Joint ECG–EMG–EEG signal compression and reconstruction with incremental multimodal autoencoder approach

Through wearable technology, several chronic diseases are diagnosed by long-term monitoring of vital signs specifically ECG, EMG, EEG biosignals. Such prolonged monitoring and transmitting these multiple recordings may decline the battery power of wireless wearable device. This work aims at preservi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Circuits, systems, and signal processing Ročník 41; číslo 11; s. 6152 - 6181
Hlavní autoři: Dasan, Evangelin, Gnanaraj, Rajakumar
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2022
Springer Nature B.V
Témata:
ISSN:0278-081X, 1531-5878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Through wearable technology, several chronic diseases are diagnosed by long-term monitoring of vital signs specifically ECG, EMG, EEG biosignals. Such prolonged monitoring and transmitting these multiple recordings may decline the battery power of wireless wearable device. This work aims at preserving the battery power of wireless wearables by jointly compressing ECG–EMG–EEG signals before sending to the receiver. This work proposes multimodal deep denoising convolutional autoencoder architecture for joint compression (encoding) and reconstruction (decoding) of ECG–EMG–EEG biosignals. In addition, the system may encounter new data stream in future with varying range of statistics in this real-time scenario; hence, it is required to remodel the system. But these wearables are memory constrained, so the model’s learned optimized parameters should not increase in size when it is remodeled or updated. The incremental learning addresses this issue by reusing the previously learned weights as initial weight for retraining the model for new dataset and avoids random weight initialization thereby maintaining the space and time complexity. The experimental result shows that the proposed model achieves better compression efficiency of 99.8% with highest reconstruction Quality Score of 156, 254 & 149.4 for ECG, EMG & EEG signals, respectively, than state-of-the-art methods, and it is observed that the computation time is low for joint compression than compressing each signal individually.
AbstractList Through wearable technology, several chronic diseases are diagnosed by long-term monitoring of vital signs specifically ECG, EMG, EEG biosignals. Such prolonged monitoring and transmitting these multiple recordings may decline the battery power of wireless wearable device. This work aims at preserving the battery power of wireless wearables by jointly compressing ECG–EMG–EEG signals before sending to the receiver. This work proposes multimodal deep denoising convolutional autoencoder architecture for joint compression (encoding) and reconstruction (decoding) of ECG–EMG–EEG biosignals. In addition, the system may encounter new data stream in future with varying range of statistics in this real-time scenario; hence, it is required to remodel the system. But these wearables are memory constrained, so the model’s learned optimized parameters should not increase in size when it is remodeled or updated. The incremental learning addresses this issue by reusing the previously learned weights as initial weight for retraining the model for new dataset and avoids random weight initialization thereby maintaining the space and time complexity. The experimental result shows that the proposed model achieves better compression efficiency of 99.8% with highest reconstruction Quality Score of 156, 254 & 149.4 for ECG, EMG & EEG signals, respectively, than state-of-the-art methods, and it is observed that the computation time is low for joint compression than compressing each signal individually.
Author Gnanaraj, Rajakumar
Dasan, Evangelin
Author_xml – sequence: 1
  givenname: Evangelin
  orcidid: 0000-0002-2709-7266
  surname: Dasan
  fullname: Dasan, Evangelin
  email: evedasan@gmail.com
  organization: Department of Electronics and Communication Engineering, Francis Xavier Engineering College
– sequence: 2
  givenname: Rajakumar
  surname: Gnanaraj
  fullname: Gnanaraj, Rajakumar
  organization: Department of Electronics and Communication Engineering, Francis Xavier Engineering College
BookMark eNp9kE1OBCEQhYnRxPHnAq46cd1aQCP00kzGUaNxo4k7wtCgmG4YgY668w7e0JPIOCYmLlxQkMr3inpvB2364A1CBxiOMAA_TgBAmxoIKQc4rl830AQzimsmuNhEEyBc1CDw_TbaSekJALdNSyaovwzO52o2nX--f8yuv-tsXiX34FVf6TAso0nJBV8p31XR6OBTjqPOq9aLy4-V8zqawfhc-GHssxtCV55qzMF4HToTK7VcxqD04x7asqpPZv_n3kV3Z7Pb6Xl9dTO_mJ5e1ZriNtem0aQ4WXDLaMcstLwVJ4pwYmm7YGD4AhhjmBbKnlgwhAK3HWZNIzpuG0F30eF6bvn2eTQpy6cwxmIoScIxa4FRwQol1pSOIaVorNQuq5WxHJXrJQa5ylaus5VlI_mdrXwtUvJHuoxuUPHtfxFdi1KB_YOJv1v9o_oCqeqRNg
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3347592
crossref_primary_10_3389_fninf_2024_1459970
crossref_primary_10_1016_j_eswa_2025_128927
crossref_primary_10_1007_s00034_024_02658_6
crossref_primary_10_1007_s42979_024_03508_7
crossref_primary_10_1016_j_bspc_2024_106272
crossref_primary_10_1016_j_procs_2023_08_183
crossref_primary_10_1007_s00500_023_08680_1
crossref_primary_10_1016_j_compbiomed_2025_109888
crossref_primary_10_1007_s11517_024_03246_1
crossref_primary_10_1016_j_engappai_2024_108123
crossref_primary_10_1016_j_bspc_2024_106717
crossref_primary_10_3390_brainsci15020098
Cites_doi 10.1109/JBHI.2014.2327194
10.1109/TIM.2019.2922054
10.36478/ijssceapp.2019.1.7
10.1142/s0129065716500313
10.1109/TBME.2016.2631620
10.1109/JBHI.2018.2817192
10.1109/GLOCOM.2018.8647543
10.1109/TNSRE.2018.2826559
10.1109/MNET.2018.1700367
10.13026/C24S3D
10.1109/ACCESS.2017.2749758
10.1109/CVPR.2014.220
10.1109/IWCMC.2018.8450511
10.1109/ACCESS.2020.3023915
10.1109/JBHI.2018.2792404
10.1109/ACCESS.2020.2999091
10.1109/TITB.2007.899497
10.1109/TBME.2004.827088
10.1109/JSAC.2009.090509
10.1109/JIOT.2020.2974678
10.1007/s00034-016-0444-y
10.1109/JSEN.2019.2930546
10.1016/j.cmpb.2019.03.019
10.1016/j.bspc.2020.102225
10.1109/TII.2017.2759185
10.1109/IEMBS.2006.260799
10.1109/TBCAS.2017.2760298
10.1109/JBHI.2017.2698498
10.1109/TITB.2005.854512
10.1016/j.jocn.2017.04.035
10.1016/j.neuroimage.2007.01.051
10.1109/TBME.2008.919729
10.1109/ICComm.2016.7528296
10.1109/TIM.2019.2936776
10.1016/j.cogsys.2018.07.004
10.13026/C2RG61
10.1109/JBHI.2022.3142034
10.1103/physreve.64.061907
10.1109/TBME.2007.896596
10.21227/awcw-mn88
10.1109/TSP.2019.2961234
10.1109/TBCAS.2018.2828031
10.1109/TNSRE.2020.3042655
10.1109/LSP.2015.2476667
10.1109/JBHI.2017.2765922
10.1109/51.932725
10.1109/TBCAS.2020.2982824
10.13026/C2F305
10.1109/ACCESS.2020.2995442
10.6084/m9.figshare.11860572.v1
10.13026/x4td-x982
10.1109/MIM.2018.8278812
10.1109/TIM.2021.3122119
10.1109/TNNLS.2021.3072041
10.1002/tee.22445
10.1155/2011/860549
10.1109/TII.2018.2793246
10.1109/WCNC.2017.7925709
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7SP
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1007/s00034-022-02071-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1531-5878
EndPage 6181
ExternalDocumentID 10_1007_s00034_022_02071_x
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29B
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
88I
8AO
8FE
8FG
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-e4c2022b7f53d5f097986a272f39b50e7b055513c20f6f0e2307fd15448d7f483
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000817841400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-081X
IngestDate Fri Nov 07 23:23:15 EST 2025
Sat Nov 29 01:55:16 EST 2025
Tue Nov 18 22:04:32 EST 2025
Fri Feb 21 02:45:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Incremental learning
Joint multi-modality compression
Multi-sensor wearable system
Multimodal Autoencoder
Wireless wearable device
Biomedical signal processing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e4c2022b7f53d5f097986a272f39b50e7b055513c20f6f0e2307fd15448d7f483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2709-7266
PQID 2715905385
PQPubID 30136
PageCount 30
ParticipantIDs proquest_journals_2715905385
crossref_citationtrail_10_1007_s00034_022_02071_x
crossref_primary_10_1007_s00034_022_02071_x
springer_journals_10_1007_s00034_022_02071_x
PublicationCentury 2000
PublicationDate 20221100
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 20221100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Cambridge
PublicationSubtitle CSSP
PublicationTitle Circuits, systems, and signal processing
PublicationTitleAbbrev Circuits Syst Signal Process
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BurgueraAFast QRS detection and ECG compression based on signal structural analysisIEEE J. Biomed. Health Inform.20192312313110.1109/JBHI.2018.2792404
TaigmanYYangMRanzatoMWolfLDeepFace: closing the gap to human-level performance in face verificationIEEE Conf. Comput. Vis. Pattern Recogn.201410.1109/CVPR.2014.220
DasanEPanneerselvamIA novel dimensionality reduction approach for ECG signal via convolutional denoising autoencoder with LSTMElsevier Biomed. Signal Process. Control20216311110.1016/j.bspc.2020.102225
MukhopadhyaySKOmair AhmadMSwamyMNSSVD and ASCII character encoding-based compression of multiple biosignals for remote healthcare systemsIEEE Trans. Biomed. Circ. Syst.20181213715010.1109/TBCAS.2017.2760298
D.A. Clevert, T. Unterthiner, S. Hochreiter, Fast accurate deep network learning by exponential linear units (ELUs). https://arxiv.org/abs/1511.07289 (2015)
SriraamNEswaranCPerformance evaluation of neural network and linear predictors for near-lossless compression of EEG signalsIEEE Trans. Inf Technol. Biomed.200812879310.1109/TITB.2007.899497
TestaDDRossiMLightweight lossy compression of biometric patterns via denoising autoencodersIEEE Signal Process. Lett.2015222304230810.1109/LSP.2015.2476667
ParadisoRLorigaGTacciniNA wearable health care system based on knitted integrated sensorsIEEE Trans. Inf. Technol. Biomed.2005933734410.1109/TITB.2005.854512
B. Deepa, K. Ramesh, Preprocessed CHB-MIT scalp EEG database. IEEE Dataport (2021). https://doi.org/10.21227/awcw-mn88
ShawLRahmanDRoutrayAHighly efficient compression algorithms for multichannel EEGIEEE Trans. Neural Syst. Rehab. Eng.20182695796810.1109/TNSRE.2018.2826559
KlöschGKempBPenzelTSchlöglARappelsbergerPTrenkerEGruberGZeitlhoferJSaletuBHerrmannWMHimanenSLKunzDBarbanojMJRöschkeJVärriADorffnerGThe SIESTA project polygraphic and clinical databaseIEEE Eng. Med. Biol. Mag.200120515710.1109/51.932725
LiuDHImtiazSAStudying the effects of compression in EEG-based wearable sleep monitoring systemsIEEE Access2020816848616850110.1109/ACCESS.2020.3023915
MitraDZanddizariHRajanSInvestigation of Kronecker-based recovery of compressed ECG signalIEEE Trans. Instrum. Measur.2020693642365310.1109/TIM.2019.2936776
A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P.C. Ivanov, R. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation [Online]. 101(23), e215–e220. https://doi.org/10.13026/C2F305
S. Devuyst, The dreams subjects database. http://www.tcts.fpms.ac.be/devuyst/Databases/DatabaseSubjects/ (2004)
HooshmandMZordanDMelodiaTRossiMSURF: subject-adaptive unsupervised ECG signal compression for wearable fitness monitorsIEEE Access20175195171953510.1109/ACCESS.2017.2749758
IyengarNPengC-KMorinRGoldbergerALLipsitzLAAge-related alterations in the fractal scaling of cardiac interbeat interval dynamicsAm. J. Physiol.19962711078108410.13026/C2RG61
TrabucoMHCostaMVCMacchiavelloBde NascimentoFAOS-EMG signal compression in one-dimensional and two-dimensional approachesIEEE J. Biomed. Health Inform.2018221104111310.1109/JBHI.2017.2765922
SinghJSharmaRKMaking sleep study instrumentation more unobtrusiveIEEE Instrum. Meas. Mag.201821505310.1109/MIM.2018.8278812
SriraamNQuality-on-demand compression of EEG signals for telemedicine applications using neural network predictorsHINDAWI Int. J. Telemed. Appl.201110.1155/2011/860549
Z. Abeer, A. M. Al-Marridi, A. Erbad, Convolutional autoencoder approach for EEG compression and reconstruction in m-health systems. In: IEEE 14th International Wireless Communications and Mobile Computing Conference (IWCMC) (2018). https://doi.org/10.1109/IWCMC.2018.8450511
FilhoEBLda SilvaEABde CarvalhoMBOn EMG signal compression with recurrent patternsIEEE Trans. Biomed. Eng2008551920192310.1109/TBME.2008.919729
MangiaMPronoLMarchioniAPareschiFRovattiRSettiGDeep neural oracles for short-window optimized compressed sensing of biosignalsIEEE Trans. Biomed. Circ. Syst.20201454555710.1109/TBCAS.2020.2982824
PenzelTMoodyGBMarkRGGoldbergerALPeterJHThe Apnea-ECG databaseComput. Cardiol.200027255258
BlankertzBDornhegeGKrauledatMMüllerK-RCurioGThe non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjectsNeuroimage20073753955010.1016/j.neuroimage.2007.01.051
WuFYangKYangZCompressed acquisition and denoising recovery of EMGdi signal in WSNs and IoTIEEE Trans. Ind. Inform.2017142210221910.1109/TII.2017.2759185
QianJTiwariPGochhayatSPPandeyHMA noble double dictionary based ECG compression technique for IoTHIEEE Internet Things J.20207101601017010.1109/JIOT.2020.2974678
HuFXiaoYHaoQCongestion-aware loss-resilient bio-monitoring sensor networking for mobile health applicationsIEEE J. Select. Areas Commun.20092745046510.1109/JSAC.2009.090509
KhalidBMajidMNizamiIFAnwarSMAlnowamiMEEG compression using motion compensated temporal filtering and wavelet Based subband codingIEEE Access2020810250210251110.1109/ACCESS.2020.2999091
JinLZhangYWangX-LZhangW-JLiuY-HJiangZPostictal apnea as an important mechanism for SUDEP: a near-SUDEP with continuous EEG-ECG-EMG recordingELSEVIER J. Clin. Neurosci.20174313013210.1016/j.jocn.2017.04.035
M. M. Andrade, J. C. Carmo, F. A. O. Nascimento, J. F. Camapum, I. dos Santos, L. R. Mochizuki, A. F. Rocha, Evaluation of techniques for the study of electromyographic signals. In: Proc. 28th IEEE Int. Conf. Eng. Med. Biol. Soc. (EMBS) 1335–1338 (2006)
Oyob-OkassaAJNgonoJMElePCompression of the EMG signals by Walsh-Hadamard transform associated with the predictive coding DPCMInt. J. Syst. Signal Control Eng. Appl.2019121710.36478/ijssceapp.2019.1.7
ZhaoHWangHFuYWuFLiXMemory efficient class-incremental learning for image classificationIEEE Trans. Neural Networks Learn. Syst. (Early Access)202110.1109/TNNLS.2021.3072041
A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P.C. Ivanov, R. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation [Online]. 101(23), e215–e220. https://doi.org/10.13026/C24S3D
TanCZhangLHau-tiengWA Novel Blaschke unwinding adaptive Fourier decomposition based signal compression algorithm with application on ECG signalsIEEE J. Biomed. Health Inform.20172367268210.1109/JBHI.2018.2817192
SaidABMohamedAElfoulyTHarrasKJane-WangZMultimodal deep learning approach for joint EEG-EMG data compression and classificationIEEE Wireless Commun. Networking Conf. (WCNC)201710.1109/WCNC.2017.7925709
ChouCEn-JuiCHuai-TingLAn-YeuWLow-complexity privacy—preserving compressive analysis using subspace-based dictionary for ECG telemonitoring systemIEEE Trans. Biomed. Circ. Syst.20181280181110.1109/TBCAS.2018.2828031
YildirimORajendra AcharyaUSan TanRAn efficient compression of ECG signals using deep convolutional autoencodersArticle Cogn. Syst. Res.20185219821110.1016/j.cogsys.2018.07.004
LiCTaoWChengJLiuYChenXRobust multichannel EEG compressed sensing in the presence of mixed noiseIEEE Sens. J.201919105741058310.1109/JSEN.2019.2930546
WangNYHsiao-LanSWTao-WeiWSzu-WeiFXuganLHsin-MinWTsaoYImproving the intelligibility of speech for simulated electric and acoustic stimulation using fully convolutional neural networksIEEE Trans. Neural Syst. Rehabilit. Eng.20202918419510.1109/TNSRE.2020.3042655
CaoYZhangHYong-BaeCWangHXiaoSHybrid deep learning model assisted data compression and classification for efficient data delivery in mobile health applicationsIEEE Access20208947579476610.1109/ACCESS.2020.2995442
BrechetLMarie-FrançoiseLDoncarliCFarinaDCompression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selectionIEEE Trans. Biomed. Eng.2007542186219210.1109/TBME.2007.896596
CravenDMcGinleyBKilmartinLGlavinMJonesECompressed sensing for bioelectric signals: a reviewIEEE J. Biomed. Health Inform.20151952954010.1109/JBHI.2014.2327194
BanerjeeSSinghGKQuality guaranteed ECG signal compression using tunable-Q wavelet transform and Möbius transform-based AFDIEEE Trans. Instrum. Measur.2021704008211400822110.1109/TIM.2021.3122119
Oyobé-OkassaAJAssoumouDAEléPCompression of EMG signals by super imposing methods: case of WPT and DCTInt. J. Eng. Technol.2016813351343
CisottoGGuglielmiAVBadiaLZanellaAJoint compression of EEG and EMG signals for wireless biometricsIEEE Glob. Commun. Conf. (GLOBECOM)201810.1109/GLOCOM.2018.8647543
GognaAMajumdarAWardRSemi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signalsIEEE Trans. Biomed. Eng.2017642196220510.1109/TBME.2016.2631620
KovácsPFridliSSchippFGeneralized rational variable projection with application in ECG compressionIEEE Trans. Signal Process.20206847849210.1109/TSP.2019.2961234
LiuTYLinKJWuHCECG data encryption then compression using singular value decompositionIEEE J. Biomed. Health Inform.20172270771310.1109/JBHI.2017.2698498
RavelomanantsoaARouaneARabahHFerveurNColletLDesign and implementation of a compressed sensing encoder: application to EMG and ECG wireless biosensorsCirc. Syst. Signal Process.2017362875289210.1007/s00034-016-0444-y
R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C. E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64, 1–8 (2001). https://doi.org/10.1103/physreve.64.061907
CoganDBirjandtalabJNouraniMMulti-biosignal analysis for epileptic seizure monitoringInt. J. Neural Syst.20162611810.1142/s0129065716500313
LinHYuan-YaoSAi-ChunPChun-TingCVirtual local-hub: a service platform on the edge of networks for wearable devicesIEEE Network20183211412110.1109/MNET.2018.1700367
TakabayashiKKarvonenHPasTTanakaHSugimotoCKohnoRPerformance evaluation of a QoS-aware error control scheme for multiple-WBAN environmentIEEJ Trans. Electr. Electron. Eng.201712S146S15710.1002/tee.22445
DornhegeGBlan
TY Liu (2071_CR34) 2017; 22
M Mangia (2071_CR36) 2020; 14
H Zhao (2071_CR62) 2021
N Iyengar (2071_CR26) 1996; 271
L Jin (2071_CR27) 2017; 43
K Dinashi (2071_CR18) 2022
EBL Filho (2071_CR20) 2008; 55
B Khalid (2071_CR28) 2020; 8
P Bera (2071_CR5) 2019; 69
J Qian (2071_CR45) 2020; 7
K Takabayashi (2071_CR54) 2017; 12
2071_CR12
M Hooshmand (2071_CR24) 2017; 5
N Sriraam (2071_CR50) 2008; 12
F Wu (2071_CR58) 2017; 14
2071_CR17
L Shaw (2071_CR48) 2018; 26
A Gogna (2071_CR22) 2017; 64
SK Mukhopadhyay (2071_CR40) 2018; 12
D Cogan (2071_CR13) 2016; 26
2071_CR16
2071_CR3
2071_CR2
N Sriraam (2071_CR51) 2011
2071_CR1
AJ Oyobé-Okassa (2071_CR41) 2016; 8
E Dasan (2071_CR15) 2021; 63
AJ Oyob-Okassa (2071_CR42) 2019; 12
L Brechet (2071_CR7) 2007; 54
MH Trabuco (2071_CR55) 2018; 22
2071_CR23
B Blankertz (2071_CR6) 2007; 37
G Klösch (2071_CR29) 2001; 20
F Hu (2071_CR25) 2009; 27
DD Testa (2071_CR53) 2015; 22
M Fira (2071_CR21) 2016
H Lin (2071_CR33) 2018; 32
P Kovács (2071_CR30) 2020; 68
S Banerjee (2071_CR4) 2021; 70
R Paradiso (2071_CR43) 2005; 9
G Cisotto (2071_CR11) 2018
T Penzel (2071_CR44) 2000; 27
NY Wang (2071_CR59) 2020; 29
C Tan (2071_CR52) 2017; 23
C Chou (2071_CR10) 2018; 12
A Burguera (2071_CR8) 2019; 23
D Craven (2071_CR14) 2015; 19
C Li (2071_CR31) 2019; 19
AB Said (2071_CR47) 2017
O Yildirim (2071_CR61) 2018; 52
M Ma (2071_CR35) 2018; 14
2071_CR39
P Wagner (2071_CR60) 2020
2071_CR37
J Singh (2071_CR49) 2018; 21
G Dornhege (2071_CR19) 2004; 51
D Mitra (2071_CR38) 2020; 69
Y Cao (2071_CR9) 2020; 8
Y Taigman (2071_CR56) 2014
DH Liu (2071_CR32) 2020; 8
F Wang (2071_CR57) 2019; 175
A Ravelomanantsoa (2071_CR46) 2017; 36
References_xml – reference: GognaAMajumdarAWardRSemi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signalsIEEE Trans. Biomed. Eng.2017642196220510.1109/TBME.2016.2631620
– reference: TestaDDRossiMLightweight lossy compression of biometric patterns via denoising autoencodersIEEE Signal Process. Lett.2015222304230810.1109/LSP.2015.2476667
– reference: KovácsPFridliSSchippFGeneralized rational variable projection with application in ECG compressionIEEE Trans. Signal Process.20206847849210.1109/TSP.2019.2961234
– reference: D.A. Clevert, T. Unterthiner, S. Hochreiter, Fast accurate deep network learning by exponential linear units (ELUs). https://arxiv.org/abs/1511.07289 (2015)
– reference: TaigmanYYangMRanzatoMWolfLDeepFace: closing the gap to human-level performance in face verificationIEEE Conf. Comput. Vis. Pattern Recogn.201410.1109/CVPR.2014.220
– reference: MangiaMPronoLMarchioniAPareschiFRovattiRSettiGDeep neural oracles for short-window optimized compressed sensing of biosignalsIEEE Trans. Biomed. Circ. Syst.20201454555710.1109/TBCAS.2020.2982824
– reference: ChouCEn-JuiCHuai-TingLAn-YeuWLow-complexity privacy—preserving compressive analysis using subspace-based dictionary for ECG telemonitoring systemIEEE Trans. Biomed. Circ. Syst.20181280181110.1109/TBCAS.2018.2828031
– reference: Oyob-OkassaAJNgonoJMElePCompression of the EMG signals by Walsh-Hadamard transform associated with the predictive coding DPCMInt. J. Syst. Signal Control Eng. Appl.2019121710.36478/ijssceapp.2019.1.7
– reference: TakabayashiKKarvonenHPasTTanakaHSugimotoCKohnoRPerformance evaluation of a QoS-aware error control scheme for multiple-WBAN environmentIEEJ Trans. Electr. Electron. Eng.201712S146S15710.1002/tee.22445
– reference: A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P.C. Ivanov, R. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation [Online]. 101(23), e215–e220. https://doi.org/10.13026/C24S3D
– reference: LiuDHImtiazSAStudying the effects of compression in EEG-based wearable sleep monitoring systemsIEEE Access2020816848616850110.1109/ACCESS.2020.3023915
– reference: LiCTaoWChengJLiuYChenXRobust multichannel EEG compressed sensing in the presence of mixed noiseIEEE Sens. J.201919105741058310.1109/JSEN.2019.2930546
– reference: MukhopadhyaySKOmair AhmadMSwamyMNSSVD and ASCII character encoding-based compression of multiple biosignals for remote healthcare systemsIEEE Trans. Biomed. Circ. Syst.20181213715010.1109/TBCAS.2017.2760298
– reference: LiuTYLinKJWuHCECG data encryption then compression using singular value decompositionIEEE J. Biomed. Health Inform.20172270771310.1109/JBHI.2017.2698498
– reference: LinHYuan-YaoSAi-ChunPChun-TingCVirtual local-hub: a service platform on the edge of networks for wearable devicesIEEE Network20183211412110.1109/MNET.2018.1700367
– reference: KlöschGKempBPenzelTSchlöglARappelsbergerPTrenkerEGruberGZeitlhoferJSaletuBHerrmannWMHimanenSLKunzDBarbanojMJRöschkeJVärriADorffnerGThe SIESTA project polygraphic and clinical databaseIEEE Eng. Med. Biol. Mag.200120515710.1109/51.932725
– reference: DornhegeGBlankertzBCurioGMüllerKRBoosting bitrates in noninvasive EEG single-trial classications by feature combination and multiclass paradigmsIEEE Trans. Biomed. Eng.200451993100210.1109/TBME.2004.827088
– reference: HuFXiaoYHaoQCongestion-aware loss-resilient bio-monitoring sensor networking for mobile health applicationsIEEE J. Select. Areas Commun.20092745046510.1109/JSAC.2009.090509
– reference: TrabucoMHCostaMVCMacchiavelloBde NascimentoFAOS-EMG signal compression in one-dimensional and two-dimensional approachesIEEE J. Biomed. Health Inform.2018221104111310.1109/JBHI.2017.2765922
– reference: ShawLRahmanDRoutrayAHighly efficient compression algorithms for multichannel EEGIEEE Trans. Neural Syst. Rehab. Eng.20182695796810.1109/TNSRE.2018.2826559
– reference: SriraamNQuality-on-demand compression of EEG signals for telemedicine applications using neural network predictorsHINDAWI Int. J. Telemed. Appl.201110.1155/2011/860549
– reference: MitraDZanddizariHRajanSInvestigation of Kronecker-based recovery of compressed ECG signalIEEE Trans. Instrum. Measur.2020693642365310.1109/TIM.2019.2936776
– reference: CaoYZhangHYong-BaeCWangHXiaoSHybrid deep learning model assisted data compression and classification for efficient data delivery in mobile health applicationsIEEE Access20208947579476610.1109/ACCESS.2020.2995442
– reference: WuFYangKYangZCompressed acquisition and denoising recovery of EMGdi signal in WSNs and IoTIEEE Trans. Ind. Inform.2017142210221910.1109/TII.2017.2759185
– reference: YildirimORajendra AcharyaUSan TanRAn efficient compression of ECG signals using deep convolutional autoencodersArticle Cogn. Syst. Res.20185219821110.1016/j.cogsys.2018.07.004
– reference: R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C. E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64, 1–8 (2001). https://doi.org/10.1103/physreve.64.061907
– reference: TanCZhangLHau-tiengWA Novel Blaschke unwinding adaptive Fourier decomposition based signal compression algorithm with application on ECG signalsIEEE J. Biomed. Health Inform.20172367268210.1109/JBHI.2018.2817192
– reference: RavelomanantsoaARouaneARabahHFerveurNColletLDesign and implementation of a compressed sensing encoder: application to EMG and ECG wireless biosensorsCirc. Syst. Signal Process.2017362875289210.1007/s00034-016-0444-y
– reference: WangFMaQLiuWChangSWangHHeJHuangQA novel ECG signal compression method using spindle convolutional auto-encoderElsevier Comput. Methods Programs Biomed.201917513915010.1016/j.cmpb.2019.03.019
– reference: DinashiKAmeriAAkhaeeMAEnglehartKSchemeECompression of EMG signals using deep convolutional autoencodersIEEE J. Biomed. Health Inform.202210.1109/JBHI.2022.3142034
– reference: FilhoEBLda SilvaEABde CarvalhoMBOn EMG signal compression with recurrent patternsIEEE Trans. Biomed. Eng2008551920192310.1109/TBME.2008.919729
– reference: CisottoGGuglielmiAVBadiaLZanellaAJoint compression of EEG and EMG signals for wireless biometricsIEEE Glob. Commun. Conf. (GLOBECOM)201810.1109/GLOCOM.2018.8647543
– reference: JinLZhangYWangX-LZhangW-JLiuY-HJiangZPostictal apnea as an important mechanism for SUDEP: a near-SUDEP with continuous EEG-ECG-EMG recordingELSEVIER J. Clin. Neurosci.20174313013210.1016/j.jocn.2017.04.035
– reference: WagnerPStrodthoffNBousseljotRSamekWSchaeffterTPTB-XL, a large publicly available electrocardiography dataset (version 1.0.1)202010.13026/x4td-x982Physionet
– reference: BurgueraAFast QRS detection and ECG compression based on signal structural analysisIEEE J. Biomed. Health Inform.20192312313110.1109/JBHI.2018.2792404
– reference: S. Devuyst, The dreams subjects database. http://www.tcts.fpms.ac.be/devuyst/Databases/DatabaseSubjects/ (2004)
– reference: MaMSunCChenXDeep coupling autoencoder for fault diagnosis with multisensory dataIEEE Trans. Ind. Inform.2018141137114510.1109/TII.2018.2793246
– reference: IyengarNPengC-KMorinRGoldbergerALLipsitzLAAge-related alterations in the fractal scaling of cardiac interbeat interval dynamicsAm. J. Physiol.19962711078108410.13026/C2RG61
– reference: B. Deepa, K. Ramesh, Preprocessed CHB-MIT scalp EEG database. IEEE Dataport (2021). https://doi.org/10.21227/awcw-mn88
– reference: SaidABMohamedAElfoulyTHarrasKJane-WangZMultimodal deep learning approach for joint EEG-EMG data compression and classificationIEEE Wireless Commun. Networking Conf. (WCNC)201710.1109/WCNC.2017.7925709
– reference: Z. Abeer, A. M. Al-Marridi, A. Erbad, Convolutional autoencoder approach for EEG compression and reconstruction in m-health systems. In: IEEE 14th International Wireless Communications and Mobile Computing Conference (IWCMC) (2018). https://doi.org/10.1109/IWCMC.2018.8450511
– reference: WangNYHsiao-LanSWTao-WeiWSzu-WeiFXuganLHsin-MinWTsaoYImproving the intelligibility of speech for simulated electric and acoustic stimulation using fully convolutional neural networksIEEE Trans. Neural Syst. Rehabilit. Eng.20202918419510.1109/TNSRE.2020.3042655
– reference: CravenDMcGinleyBKilmartinLGlavinMJonesECompressed sensing for bioelectric signals: a reviewIEEE J. Biomed. Health Inform.20151952954010.1109/JBHI.2014.2327194
– reference: SinghJSharmaRKMaking sleep study instrumentation more unobtrusiveIEEE Instrum. Meas. Mag.201821505310.1109/MIM.2018.8278812
– reference: ZhaoHWangHFuYWuFLiXMemory efficient class-incremental learning for image classificationIEEE Trans. Neural Networks Learn. Syst. (Early Access)202110.1109/TNNLS.2021.3072041
– reference: BanerjeeSSinghGKQuality guaranteed ECG signal compression using tunable-Q wavelet transform and Möbius transform-based AFDIEEE Trans. Instrum. Measur.2021704008211400822110.1109/TIM.2021.3122119
– reference: ParadisoRLorigaGTacciniNA wearable health care system based on knitted integrated sensorsIEEE Trans. Inf. Technol. Biomed.2005933734410.1109/TITB.2005.854512
– reference: Oyobé-OkassaAJAssoumouDAEléPCompression of EMG signals by super imposing methods: case of WPT and DCTInt. J. Eng. Technol.2016813351343
– reference: BlankertzBDornhegeGKrauledatMMüllerK-RCurioGThe non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjectsNeuroimage20073753955010.1016/j.neuroimage.2007.01.051
– reference: A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P.C. Ivanov, R. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation [Online]. 101(23), e215–e220. https://doi.org/10.13026/C2F305
– reference: M. M. Andrade, J. C. Carmo, F. A. O. Nascimento, J. F. Camapum, I. dos Santos, L. R. Mochizuki, A. F. Rocha, Evaluation of techniques for the study of electromyographic signals. In: Proc. 28th IEEE Int. Conf. Eng. Med. Biol. Soc. (EMBS) 1335–1338 (2006)
– reference: QianJTiwariPGochhayatSPPandeyHMA noble double dictionary based ECG compression technique for IoTHIEEE Internet Things J.20207101601017010.1109/JIOT.2020.2974678
– reference: R. Martínez, Mónica, S. Higuita, L. Yanet, Jordanic, Mislav, Marateb, H. Reza, Merletti, Roberto, Villanueva, M.A. Mañanas, A high-density surface EMG dataset of upper-limb muscles during isometric contractions in healthy humans: Part1/3. figshare. Dataset (2020). https://doi.org/10.6084/m9.figshare.11860572.v1
– reference: SriraamNEswaranCPerformance evaluation of neural network and linear predictors for near-lossless compression of EEG signalsIEEE Trans. Inf Technol. Biomed.200812879310.1109/TITB.2007.899497
– reference: BrechetLMarie-FrançoiseLDoncarliCFarinaDCompression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selectionIEEE Trans. Biomed. Eng.2007542186219210.1109/TBME.2007.896596
– reference: HooshmandMZordanDMelodiaTRossiMSURF: subject-adaptive unsupervised ECG signal compression for wearable fitness monitorsIEEE Access20175195171953510.1109/ACCESS.2017.2749758
– reference: PenzelTMoodyGBMarkRGGoldbergerALPeterJHThe Apnea-ECG databaseComput. Cardiol.200027255258
– reference: CoganDBirjandtalabJNouraniMMulti-biosignal analysis for epileptic seizure monitoringInt. J. Neural Syst.20162611810.1142/s0129065716500313
– reference: KhalidBMajidMNizamiIFAnwarSMAlnowamiMEEG compression using motion compensated temporal filtering and wavelet Based subband codingIEEE Access2020810250210251110.1109/ACCESS.2020.2999091
– reference: DasanEPanneerselvamIA novel dimensionality reduction approach for ECG signal via convolutional denoising autoencoder with LSTMElsevier Biomed. Signal Process. Control20216311110.1016/j.bspc.2020.102225
– reference: BeraPGuptaRSahaJPreserving abnormal beat morphology in long-term ECG recording: an efficient hybrid compression approachIEEE Trans Instrum Measur2019692084209210.1109/TIM.2019.2922054
– reference: FiraMGorasLOn compressed sensing for EEG signals—validation with P300 speller paradigmInt. Conf. Commun. (COMM)201610.1109/ICComm.2016.7528296
– volume: 19
  start-page: 529
  year: 2015
  ident: 2071_CR14
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2327194
– volume: 69
  start-page: 2084
  year: 2019
  ident: 2071_CR5
  publication-title: IEEE Trans Instrum Measur
  doi: 10.1109/TIM.2019.2922054
– volume: 12
  start-page: 1
  year: 2019
  ident: 2071_CR42
  publication-title: Int. J. Syst. Signal Control Eng. Appl.
  doi: 10.36478/ijssceapp.2019.1.7
– volume: 26
  start-page: 1
  year: 2016
  ident: 2071_CR13
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/s0129065716500313
– volume: 64
  start-page: 2196
  year: 2017
  ident: 2071_CR22
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2631620
– volume: 23
  start-page: 672
  year: 2017
  ident: 2071_CR52
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2817192
– year: 2018
  ident: 2071_CR11
  publication-title: IEEE Glob. Commun. Conf. (GLOBECOM)
  doi: 10.1109/GLOCOM.2018.8647543
– volume: 26
  start-page: 957
  year: 2018
  ident: 2071_CR48
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2018.2826559
– volume: 32
  start-page: 114
  year: 2018
  ident: 2071_CR33
  publication-title: IEEE Network
  doi: 10.1109/MNET.2018.1700367
– volume: 8
  start-page: 1335
  year: 2016
  ident: 2071_CR41
  publication-title: Int. J. Eng. Technol.
– ident: 2071_CR23
  doi: 10.13026/C24S3D
– volume: 5
  start-page: 19517
  year: 2017
  ident: 2071_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2749758
– year: 2014
  ident: 2071_CR56
  publication-title: IEEE Conf. Comput. Vis. Pattern Recogn.
  doi: 10.1109/CVPR.2014.220
– ident: 2071_CR1
  doi: 10.1109/IWCMC.2018.8450511
– volume: 8
  start-page: 168486
  year: 2020
  ident: 2071_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023915
– volume: 23
  start-page: 123
  year: 2019
  ident: 2071_CR8
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2792404
– volume: 8
  start-page: 102502
  year: 2020
  ident: 2071_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2999091
– volume: 12
  start-page: 87
  year: 2008
  ident: 2071_CR50
  publication-title: IEEE Trans. Inf Technol. Biomed.
  doi: 10.1109/TITB.2007.899497
– volume: 51
  start-page: 993
  year: 2004
  ident: 2071_CR19
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827088
– volume: 27
  start-page: 450
  year: 2009
  ident: 2071_CR25
  publication-title: IEEE J. Select. Areas Commun.
  doi: 10.1109/JSAC.2009.090509
– volume: 7
  start-page: 10160
  year: 2020
  ident: 2071_CR45
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2974678
– volume: 36
  start-page: 2875
  year: 2017
  ident: 2071_CR46
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-016-0444-y
– volume: 19
  start-page: 10574
  year: 2019
  ident: 2071_CR31
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2930546
– volume: 175
  start-page: 139
  year: 2019
  ident: 2071_CR57
  publication-title: Elsevier Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.03.019
– volume: 63
  start-page: 1
  year: 2021
  ident: 2071_CR15
  publication-title: Elsevier Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102225
– volume: 14
  start-page: 2210
  year: 2017
  ident: 2071_CR58
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2759185
– ident: 2071_CR2
  doi: 10.1109/IEMBS.2006.260799
– volume: 12
  start-page: 137
  year: 2018
  ident: 2071_CR40
  publication-title: IEEE Trans. Biomed. Circ. Syst.
  doi: 10.1109/TBCAS.2017.2760298
– volume: 22
  start-page: 707
  year: 2017
  ident: 2071_CR34
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2698498
– volume: 9
  start-page: 337
  year: 2005
  ident: 2071_CR43
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2005.854512
– volume: 43
  start-page: 130
  year: 2017
  ident: 2071_CR27
  publication-title: ELSEVIER J. Clin. Neurosci.
  doi: 10.1016/j.jocn.2017.04.035
– volume: 37
  start-page: 539
  year: 2007
  ident: 2071_CR6
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.01.051
– volume: 55
  start-page: 1920
  year: 2008
  ident: 2071_CR20
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2008.919729
– year: 2016
  ident: 2071_CR21
  publication-title: Int. Conf. Commun. (COMM)
  doi: 10.1109/ICComm.2016.7528296
– volume: 69
  start-page: 3642
  year: 2020
  ident: 2071_CR38
  publication-title: IEEE Trans. Instrum. Measur.
  doi: 10.1109/TIM.2019.2936776
– volume: 52
  start-page: 198
  year: 2018
  ident: 2071_CR61
  publication-title: Article Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.07.004
– volume: 271
  start-page: 1078
  year: 1996
  ident: 2071_CR26
  publication-title: Am. J. Physiol.
  doi: 10.13026/C2RG61
– year: 2022
  ident: 2071_CR18
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3142034
– ident: 2071_CR3
  doi: 10.1103/physreve.64.061907
– volume: 54
  start-page: 2186
  year: 2007
  ident: 2071_CR7
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.896596
– ident: 2071_CR16
  doi: 10.21227/awcw-mn88
– volume: 68
  start-page: 478
  year: 2020
  ident: 2071_CR30
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2961234
– volume: 12
  start-page: 801
  year: 2018
  ident: 2071_CR10
  publication-title: IEEE Trans. Biomed. Circ. Syst.
  doi: 10.1109/TBCAS.2018.2828031
– volume: 29
  start-page: 184
  year: 2020
  ident: 2071_CR59
  publication-title: IEEE Trans. Neural Syst. Rehabilit. Eng.
  doi: 10.1109/TNSRE.2020.3042655
– volume: 22
  start-page: 2304
  year: 2015
  ident: 2071_CR53
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2015.2476667
– volume: 22
  start-page: 1104
  year: 2018
  ident: 2071_CR55
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2765922
– volume: 20
  start-page: 51
  year: 2001
  ident: 2071_CR29
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932725
– ident: 2071_CR17
– volume: 27
  start-page: 255
  year: 2000
  ident: 2071_CR44
  publication-title: Comput. Cardiol.
– volume: 14
  start-page: 545
  year: 2020
  ident: 2071_CR36
  publication-title: IEEE Trans. Biomed. Circ. Syst.
  doi: 10.1109/TBCAS.2020.2982824
– ident: 2071_CR39
  doi: 10.13026/C2F305
– volume: 8
  start-page: 94757
  year: 2020
  ident: 2071_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995442
– ident: 2071_CR37
  doi: 10.6084/m9.figshare.11860572.v1
– year: 2020
  ident: 2071_CR60
  doi: 10.13026/x4td-x982
– volume: 21
  start-page: 50
  year: 2018
  ident: 2071_CR49
  publication-title: IEEE Instrum. Meas. Mag.
  doi: 10.1109/MIM.2018.8278812
– volume: 70
  start-page: 4008211
  year: 2021
  ident: 2071_CR4
  publication-title: IEEE Trans. Instrum. Measur.
  doi: 10.1109/TIM.2021.3122119
– year: 2021
  ident: 2071_CR62
  publication-title: IEEE Trans. Neural Networks Learn. Syst. (Early Access)
  doi: 10.1109/TNNLS.2021.3072041
– volume: 12
  start-page: S146
  year: 2017
  ident: 2071_CR54
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.22445
– year: 2011
  ident: 2071_CR51
  publication-title: HINDAWI Int. J. Telemed. Appl.
  doi: 10.1155/2011/860549
– volume: 14
  start-page: 1137
  year: 2018
  ident: 2071_CR35
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2793246
– year: 2017
  ident: 2071_CR47
  publication-title: IEEE Wireless Commun. Networking Conf. (WCNC)
  doi: 10.1109/WCNC.2017.7925709
– ident: 2071_CR12
SSID ssj0019492
Score 2.383811
Snippet Through wearable technology, several chronic diseases are diagnosed by long-term monitoring of vital signs specifically ECG, EMG, EEG biosignals. Such...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6152
SubjectTerms Algorithms
Bias
Chronic illnesses
Circuits and Systems
Communication
Compressing
Data transmission
Datasets
Dictionaries
Efficiency
Electrical Engineering
Electrocardiography
Electroencephalography
Electromyography
Electronics and Microelectronics
Engineering
Instrumentation
Literature reviews
Methods
Monitoring
Power
Receivers & amplifiers
Reconstruction
Sensors
Signal processing
Signal,Image and Speech Processing
Telemedicine
Wearable computers
Wearable technology
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPejBt1itkoM3DXafSU4iZVsRWnpQ6G3Z3SRQqLu1XaVH_4P_0F_iJPuoCvbiZQlsEkImyUxmvnyD0CXoeMlBcxDh2RwuKJ4iUZS4xPIjv-2AveFFzCSboIMBG434sHS4zUtYZXUmmoNaZIn2kd_YFBQvrBjm3U5fiM4apaOrZQqNdbQBlo2lIV19e1hHEbhrkiLr4BoB1TcqH82Yp3OGmYVoLDsYTNQii5-KaWlt_gqQGr3T3f3viPfQTmlx4rtiieyjNZkeoO1vPISHaPKQjdMcB53e5_tH0DffoIc1tgNaatR5gZZNcZQKbO7QNe8s1p5cPE6TwtEI9Q1G8TkTUIxe80wzZQo5wxV7-RF66gaPnXtSpmEgCezPnEg3sWGeYqo8R3iqzSlnfmRTWzk89tqSxpo0zHKglvJVW2pouRKa5YcJqlzmHKNGmqXyBGHJJLU9loDVoFyLCw59KlCXyomFEL5sIquSQZiUHOU6VcYkrNmVjdxCGE9o5BYumuiqbjMtGDpW1m5VwgrL3ToPl5JqoutK3Mvff_d2urq3M7SlZ654uthCDZCMPEebyVs-ns8uzFr9AsYe8GY
  priority: 102
  providerName: ProQuest
Title Joint ECG–EMG–EEG signal compression and reconstruction with incremental multimodal autoencoder approach
URI https://link.springer.com/article/10.1007/s00034-022-02071-x
https://www.proquest.com/docview/2715905385
Volume 41
WOSCitedRecordID wos000817841400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgQxEC3cDnpwF8dlyMGbBqaXdJKjSqsoDoMbg5emp5PAgPaIM4pH_8E_9EuspBcXVNBL0dCVECpLVVJVrwC2UMdriZqDKuZLvKAwQ9M0C6kXpVErQHuDpcIVm-Dttuh2ZadMChtW0e6VS9Kd1HWym8NSoTb6HE0c7lG0HCdR3QlbsOHs_Kr2HcjQlUK2LjWKCq9bpsp838dndfRuY35xizptczD3v3HOw2xpXZLdYjkswJjOF2HmA-bgEtwcD_r5iMT7h6_PL_Gpo_EhsXEc2NJGmBeRsTlJc0XcfbnGmCX21Zb086x4VER-F494O1D4mT6MBhYVU-l7UiGVL8PlQXyxf0TLkgs0w704ojrMfBx5jxsWKGZakksRpT73TSB7rKV5zwKEeQFymci0tA0jN8oi-gjFTSiCFZjIB7leBaKF5j4TGVoIJvSkktinQdVogp5SKtIN8CrJJ1mJR27LYtwkNZKyk2SC40mcJJOnBmzXbe4KNI5fuTeqCU3KnTlMfI4GHJ48gjVgp5rA998_97b2N_Z1mLaSLNIWN2ACZ0pvwlT2OOoP75swuRe3O2dNGD_hFOmp37GUnyPtsOumW9FvtTDsQg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQGo5lEdbsTyKD3CiVjfOw_EBIQTLmxUHKu0tzca2tBIkwC6P3vof-j_6o_pLmHGSXUAqNw5cokixR4n9xTOeGX8DsIo63ijUHFyHQuEGJbQ8TbOAe1EaNX20N8I0dsUmZLsddzrqdAz-1mdhKK2yXhPdQq2LjHzk34VExYuIicPNyytOVaMoulqX0ChhcWR-3eGWrb9xsIPzuybEbutse59XVQV4hnAbcBNkuOEXXWlDX4e2qaSKo1RIYX3VDZtGdokDy_OxlY1s01CmtNVEWhNraYPYR7nvYCIgZjFKFRSnw6iFClwRZgrmcVS1neqQjjuq55hgOOXOo4EmPX7_VBGOrNtnAVmn53an39oIzcDHyqJmW-UvMAtjJp-DqUc8i5_g_LDo5QPW2t779_tP68RdW3uMclewJ2XVl9nAOUtzzZyPYMiry8hTzXp5VjpSsb3LwbwoNN6mN4OCmEC1uWY1O_tn-PEqn_sFxvMiN_PATGykCOMMrSIbeEorlGnRHLB-V2sdmQZ49ZwnWcXBTqVAzpMhe7TDSYLvkzicJPcNWB_2uSwZSF5svVSDI6lWo34yQkYDvtXwGj3-v7SFl6WtwPv9s5Pj5PigfbQIH2gUy2OaSzCOs2SWYTK7HfT611_df8Lg52vD7gFbc0pR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTuMwFL3iMUKw4DGAKK_xAlaMRfNwHC8QQtAyPKbqgpEqNiGNbakSJEDLa8c_8Dd8Dl_CtZO0gDTsWLCJIsW2EvvE9_r6-FyANbTxSqDloJK5AhcoTNM4TnzqBHFQ9dDfYHFok03wRiNstURzCJ7LszCGVlnOiXaillliYuSbLkfDi4gJ2aYuaBHNvfr25RU1GaTMTmuZTiOHyJF6uMPlW3frYA_Het1167WT3T-0yDBAE4Rejyo_wcW_2-aaeZLpquAiDGKXu9oTbVZVvG30sBwPS-lAV5VhTWtpBGxCybUfetjuMIxyXGMaOmGTnfZ3MIRvEzKbjT2KZrdVHNixx_asKgw1PHp01rhD798bxYGn-2Fz1tq8-tR37q1pmCw8bbKT_xozMKTSnzDxRn9xFs4Ps07aI7Xd_ZfHp9pfe63tE8NpwZqGbZ-zhFMSp5LY2EFfb5eYCDbppEkeYMXylpt5kUm8jW96mVEIleqalKrtc_DvSz53HkbSLFULQFSouMvCBL0l7TtCCmxTo5ugvbaUMlAVcMrxj5JCm92kCDmP-qrSFjMRvk9kMRPdV2CjX-cyVyb5tPRyCZSomKW60QAlFfhdQm3w-P-tLX7e2i8YQ7RFxweNoyUYN52Yn95chhEcJLUCP5LbXqd7vWp_GQJnX426V0zyUz0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+ECG%E2%80%93EMG%E2%80%93EEG+signal+compression+and+reconstruction+with+incremental+multimodal+autoencoder+approach&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Dasan%2C+Evangelin&rft.au=Gnanaraj%2C+Rajakumar&rft.date=2022-11-01&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=41&rft.issue=11&rft.spage=6152&rft.epage=6181&rft_id=info:doi/10.1007%2Fs00034-022-02071-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00034_022_02071_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon