2018315899510.1016/j.neucom.2018.06.050
– reference: De Jong KA (2002) Evolutionary computation: a unified perspective
– reference: XiaX-GNashedMZA method with error estimates for band-limited signal extrapolation from inaccurate dataInverse Probl19971361641148400810.1088/0266-5611/13/6/015
– reference: Ebner PP, Eltelt A (2020) Audio inpainting with generative adversarial network. In: arXiv preprint arXiv:2003.07704
– reference: Khan GM, Ahmad A (2018) Breaking the stereotypical dogma of artificial neural networks with Cartesian genetic programming. In: Inspired by nature, pp 213–233
– reference: StanleyKOD’AmbrosioDBGauciJA hypercubebased encoding for evolving large-scale neural networksArtif Life200915218521210.1162/artl.2009.15.2.15202
– reference: SvozilDKvasnickaVPospichalJIntroduction to multi-layer feed-forward neural networksChemom Intell Lab Syst1997391436210.1016/S0169-7439(97)00061-0
– reference: RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsNature1986323608853353610.1038/323533a0
– reference: Khan NM, Khan GM (2018) Signal reconstruction using evolvable recurrent neural networks. In: International conference on intelligent data engineering and automated learning. Springer, pp 594–602
– reference: NisanNPseudorandom generators for space-bounded computationCombinatorica1992124449461119473510.1007/BF01305237
– reference: Miller JF (2017) Cartesian genetic programming. In: Cartesian genetic programming. Springer, pp 17–34
– reference: Rawal A, Miikkulainen R (2016) Evolving deep LSTM-based memory networks using an information maximization objective. In: Proceedings of the genetic and evolutionary computation conference 2016, pp 501–508
– ident: 5953_CR5
– volume: 50
  start-page: 2226
  year: 2011
  ident: 5953_CR51
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2011.2171691
– volume: 17
  start-page: 391
  issue: 4
  year: 2016
  ident: 5953_CR20
  publication-title: Genet Program Evol Mach
  doi: 10.1007/s10710-016-9268-6
– ident: 5953_CR25
  doi: 10.1007/978-3-642-17310-3_2
– volume: 39
  start-page: 43
  issue: 1
  year: 1997
  ident: 5953_CR49
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/S0169-7439(97)00061-0
– ident: 5953_CR47
  doi: 10.1145/3071178.3071229
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 5953_CR15
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 73
  start-page: 969
  year: 2018
  ident: 5953_CR10
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.09.013
– volume: 15
  start-page: 185
  issue: 2
  year: 2009
  ident: 5953_CR44
  publication-title: Artif Life
  doi: 10.1162/artl.2009.15.2.15202
– volume: 13
  start-page: e0198313
  issue: 6
  year: 2018
  ident: 5953_CR33
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0198313
– volume: 71
  start-page: 804
  year: 2015
  ident: 5953_CR37
  publication-title: Ore Geol Rev
  doi: 10.1016/j.oregeorev.2015.01.001
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  ident: 5953_CR9
  publication-title: Cognit Sci
  doi: 10.1207/s15516709cog1402_1
– volume: 13
  start-page: 867
  issue: 4
  year: 2002
  ident: 5953_CR4
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.1021887
– ident: 5953_CR26
  doi: 10.1007/978-3-540-46239-2_9
– ident: 5953_CR21
  doi: 10.1109/ISDA.2010.5687197
– ident: 5953_CR48
– volume: 1
  start-page: 24
  issue: 1
  year: 2019
  ident: 5953_CR43
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-018-0006-z
– volume: 264
  start-page: 294
  issue: 1
  year: 2018
  ident: 5953_CR29
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2017.05.026
– ident: 5953_CR31
  doi: 10.1145/3321707.3321795
– volume: 47
  start-page: 893
  issue: 6
  year: 2017
  ident: 5953_CR42
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2016.2523927
– ident: 5953_CR12
– volume: 10
  start-page: 239
  year: 2014
  ident: 5953_CR36
  publication-title: IERI Proc
  doi: 10.1016/j.ieri.2014.09.083
– volume: 3
  start-page: 115
  year: 2002
  ident: 5953_CR13
  publication-title: J Mach Learn Res
– volume: 73
  start-page: 1950
  issue: 10–12
  year: 2010
  ident: 5953_CR50
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.030
– ident: 5953_CR3
  doi: 10.1007/978-3-642-25832-9_5
– ident: 5953_CR19
  doi: 10.1007/978-3-319-67997-6_10
– volume: 12
  start-page: 449
  issue: 4
  year: 1992
  ident: 5953_CR30
  publication-title: Combinatorica
  doi: 10.1007/BF01305237
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  ident: 5953_CR40
  publication-title: Bell Syst Tech J
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: 5953_CR1
  doi: 10.1162/isal_a_00196
– ident: 5953_CR34
  doi: 10.1145/2908812.2908941
– ident: 5953_CR22
  doi: 10.1109/ICMLA.2017.0-100
– volume: 167
  start-page: 578
  year: 2015
  ident: 5953_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.032
– volume: 360
  start-page: 921
  year: 2020
  ident: 5953_CR27
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2019.10.065
– volume: 10
  start-page: 99
  issue: 2
  year: 2002
  ident: 5953_CR45
  publication-title: Evolut Comput
  doi: 10.1162/106365602320169811
– volume: 32
  start-page: 1095
  issue: 4
  year: 2020
  ident: 5953_CR6
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04158-0
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 5953_CR38
  publication-title: Nature
  doi: 10.1038/323533a0
– volume-title: Handbook of neural network signal processing
  year: 2001
  ident: 5953_CR16
– ident: 5953_CR11
– volume: 35
  start-page: 537
  issue: 5
  year: 2020
  ident: 5953_CR28
  publication-title: Mater Manuf Process
  doi: 10.1080/10426914.2019.1643476
– volume: 315
  start-page: 89
  year: 2018
  ident: 5953_CR53
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.050
– ident: 5953_CR46
– ident: 5953_CR8
– ident: 5953_CR23
  doi: 10.1007/978-3-030-03493-1_62
– volume: 12
  start-page: 2825
  year: 2011
  ident: 5953_CR32
  publication-title: J Mach Learn Res
– ident: 5953_CR2
  doi: 10.1007/978-3-319-77553-1_1
– ident: 5953_CR24
  doi: 10.1007/978-3-030-49186-4_18
– ident: 5953_CR35
– ident: 5953_CR41
  doi: 10.1049/cp:19951094
– ident: 5953_CR17
  doi: 10.1016/j.ces.2020.115585
– ident: 5953_CR39
– ident: 5953_CR18
  doi: 10.1016/S0166-4115(97)80111-2
– volume: 13
  start-page: 1641
  issue: 6
  year: 1997
  ident: 5953_CR52
  publication-title: Inverse Probl
  doi: 10.1088/0266-5611/13/6/015
– volume: 39
  start-page: 251
  issue: 3
  year: 2013
  ident: 5953_CR7
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9270-6
SSID ssj0004685
Score 2.2838464
Snippet A multi-chromosomal structure for neuro-evolution of recurrent neural networks (RNNs) with Cartesian genetic programming (CGP) architecture is presented to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13265
SubjectTerms Algorithms
Artificial Intelligence
Cartesian coordinates
Chromosomes
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer architecture
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Genetic algorithms
Image Processing and Computer Vision
Machine learning
Neural networks
Optimization
Original Article
Probability and Statistics in Computer Science
Programming
Recurrent neural networks
Signal reconstruction
Speech
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPXixPrFaZQ_eNLh57i4eRIqPg5QiKsXLkk2yKGhb3dLfbybNtirYi4dcNg-WTDKZZGa-D6HjMjHEqIJjTpTG3KoSF5ol2ErKWaGIYh5L7-ku6XbTfj_rhQe3KoRV1jrRK2oz1PBGfkadXQtod4JcjD4wsEaBdzVQaCyjFUBJAOqGnnj-lhfpKTndDQaiezgLSTM-dQ7eQ91XKCITDPOfB9Pc2vzlIPXnznXzv3-8gdaDxRldTpfIJlqygy3UrNkcorC5t9G5z8XF-gUC9Krhu-vTuelh6_TXxJrovtuNnIEbQcCHq_IX6Rn47A56vL566NziQK2AtdtzY2y5MToxWVlaCY4zrrUwMeMqjY20pLDSSqmyRAktFbVE67hQtHS2Hy14agzbRY3BcGD3UBQbK117QSXNuNP8SlhLVJkqxsAeSVuI1POa64A7DvQXb_kMMdnLIo-hgCxy3kInsz6jKerGwtbtWgB52IFVPp_9FjqtRTiv_nu0_cWjHaA1CqvGx_O1UcNNtD1Eq3oyfq0-j_z6-wL57t_i
  priority: 102
  providerName: ProQuest
Title Multi-chromosomal CGP-evolved RNN for signal reconstruction
URI https://link.springer.com/article/10.1007/s00521-021-05953-4
https://www.proquest.com/docview/2585227951
Volume 33
WOSCitedRecordID wos000640857400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8Mw9OE2D16cnzidowdvGmiTNG3xpGPTg5QydQwvJU1SFHQTO_b7TbK2U1FBDznlJZT38r76vgBO8kB6kmcUUY8LRBXPUSZIgBTDlGTc48T20hvfBHEcTiZRUhaFFVW2exWStJK6LnYzfzC162uWH_kE0Qa0tLoLzcCG0e34QzWkHcSp_RaT00NJWSrz_R2f1dHKxvwSFrXaZtj-33duwWZpXToXy-ewDWtqugPtanKDUzLyLpzbulskHk0yXjF70Wf6VwlSWlYtlHRGcexoY9YxyR16yzrNdaPZPbgfDu7616gco4CE5q85UlRKEcgozxUzQTIqhC9dQnnoSqa8TDHFGI8C7gvGsfKEcDOOc23n4YyGUpJ9aE5nU3UAjisV0_A-ZjiiWspzXymP5yEnxNgeYQe8CpupKHuMm1EXz2ndHdliJ3XNMthJaQdO6zOvyw4bv0J3KyKlJbcVKdY-j-mE6HsdOKuIstr--bbDv4EfwQY2dLW5fF1oasSrY1gXi_lT8daD1uUgTkY9aCT-Q8--yXefndhC
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LTtwwcMSjEly6pQWxLS05wKlYJLbjJKpQVVFeYolWFUWIS3DsiUCiu9su2qo_1W_E4012WyS4ceDgS2yPFM94ZjxPgI0qsZHVpWQy0oZJ1BUrjUgYKi5FqSMtfC29s06S5-n5edadgb9NLgyFVTY80TNq2zdkI9_mTq-landx9Hnwk1HXKPKuNi00xmRxjH9-uyfbcOfoq8PvJuf7e6e7h6zuKsCMI7dbhtJak9isqlCRz0gaE9tQSJ2GVmFUokKldJbo2CjNMTImLDWvnNrDS5laKxzcWZiXkod0i7rxxT95mL4FqHsxUTSRFHWSjk_VI_ur-0ojzmLB5P-CcKrd3nPIejm333puJ_QKXtYadfBlfAWWYAZ7r6HVdKsIaub1Bj75XGNmrigAcdj_4fbsHnQZOv48Qht8y_PAKfABBbS4KW8omBTXXYbvT_ILKzDX6_dwFYLQonLrY654Jp1k0zFipKtUC0H6VtqGqMFjYeq66tTe46aYVIT2uC9CGoT7Qrbh42TPYFxV5NHVaw3Ci5rDDIspttuw1ZDMdPphaG8fh7YOC4enJ52ic5Qfv4NFThTrYxfXYM4dOr6HF2Z0ez389cHTfgCXT01Kd661QAY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1D74psGmSdMWn2Q6FUcZfoy9lTRJUdBuuLG_3yRruykqiA95yiWUu1xy17v7HcBxFkgseUoRxVwgqniGUkECpJhHScoxJxZLr9cJ4jjs96PuXBW_zXYvQ5LTmgaD0pSPz4YyO6sK38zfTO0Gm-FHPkF0EZaoSaQ3_vpDb64y0jbl1D6Mye-hpCib-X6Pz0_TzN78EiK1L0-7_v9vXoe1wup0LqbHZAMWVL4J9bKjg1Mo-Bac23pcJJ5Nkt5o8KbXtK67SOk7bKKkcx_HjjZyHZP0oaesM10B0G7DU_vqsXWDivYKSGi9GyNFpRSBjLJMMRM8o0L40iWUh65kCqeKKcZ4FHBfMO4pLISbci_T9p-X0lBKsgO1fJCrXXBcqZim9z3mRVTf_txXCvMs5IQYmyRsAC45m4gCe9y0wHhNKtRky53ENcNwJ6ENOKnWDKfIG79SN0uBJYUWjhJP-0IGIdHHDTgtBTSb_nm3vb-RH8FK97KddG7ju31Y9YyIbbpfE2paBuoAlsVk_DJ6P7SH8wOqnuFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-chromosomal+CGP-evolved+RNN+for+signal+reconstruction&rft.jtitle=Neural+computing+%26+applications&rft.au=Khan%2C+Nadia+Masood&rft.au=Khan%2C+Gul+Muhammad&rft.date=2021-10-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=20&rft.spage=13265&rft.epage=13285&rft_id=info:doi/10.1007%2Fs00521-021-05953-4&rft.externalDocID=10_1007_s00521_021_05953_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon