Joint ECG–EMG–EEG signal compression and reconstruction with incremental multimodal autoencoder approach
Through wearable technology, several chronic diseases are diagnosed by long-term monitoring of vital signs specifically ECG, EMG, EEG biosignals. Such prolonged monitoring and transmitting these multiple recordings may decline the battery power of wireless wearable device. This work aims at preservi...
Uloženo v:
| Vydáno v: | Circuits, systems, and signal processing Ročník 41; číslo 11; s. 6152 - 6181 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.11.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0278-081X, 1531-5878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Through wearable technology, several chronic diseases are diagnosed by long-term monitoring of vital signs specifically ECG, EMG, EEG biosignals. Such prolonged monitoring and transmitting these multiple recordings may decline the battery power of wireless wearable device. This work aims at preserving the battery power of wireless wearables by jointly compressing ECG–EMG–EEG signals before sending to the receiver. This work proposes multimodal deep denoising convolutional autoencoder architecture for joint compression (encoding) and reconstruction (decoding) of ECG–EMG–EEG biosignals. In addition, the system may encounter new data stream in future with varying range of statistics in this real-time scenario; hence, it is required to remodel the system. But these wearables are memory constrained, so the model’s learned optimized parameters should not increase in size when it is remodeled or updated. The incremental learning addresses this issue by reusing the previously learned weights as initial weight for retraining the model for new dataset and avoids random weight initialization thereby maintaining the space and time complexity. The experimental result shows that the proposed model achieves better compression efficiency of 99.8% with highest reconstruction Quality Score of 156, 254 & 149.4 for ECG, EMG & EEG signals, respectively, than state-of-the-art methods, and it is observed that the computation time is low for joint compression than compressing each signal individually. |
|---|---|
| AbstractList | Through wearable technology, several chronic diseases are diagnosed by long-term monitoring of vital signs specifically ECG, EMG, EEG biosignals. Such prolonged monitoring and transmitting these multiple recordings may decline the battery power of wireless wearable device. This work aims at preserving the battery power of wireless wearables by jointly compressing ECG–EMG–EEG signals before sending to the receiver. This work proposes multimodal deep denoising convolutional autoencoder architecture for joint compression (encoding) and reconstruction (decoding) of ECG–EMG–EEG biosignals. In addition, the system may encounter new data stream in future with varying range of statistics in this real-time scenario; hence, it is required to remodel the system. But these wearables are memory constrained, so the model’s learned optimized parameters should not increase in size when it is remodeled or updated. The incremental learning addresses this issue by reusing the previously learned weights as initial weight for retraining the model for new dataset and avoids random weight initialization thereby maintaining the space and time complexity. The experimental result shows that the proposed model achieves better compression efficiency of 99.8% with highest reconstruction Quality Score of 156, 254 & 149.4 for ECG, EMG & EEG signals, respectively, than state-of-the-art methods, and it is observed that the computation time is low for joint compression than compressing each signal individually. |
| Author | Gnanaraj, Rajakumar Dasan, Evangelin |
| Author_xml | – sequence: 1 givenname: Evangelin orcidid: 0000-0002-2709-7266 surname: Dasan fullname: Dasan, Evangelin email: evedasan@gmail.com organization: Department of Electronics and Communication Engineering, Francis Xavier Engineering College – sequence: 2 givenname: Rajakumar surname: Gnanaraj fullname: Gnanaraj, Rajakumar organization: Department of Electronics and Communication Engineering, Francis Xavier Engineering College |
| BookMark | eNp9kE1OBCEQhYnRxPHnAq46cd1aQCP00kzGUaNxo4k7wtCgmG4YgY668w7e0JPIOCYmLlxQkMr3inpvB2364A1CBxiOMAA_TgBAmxoIKQc4rl830AQzimsmuNhEEyBc1CDw_TbaSekJALdNSyaovwzO52o2nX--f8yuv-tsXiX34FVf6TAso0nJBV8p31XR6OBTjqPOq9aLy4-V8zqawfhc-GHssxtCV55qzMF4HToTK7VcxqD04x7asqpPZv_n3kV3Z7Pb6Xl9dTO_mJ5e1ZriNtem0aQ4WXDLaMcstLwVJ4pwYmm7YGD4AhhjmBbKnlgwhAK3HWZNIzpuG0F30eF6bvn2eTQpy6cwxmIoScIxa4FRwQol1pSOIaVorNQuq5WxHJXrJQa5ylaus5VlI_mdrXwtUvJHuoxuUPHtfxFdi1KB_YOJv1v9o_oCqeqRNg |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3347592 crossref_primary_10_3389_fninf_2024_1459970 crossref_primary_10_1016_j_eswa_2025_128927 crossref_primary_10_1007_s00034_024_02658_6 crossref_primary_10_1007_s42979_024_03508_7 crossref_primary_10_1016_j_bspc_2024_106272 crossref_primary_10_1016_j_procs_2023_08_183 crossref_primary_10_1007_s00500_023_08680_1 crossref_primary_10_1016_j_compbiomed_2025_109888 crossref_primary_10_1007_s11517_024_03246_1 crossref_primary_10_1016_j_engappai_2024_108123 crossref_primary_10_1016_j_bspc_2024_106717 crossref_primary_10_3390_brainsci15020098 |
| Cites_doi | 10.1109/JBHI.2014.2327194 10.1109/TIM.2019.2922054 10.36478/ijssceapp.2019.1.7 10.1142/s0129065716500313 10.1109/TBME.2016.2631620 10.1109/JBHI.2018.2817192 10.1109/GLOCOM.2018.8647543 10.1109/TNSRE.2018.2826559 10.1109/MNET.2018.1700367 10.13026/C24S3D 10.1109/ACCESS.2017.2749758 10.1109/CVPR.2014.220 10.1109/IWCMC.2018.8450511 10.1109/ACCESS.2020.3023915 10.1109/JBHI.2018.2792404 10.1109/ACCESS.2020.2999091 10.1109/TITB.2007.899497 10.1109/TBME.2004.827088 10.1109/JSAC.2009.090509 10.1109/JIOT.2020.2974678 10.1007/s00034-016-0444-y 10.1109/JSEN.2019.2930546 10.1016/j.cmpb.2019.03.019 10.1016/j.bspc.2020.102225 10.1109/TII.2017.2759185 10.1109/IEMBS.2006.260799 10.1109/TBCAS.2017.2760298 10.1109/JBHI.2017.2698498 10.1109/TITB.2005.854512 10.1016/j.jocn.2017.04.035 10.1016/j.neuroimage.2007.01.051 10.1109/TBME.2008.919729 10.1109/ICComm.2016.7528296 10.1109/TIM.2019.2936776 10.1016/j.cogsys.2018.07.004 10.13026/C2RG61 10.1109/JBHI.2022.3142034 10.1103/physreve.64.061907 10.1109/TBME.2007.896596 10.21227/awcw-mn88 10.1109/TSP.2019.2961234 10.1109/TBCAS.2018.2828031 10.1109/TNSRE.2020.3042655 10.1109/LSP.2015.2476667 10.1109/JBHI.2017.2765922 10.1109/51.932725 10.1109/TBCAS.2020.2982824 10.13026/C2F305 10.1109/ACCESS.2020.2995442 10.6084/m9.figshare.11860572.v1 10.13026/x4td-x982 10.1109/MIM.2018.8278812 10.1109/TIM.2021.3122119 10.1109/TNNLS.2021.3072041 10.1002/tee.22445 10.1155/2011/860549 10.1109/TII.2018.2793246 10.1109/WCNC.2017.7925709 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
| DOI | 10.1007/s00034-022-02071-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1531-5878 |
| EndPage | 6181 |
| ExternalDocumentID | 10_1007_s00034_022_02071_x |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29B 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 88I 8AO 8FE 8FG 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-e4c2022b7f53d5f097986a272f39b50e7b055513c20f6f0e2307fd15448d7f483 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000817841400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-081X |
| IngestDate | Fri Nov 07 23:23:15 EST 2025 Sat Nov 29 01:55:16 EST 2025 Tue Nov 18 22:04:32 EST 2025 Fri Feb 21 02:45:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Incremental learning Joint multi-modality compression Multi-sensor wearable system Multimodal Autoencoder Wireless wearable device Biomedical signal processing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-e4c2022b7f53d5f097986a272f39b50e7b055513c20f6f0e2307fd15448d7f483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2709-7266 |
| PQID | 2715905385 |
| PQPubID | 30136 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_2715905385 crossref_citationtrail_10_1007_s00034_022_02071_x crossref_primary_10_1007_s00034_022_02071_x springer_journals_10_1007_s00034_022_02071_x |
| PublicationCentury | 2000 |
| PublicationDate | 20221100 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Cambridge |
| PublicationSubtitle | CSSP |
| PublicationTitle | Circuits, systems, and signal processing |
| PublicationTitleAbbrev | Circuits Syst Signal Process |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BurgueraAFast QRS detection and ECG compression based on signal structural analysisIEEE J. Biomed. Health Inform.20192312313110.1109/JBHI.2018.2792404 TaigmanYYangMRanzatoMWolfLDeepFace: closing the gap to human-level performance in face verificationIEEE Conf. Comput. Vis. Pattern Recogn.201410.1109/CVPR.2014.220 DasanEPanneerselvamIA novel dimensionality reduction approach for ECG signal via convolutional denoising autoencoder with LSTMElsevier Biomed. Signal Process. Control20216311110.1016/j.bspc.2020.102225 MukhopadhyaySKOmair AhmadMSwamyMNSSVD and ASCII character encoding-based compression of multiple biosignals for remote healthcare systemsIEEE Trans. Biomed. Circ. Syst.20181213715010.1109/TBCAS.2017.2760298 D.A. Clevert, T. Unterthiner, S. Hochreiter, Fast accurate deep network learning by exponential linear units (ELUs). https://arxiv.org/abs/1511.07289 (2015) SriraamNEswaranCPerformance evaluation of neural network and linear predictors for near-lossless compression of EEG signalsIEEE Trans. Inf Technol. Biomed.200812879310.1109/TITB.2007.899497 TestaDDRossiMLightweight lossy compression of biometric patterns via denoising autoencodersIEEE Signal Process. Lett.2015222304230810.1109/LSP.2015.2476667 ParadisoRLorigaGTacciniNA wearable health care system based on knitted integrated sensorsIEEE Trans. Inf. Technol. Biomed.2005933734410.1109/TITB.2005.854512 B. Deepa, K. Ramesh, Preprocessed CHB-MIT scalp EEG database. IEEE Dataport (2021). https://doi.org/10.21227/awcw-mn88 ShawLRahmanDRoutrayAHighly efficient compression algorithms for multichannel EEGIEEE Trans. Neural Syst. Rehab. Eng.20182695796810.1109/TNSRE.2018.2826559 KlöschGKempBPenzelTSchlöglARappelsbergerPTrenkerEGruberGZeitlhoferJSaletuBHerrmannWMHimanenSLKunzDBarbanojMJRöschkeJVärriADorffnerGThe SIESTA project polygraphic and clinical databaseIEEE Eng. Med. Biol. Mag.200120515710.1109/51.932725 LiuDHImtiazSAStudying the effects of compression in EEG-based wearable sleep monitoring systemsIEEE Access2020816848616850110.1109/ACCESS.2020.3023915 MitraDZanddizariHRajanSInvestigation of Kronecker-based recovery of compressed ECG signalIEEE Trans. Instrum. Measur.2020693642365310.1109/TIM.2019.2936776 A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P.C. Ivanov, R. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation [Online]. 101(23), e215–e220. https://doi.org/10.13026/C2F305 S. Devuyst, The dreams subjects database. http://www.tcts.fpms.ac.be/devuyst/Databases/DatabaseSubjects/ (2004) HooshmandMZordanDMelodiaTRossiMSURF: subject-adaptive unsupervised ECG signal compression for wearable fitness monitorsIEEE Access20175195171953510.1109/ACCESS.2017.2749758 IyengarNPengC-KMorinRGoldbergerALLipsitzLAAge-related alterations in the fractal scaling of cardiac interbeat interval dynamicsAm. J. Physiol.19962711078108410.13026/C2RG61 TrabucoMHCostaMVCMacchiavelloBde NascimentoFAOS-EMG signal compression in one-dimensional and two-dimensional approachesIEEE J. Biomed. Health Inform.2018221104111310.1109/JBHI.2017.2765922 SinghJSharmaRKMaking sleep study instrumentation more unobtrusiveIEEE Instrum. Meas. Mag.201821505310.1109/MIM.2018.8278812 SriraamNQuality-on-demand compression of EEG signals for telemedicine applications using neural network predictorsHINDAWI Int. J. Telemed. Appl.201110.1155/2011/860549 Z. Abeer, A. M. Al-Marridi, A. Erbad, Convolutional autoencoder approach for EEG compression and reconstruction in m-health systems. In: IEEE 14th International Wireless Communications and Mobile Computing Conference (IWCMC) (2018). https://doi.org/10.1109/IWCMC.2018.8450511 FilhoEBLda SilvaEABde CarvalhoMBOn EMG signal compression with recurrent patternsIEEE Trans. Biomed. Eng2008551920192310.1109/TBME.2008.919729 MangiaMPronoLMarchioniAPareschiFRovattiRSettiGDeep neural oracles for short-window optimized compressed sensing of biosignalsIEEE Trans. Biomed. Circ. Syst.20201454555710.1109/TBCAS.2020.2982824 PenzelTMoodyGBMarkRGGoldbergerALPeterJHThe Apnea-ECG databaseComput. Cardiol.200027255258 BlankertzBDornhegeGKrauledatMMüllerK-RCurioGThe non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjectsNeuroimage20073753955010.1016/j.neuroimage.2007.01.051 WuFYangKYangZCompressed acquisition and denoising recovery of EMGdi signal in WSNs and IoTIEEE Trans. Ind. Inform.2017142210221910.1109/TII.2017.2759185 QianJTiwariPGochhayatSPPandeyHMA noble double dictionary based ECG compression technique for IoTHIEEE Internet Things J.20207101601017010.1109/JIOT.2020.2974678 HuFXiaoYHaoQCongestion-aware loss-resilient bio-monitoring sensor networking for mobile health applicationsIEEE J. Select. Areas Commun.20092745046510.1109/JSAC.2009.090509 KhalidBMajidMNizamiIFAnwarSMAlnowamiMEEG compression using motion compensated temporal filtering and wavelet Based subband codingIEEE Access2020810250210251110.1109/ACCESS.2020.2999091 JinLZhangYWangX-LZhangW-JLiuY-HJiangZPostictal apnea as an important mechanism for SUDEP: a near-SUDEP with continuous EEG-ECG-EMG recordingELSEVIER J. Clin. Neurosci.20174313013210.1016/j.jocn.2017.04.035 M. M. Andrade, J. C. Carmo, F. A. O. Nascimento, J. F. Camapum, I. dos Santos, L. R. Mochizuki, A. F. Rocha, Evaluation of techniques for the study of electromyographic signals. In: Proc. 28th IEEE Int. Conf. Eng. Med. Biol. Soc. (EMBS) 1335–1338 (2006) Oyob-OkassaAJNgonoJMElePCompression of the EMG signals by Walsh-Hadamard transform associated with the predictive coding DPCMInt. J. Syst. Signal Control Eng. Appl.2019121710.36478/ijssceapp.2019.1.7 ZhaoHWangHFuYWuFLiXMemory efficient class-incremental learning for image classificationIEEE Trans. Neural Networks Learn. Syst. (Early Access)202110.1109/TNNLS.2021.3072041 A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P.C. Ivanov, R. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation [Online]. 101(23), e215–e220. https://doi.org/10.13026/C24S3D TanCZhangLHau-tiengWA Novel Blaschke unwinding adaptive Fourier decomposition based signal compression algorithm with application on ECG signalsIEEE J. Biomed. Health Inform.20172367268210.1109/JBHI.2018.2817192 SaidABMohamedAElfoulyTHarrasKJane-WangZMultimodal deep learning approach for joint EEG-EMG data compression and classificationIEEE Wireless Commun. Networking Conf. (WCNC)201710.1109/WCNC.2017.7925709 ChouCEn-JuiCHuai-TingLAn-YeuWLow-complexity privacy—preserving compressive analysis using subspace-based dictionary for ECG telemonitoring systemIEEE Trans. Biomed. Circ. Syst.20181280181110.1109/TBCAS.2018.2828031 YildirimORajendra AcharyaUSan TanRAn efficient compression of ECG signals using deep convolutional autoencodersArticle Cogn. Syst. Res.20185219821110.1016/j.cogsys.2018.07.004 LiCTaoWChengJLiuYChenXRobust multichannel EEG compressed sensing in the presence of mixed noiseIEEE Sens. J.201919105741058310.1109/JSEN.2019.2930546 WangNYHsiao-LanSWTao-WeiWSzu-WeiFXuganLHsin-MinWTsaoYImproving the intelligibility of speech for simulated electric and acoustic stimulation using fully convolutional neural networksIEEE Trans. Neural Syst. Rehabilit. Eng.20202918419510.1109/TNSRE.2020.3042655 CaoYZhangHYong-BaeCWangHXiaoSHybrid deep learning model assisted data compression and classification for efficient data delivery in mobile health applicationsIEEE Access20208947579476610.1109/ACCESS.2020.2995442 BrechetLMarie-FrançoiseLDoncarliCFarinaDCompression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selectionIEEE Trans. Biomed. Eng.2007542186219210.1109/TBME.2007.896596 CravenDMcGinleyBKilmartinLGlavinMJonesECompressed sensing for bioelectric signals: a reviewIEEE J. Biomed. Health Inform.20151952954010.1109/JBHI.2014.2327194 BanerjeeSSinghGKQuality guaranteed ECG signal compression using tunable-Q wavelet transform and Möbius transform-based AFDIEEE Trans. Instrum. Measur.2021704008211400822110.1109/TIM.2021.3122119 Oyobé-OkassaAJAssoumouDAEléPCompression of EMG signals by super imposing methods: case of WPT and DCTInt. J. Eng. Technol.2016813351343 CisottoGGuglielmiAVBadiaLZanellaAJoint compression of EEG and EMG signals for wireless biometricsIEEE Glob. Commun. Conf. (GLOBECOM)201810.1109/GLOCOM.2018.8647543 GognaAMajumdarAWardRSemi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signalsIEEE Trans. Biomed. Eng.2017642196220510.1109/TBME.2016.2631620 KovácsPFridliSSchippFGeneralized rational variable projection with application in ECG compressionIEEE Trans. Signal Process.20206847849210.1109/TSP.2019.2961234 LiuTYLinKJWuHCECG data encryption then compression using singular value decompositionIEEE J. Biomed. Health Inform.20172270771310.1109/JBHI.2017.2698498 RavelomanantsoaARouaneARabahHFerveurNColletLDesign and implementation of a compressed sensing encoder: application to EMG and ECG wireless biosensorsCirc. Syst. Signal Process.2017362875289210.1007/s00034-016-0444-y R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C. E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64, 1–8 (2001). https://doi.org/10.1103/physreve.64.061907 CoganDBirjandtalabJNouraniMMulti-biosignal analysis for epileptic seizure monitoringInt. J. Neural Syst.20162611810.1142/s0129065716500313 LinHYuan-YaoSAi-ChunPChun-TingCVirtual local-hub: a service platform on the edge of networks for wearable devicesIEEE Network20183211412110.1109/MNET.2018.1700367 TakabayashiKKarvonenHPasTTanakaHSugimotoCKohnoRPerformance evaluation of a QoS-aware error control scheme for multiple-WBAN environmentIEEJ Trans. Electr. Electron. Eng.201712S146S15710.1002/tee.22445 DornhegeGBlan TY Liu (2071_CR34) 2017; 22 M Mangia (2071_CR36) 2020; 14 H Zhao (2071_CR62) 2021 N Iyengar (2071_CR26) 1996; 271 L Jin (2071_CR27) 2017; 43 K Dinashi (2071_CR18) 2022 EBL Filho (2071_CR20) 2008; 55 B Khalid (2071_CR28) 2020; 8 P Bera (2071_CR5) 2019; 69 J Qian (2071_CR45) 2020; 7 K Takabayashi (2071_CR54) 2017; 12 2071_CR12 M Hooshmand (2071_CR24) 2017; 5 N Sriraam (2071_CR50) 2008; 12 F Wu (2071_CR58) 2017; 14 2071_CR17 L Shaw (2071_CR48) 2018; 26 A Gogna (2071_CR22) 2017; 64 SK Mukhopadhyay (2071_CR40) 2018; 12 D Cogan (2071_CR13) 2016; 26 2071_CR16 2071_CR3 2071_CR2 N Sriraam (2071_CR51) 2011 2071_CR1 AJ Oyobé-Okassa (2071_CR41) 2016; 8 E Dasan (2071_CR15) 2021; 63 AJ Oyob-Okassa (2071_CR42) 2019; 12 L Brechet (2071_CR7) 2007; 54 MH Trabuco (2071_CR55) 2018; 22 2071_CR23 B Blankertz (2071_CR6) 2007; 37 G Klösch (2071_CR29) 2001; 20 F Hu (2071_CR25) 2009; 27 DD Testa (2071_CR53) 2015; 22 M Fira (2071_CR21) 2016 H Lin (2071_CR33) 2018; 32 P Kovács (2071_CR30) 2020; 68 S Banerjee (2071_CR4) 2021; 70 R Paradiso (2071_CR43) 2005; 9 G Cisotto (2071_CR11) 2018 T Penzel (2071_CR44) 2000; 27 NY Wang (2071_CR59) 2020; 29 C Tan (2071_CR52) 2017; 23 C Chou (2071_CR10) 2018; 12 A Burguera (2071_CR8) 2019; 23 D Craven (2071_CR14) 2015; 19 C Li (2071_CR31) 2019; 19 AB Said (2071_CR47) 2017 O Yildirim (2071_CR61) 2018; 52 M Ma (2071_CR35) 2018; 14 2071_CR39 P Wagner (2071_CR60) 2020 2071_CR37 J Singh (2071_CR49) 2018; 21 G Dornhege (2071_CR19) 2004; 51 D Mitra (2071_CR38) 2020; 69 Y Cao (2071_CR9) 2020; 8 Y Taigman (2071_CR56) 2014 DH Liu (2071_CR32) 2020; 8 F Wang (2071_CR57) 2019; 175 A Ravelomanantsoa (2071_CR46) 2017; 36 |
| References_xml | – reference: GognaAMajumdarAWardRSemi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signalsIEEE Trans. Biomed. Eng.2017642196220510.1109/TBME.2016.2631620 – reference: TestaDDRossiMLightweight lossy compression of biometric patterns via denoising autoencodersIEEE Signal Process. Lett.2015222304230810.1109/LSP.2015.2476667 – reference: KovácsPFridliSSchippFGeneralized rational variable projection with application in ECG compressionIEEE Trans. Signal Process.20206847849210.1109/TSP.2019.2961234 – reference: D.A. Clevert, T. Unterthiner, S. Hochreiter, Fast accurate deep network learning by exponential linear units (ELUs). https://arxiv.org/abs/1511.07289 (2015) – reference: TaigmanYYangMRanzatoMWolfLDeepFace: closing the gap to human-level performance in face verificationIEEE Conf. Comput. Vis. Pattern Recogn.201410.1109/CVPR.2014.220 – reference: MangiaMPronoLMarchioniAPareschiFRovattiRSettiGDeep neural oracles for short-window optimized compressed sensing of biosignalsIEEE Trans. Biomed. Circ. Syst.20201454555710.1109/TBCAS.2020.2982824 – reference: ChouCEn-JuiCHuai-TingLAn-YeuWLow-complexity privacy—preserving compressive analysis using subspace-based dictionary for ECG telemonitoring systemIEEE Trans. Biomed. Circ. Syst.20181280181110.1109/TBCAS.2018.2828031 – reference: Oyob-OkassaAJNgonoJMElePCompression of the EMG signals by Walsh-Hadamard transform associated with the predictive coding DPCMInt. J. Syst. Signal Control Eng. Appl.2019121710.36478/ijssceapp.2019.1.7 – reference: TakabayashiKKarvonenHPasTTanakaHSugimotoCKohnoRPerformance evaluation of a QoS-aware error control scheme for multiple-WBAN environmentIEEJ Trans. Electr. Electron. Eng.201712S146S15710.1002/tee.22445 – reference: A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P.C. Ivanov, R. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation [Online]. 101(23), e215–e220. https://doi.org/10.13026/C24S3D – reference: LiuDHImtiazSAStudying the effects of compression in EEG-based wearable sleep monitoring systemsIEEE Access2020816848616850110.1109/ACCESS.2020.3023915 – reference: LiCTaoWChengJLiuYChenXRobust multichannel EEG compressed sensing in the presence of mixed noiseIEEE Sens. J.201919105741058310.1109/JSEN.2019.2930546 – reference: MukhopadhyaySKOmair AhmadMSwamyMNSSVD and ASCII character encoding-based compression of multiple biosignals for remote healthcare systemsIEEE Trans. Biomed. Circ. Syst.20181213715010.1109/TBCAS.2017.2760298 – reference: LiuTYLinKJWuHCECG data encryption then compression using singular value decompositionIEEE J. Biomed. Health Inform.20172270771310.1109/JBHI.2017.2698498 – reference: LinHYuan-YaoSAi-ChunPChun-TingCVirtual local-hub: a service platform on the edge of networks for wearable devicesIEEE Network20183211412110.1109/MNET.2018.1700367 – reference: KlöschGKempBPenzelTSchlöglARappelsbergerPTrenkerEGruberGZeitlhoferJSaletuBHerrmannWMHimanenSLKunzDBarbanojMJRöschkeJVärriADorffnerGThe SIESTA project polygraphic and clinical databaseIEEE Eng. Med. Biol. Mag.200120515710.1109/51.932725 – reference: DornhegeGBlankertzBCurioGMüllerKRBoosting bitrates in noninvasive EEG single-trial classications by feature combination and multiclass paradigmsIEEE Trans. Biomed. Eng.200451993100210.1109/TBME.2004.827088 – reference: HuFXiaoYHaoQCongestion-aware loss-resilient bio-monitoring sensor networking for mobile health applicationsIEEE J. Select. Areas Commun.20092745046510.1109/JSAC.2009.090509 – reference: TrabucoMHCostaMVCMacchiavelloBde NascimentoFAOS-EMG signal compression in one-dimensional and two-dimensional approachesIEEE J. Biomed. Health Inform.2018221104111310.1109/JBHI.2017.2765922 – reference: ShawLRahmanDRoutrayAHighly efficient compression algorithms for multichannel EEGIEEE Trans. Neural Syst. Rehab. Eng.20182695796810.1109/TNSRE.2018.2826559 – reference: SriraamNQuality-on-demand compression of EEG signals for telemedicine applications using neural network predictorsHINDAWI Int. J. Telemed. Appl.201110.1155/2011/860549 – reference: MitraDZanddizariHRajanSInvestigation of Kronecker-based recovery of compressed ECG signalIEEE Trans. Instrum. Measur.2020693642365310.1109/TIM.2019.2936776 – reference: CaoYZhangHYong-BaeCWangHXiaoSHybrid deep learning model assisted data compression and classification for efficient data delivery in mobile health applicationsIEEE Access20208947579476610.1109/ACCESS.2020.2995442 – reference: WuFYangKYangZCompressed acquisition and denoising recovery of EMGdi signal in WSNs and IoTIEEE Trans. Ind. Inform.2017142210221910.1109/TII.2017.2759185 – reference: YildirimORajendra AcharyaUSan TanRAn efficient compression of ECG signals using deep convolutional autoencodersArticle Cogn. Syst. Res.20185219821110.1016/j.cogsys.2018.07.004 – reference: R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C. E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64, 1–8 (2001). https://doi.org/10.1103/physreve.64.061907 – reference: TanCZhangLHau-tiengWA Novel Blaschke unwinding adaptive Fourier decomposition based signal compression algorithm with application on ECG signalsIEEE J. Biomed. Health Inform.20172367268210.1109/JBHI.2018.2817192 – reference: RavelomanantsoaARouaneARabahHFerveurNColletLDesign and implementation of a compressed sensing encoder: application to EMG and ECG wireless biosensorsCirc. Syst. Signal Process.2017362875289210.1007/s00034-016-0444-y – reference: WangFMaQLiuWChangSWangHHeJHuangQA novel ECG signal compression method using spindle convolutional auto-encoderElsevier Comput. Methods Programs Biomed.201917513915010.1016/j.cmpb.2019.03.019 – reference: DinashiKAmeriAAkhaeeMAEnglehartKSchemeECompression of EMG signals using deep convolutional autoencodersIEEE J. Biomed. Health Inform.202210.1109/JBHI.2022.3142034 – reference: FilhoEBLda SilvaEABde CarvalhoMBOn EMG signal compression with recurrent patternsIEEE Trans. Biomed. Eng2008551920192310.1109/TBME.2008.919729 – reference: CisottoGGuglielmiAVBadiaLZanellaAJoint compression of EEG and EMG signals for wireless biometricsIEEE Glob. Commun. Conf. (GLOBECOM)201810.1109/GLOCOM.2018.8647543 – reference: JinLZhangYWangX-LZhangW-JLiuY-HJiangZPostictal apnea as an important mechanism for SUDEP: a near-SUDEP with continuous EEG-ECG-EMG recordingELSEVIER J. Clin. Neurosci.20174313013210.1016/j.jocn.2017.04.035 – reference: WagnerPStrodthoffNBousseljotRSamekWSchaeffterTPTB-XL, a large publicly available electrocardiography dataset (version 1.0.1)202010.13026/x4td-x982Physionet – reference: BurgueraAFast QRS detection and ECG compression based on signal structural analysisIEEE J. Biomed. Health Inform.20192312313110.1109/JBHI.2018.2792404 – reference: S. Devuyst, The dreams subjects database. http://www.tcts.fpms.ac.be/devuyst/Databases/DatabaseSubjects/ (2004) – reference: MaMSunCChenXDeep coupling autoencoder for fault diagnosis with multisensory dataIEEE Trans. Ind. Inform.2018141137114510.1109/TII.2018.2793246 – reference: IyengarNPengC-KMorinRGoldbergerALLipsitzLAAge-related alterations in the fractal scaling of cardiac interbeat interval dynamicsAm. J. Physiol.19962711078108410.13026/C2RG61 – reference: B. Deepa, K. Ramesh, Preprocessed CHB-MIT scalp EEG database. IEEE Dataport (2021). https://doi.org/10.21227/awcw-mn88 – reference: SaidABMohamedAElfoulyTHarrasKJane-WangZMultimodal deep learning approach for joint EEG-EMG data compression and classificationIEEE Wireless Commun. Networking Conf. (WCNC)201710.1109/WCNC.2017.7925709 – reference: Z. Abeer, A. M. Al-Marridi, A. Erbad, Convolutional autoencoder approach for EEG compression and reconstruction in m-health systems. In: IEEE 14th International Wireless Communications and Mobile Computing Conference (IWCMC) (2018). https://doi.org/10.1109/IWCMC.2018.8450511 – reference: WangNYHsiao-LanSWTao-WeiWSzu-WeiFXuganLHsin-MinWTsaoYImproving the intelligibility of speech for simulated electric and acoustic stimulation using fully convolutional neural networksIEEE Trans. Neural Syst. Rehabilit. Eng.20202918419510.1109/TNSRE.2020.3042655 – reference: CravenDMcGinleyBKilmartinLGlavinMJonesECompressed sensing for bioelectric signals: a reviewIEEE J. Biomed. Health Inform.20151952954010.1109/JBHI.2014.2327194 – reference: SinghJSharmaRKMaking sleep study instrumentation more unobtrusiveIEEE Instrum. Meas. Mag.201821505310.1109/MIM.2018.8278812 – reference: ZhaoHWangHFuYWuFLiXMemory efficient class-incremental learning for image classificationIEEE Trans. Neural Networks Learn. Syst. (Early Access)202110.1109/TNNLS.2021.3072041 – reference: BanerjeeSSinghGKQuality guaranteed ECG signal compression using tunable-Q wavelet transform and Möbius transform-based AFDIEEE Trans. Instrum. Measur.2021704008211400822110.1109/TIM.2021.3122119 – reference: ParadisoRLorigaGTacciniNA wearable health care system based on knitted integrated sensorsIEEE Trans. Inf. Technol. Biomed.2005933734410.1109/TITB.2005.854512 – reference: Oyobé-OkassaAJAssoumouDAEléPCompression of EMG signals by super imposing methods: case of WPT and DCTInt. J. Eng. Technol.2016813351343 – reference: BlankertzBDornhegeGKrauledatMMüllerK-RCurioGThe non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjectsNeuroimage20073753955010.1016/j.neuroimage.2007.01.051 – reference: A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P.C. Ivanov, R. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation [Online]. 101(23), e215–e220. https://doi.org/10.13026/C2F305 – reference: M. M. Andrade, J. C. Carmo, F. A. O. Nascimento, J. F. Camapum, I. dos Santos, L. R. Mochizuki, A. F. Rocha, Evaluation of techniques for the study of electromyographic signals. In: Proc. 28th IEEE Int. Conf. Eng. Med. Biol. Soc. (EMBS) 1335–1338 (2006) – reference: QianJTiwariPGochhayatSPPandeyHMA noble double dictionary based ECG compression technique for IoTHIEEE Internet Things J.20207101601017010.1109/JIOT.2020.2974678 – reference: R. Martínez, Mónica, S. Higuita, L. Yanet, Jordanic, Mislav, Marateb, H. Reza, Merletti, Roberto, Villanueva, M.A. Mañanas, A high-density surface EMG dataset of upper-limb muscles during isometric contractions in healthy humans: Part1/3. figshare. Dataset (2020). https://doi.org/10.6084/m9.figshare.11860572.v1 – reference: SriraamNEswaranCPerformance evaluation of neural network and linear predictors for near-lossless compression of EEG signalsIEEE Trans. Inf Technol. Biomed.200812879310.1109/TITB.2007.899497 – reference: BrechetLMarie-FrançoiseLDoncarliCFarinaDCompression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selectionIEEE Trans. Biomed. Eng.2007542186219210.1109/TBME.2007.896596 – reference: HooshmandMZordanDMelodiaTRossiMSURF: subject-adaptive unsupervised ECG signal compression for wearable fitness monitorsIEEE Access20175195171953510.1109/ACCESS.2017.2749758 – reference: PenzelTMoodyGBMarkRGGoldbergerALPeterJHThe Apnea-ECG databaseComput. Cardiol.200027255258 – reference: CoganDBirjandtalabJNouraniMMulti-biosignal analysis for epileptic seizure monitoringInt. J. Neural Syst.20162611810.1142/s0129065716500313 – reference: KhalidBMajidMNizamiIFAnwarSMAlnowamiMEEG compression using motion compensated temporal filtering and wavelet Based subband codingIEEE Access2020810250210251110.1109/ACCESS.2020.2999091 – reference: DasanEPanneerselvamIA novel dimensionality reduction approach for ECG signal via convolutional denoising autoencoder with LSTMElsevier Biomed. Signal Process. Control20216311110.1016/j.bspc.2020.102225 – reference: BeraPGuptaRSahaJPreserving abnormal beat morphology in long-term ECG recording: an efficient hybrid compression approachIEEE Trans Instrum Measur2019692084209210.1109/TIM.2019.2922054 – reference: FiraMGorasLOn compressed sensing for EEG signals—validation with P300 speller paradigmInt. Conf. Commun. (COMM)201610.1109/ICComm.2016.7528296 – volume: 19 start-page: 529 year: 2015 ident: 2071_CR14 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2014.2327194 – volume: 69 start-page: 2084 year: 2019 ident: 2071_CR5 publication-title: IEEE Trans Instrum Measur doi: 10.1109/TIM.2019.2922054 – volume: 12 start-page: 1 year: 2019 ident: 2071_CR42 publication-title: Int. J. Syst. Signal Control Eng. Appl. doi: 10.36478/ijssceapp.2019.1.7 – volume: 26 start-page: 1 year: 2016 ident: 2071_CR13 publication-title: Int. J. Neural Syst. doi: 10.1142/s0129065716500313 – volume: 64 start-page: 2196 year: 2017 ident: 2071_CR22 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2631620 – volume: 23 start-page: 672 year: 2017 ident: 2071_CR52 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2817192 – year: 2018 ident: 2071_CR11 publication-title: IEEE Glob. Commun. Conf. (GLOBECOM) doi: 10.1109/GLOCOM.2018.8647543 – volume: 26 start-page: 957 year: 2018 ident: 2071_CR48 publication-title: IEEE Trans. Neural Syst. Rehab. Eng. doi: 10.1109/TNSRE.2018.2826559 – volume: 32 start-page: 114 year: 2018 ident: 2071_CR33 publication-title: IEEE Network doi: 10.1109/MNET.2018.1700367 – volume: 8 start-page: 1335 year: 2016 ident: 2071_CR41 publication-title: Int. J. Eng. Technol. – ident: 2071_CR23 doi: 10.13026/C24S3D – volume: 5 start-page: 19517 year: 2017 ident: 2071_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2749758 – year: 2014 ident: 2071_CR56 publication-title: IEEE Conf. Comput. Vis. Pattern Recogn. doi: 10.1109/CVPR.2014.220 – ident: 2071_CR1 doi: 10.1109/IWCMC.2018.8450511 – volume: 8 start-page: 168486 year: 2020 ident: 2071_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023915 – volume: 23 start-page: 123 year: 2019 ident: 2071_CR8 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2792404 – volume: 8 start-page: 102502 year: 2020 ident: 2071_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2999091 – volume: 12 start-page: 87 year: 2008 ident: 2071_CR50 publication-title: IEEE Trans. Inf Technol. Biomed. doi: 10.1109/TITB.2007.899497 – volume: 51 start-page: 993 year: 2004 ident: 2071_CR19 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827088 – volume: 27 start-page: 450 year: 2009 ident: 2071_CR25 publication-title: IEEE J. Select. Areas Commun. doi: 10.1109/JSAC.2009.090509 – volume: 7 start-page: 10160 year: 2020 ident: 2071_CR45 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2974678 – volume: 36 start-page: 2875 year: 2017 ident: 2071_CR46 publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-016-0444-y – volume: 19 start-page: 10574 year: 2019 ident: 2071_CR31 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2930546 – volume: 175 start-page: 139 year: 2019 ident: 2071_CR57 publication-title: Elsevier Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.03.019 – volume: 63 start-page: 1 year: 2021 ident: 2071_CR15 publication-title: Elsevier Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102225 – volume: 14 start-page: 2210 year: 2017 ident: 2071_CR58 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2759185 – ident: 2071_CR2 doi: 10.1109/IEMBS.2006.260799 – volume: 12 start-page: 137 year: 2018 ident: 2071_CR40 publication-title: IEEE Trans. Biomed. Circ. Syst. doi: 10.1109/TBCAS.2017.2760298 – volume: 22 start-page: 707 year: 2017 ident: 2071_CR34 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2698498 – volume: 9 start-page: 337 year: 2005 ident: 2071_CR43 publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2005.854512 – volume: 43 start-page: 130 year: 2017 ident: 2071_CR27 publication-title: ELSEVIER J. Clin. Neurosci. doi: 10.1016/j.jocn.2017.04.035 – volume: 37 start-page: 539 year: 2007 ident: 2071_CR6 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.01.051 – volume: 55 start-page: 1920 year: 2008 ident: 2071_CR20 publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2008.919729 – year: 2016 ident: 2071_CR21 publication-title: Int. Conf. Commun. (COMM) doi: 10.1109/ICComm.2016.7528296 – volume: 69 start-page: 3642 year: 2020 ident: 2071_CR38 publication-title: IEEE Trans. Instrum. Measur. doi: 10.1109/TIM.2019.2936776 – volume: 52 start-page: 198 year: 2018 ident: 2071_CR61 publication-title: Article Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.07.004 – volume: 271 start-page: 1078 year: 1996 ident: 2071_CR26 publication-title: Am. J. Physiol. doi: 10.13026/C2RG61 – year: 2022 ident: 2071_CR18 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3142034 – ident: 2071_CR3 doi: 10.1103/physreve.64.061907 – volume: 54 start-page: 2186 year: 2007 ident: 2071_CR7 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.896596 – ident: 2071_CR16 doi: 10.21227/awcw-mn88 – volume: 68 start-page: 478 year: 2020 ident: 2071_CR30 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2961234 – volume: 12 start-page: 801 year: 2018 ident: 2071_CR10 publication-title: IEEE Trans. Biomed. Circ. Syst. doi: 10.1109/TBCAS.2018.2828031 – volume: 29 start-page: 184 year: 2020 ident: 2071_CR59 publication-title: IEEE Trans. Neural Syst. Rehabilit. Eng. doi: 10.1109/TNSRE.2020.3042655 – volume: 22 start-page: 2304 year: 2015 ident: 2071_CR53 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2015.2476667 – volume: 22 start-page: 1104 year: 2018 ident: 2071_CR55 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2765922 – volume: 20 start-page: 51 year: 2001 ident: 2071_CR29 publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932725 – ident: 2071_CR17 – volume: 27 start-page: 255 year: 2000 ident: 2071_CR44 publication-title: Comput. Cardiol. – volume: 14 start-page: 545 year: 2020 ident: 2071_CR36 publication-title: IEEE Trans. Biomed. Circ. Syst. doi: 10.1109/TBCAS.2020.2982824 – ident: 2071_CR39 doi: 10.13026/C2F305 – volume: 8 start-page: 94757 year: 2020 ident: 2071_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995442 – ident: 2071_CR37 doi: 10.6084/m9.figshare.11860572.v1 – year: 2020 ident: 2071_CR60 doi: 10.13026/x4td-x982 – volume: 21 start-page: 50 year: 2018 ident: 2071_CR49 publication-title: IEEE Instrum. Meas. Mag. doi: 10.1109/MIM.2018.8278812 – volume: 70 start-page: 4008211 year: 2021 ident: 2071_CR4 publication-title: IEEE Trans. Instrum. Measur. doi: 10.1109/TIM.2021.3122119 – year: 2021 ident: 2071_CR62 publication-title: IEEE Trans. Neural Networks Learn. Syst. (Early Access) doi: 10.1109/TNNLS.2021.3072041 – volume: 12 start-page: S146 year: 2017 ident: 2071_CR54 publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.22445 – year: 2011 ident: 2071_CR51 publication-title: HINDAWI Int. J. Telemed. Appl. doi: 10.1155/2011/860549 – volume: 14 start-page: 1137 year: 2018 ident: 2071_CR35 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2793246 – year: 2017 ident: 2071_CR47 publication-title: IEEE Wireless Commun. Networking Conf. (WCNC) doi: 10.1109/WCNC.2017.7925709 – ident: 2071_CR12 |
| SSID | ssj0019492 |
| Score | 2.383811 |
| Snippet | Through wearable technology, several chronic diseases are diagnosed by long-term monitoring of vital signs specifically ECG, EMG, EEG biosignals. Such... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6152 |
| SubjectTerms | Algorithms Bias Chronic illnesses Circuits and Systems Communication Compressing Data transmission Datasets Dictionaries Efficiency Electrical Engineering Electrocardiography Electroencephalography Electromyography Electronics and Microelectronics Engineering Instrumentation Literature reviews Methods Monitoring Power Receivers & amplifiers Reconstruction Sensors Signal processing Signal,Image and Speech Processing Telemedicine Wearable computers Wearable technology |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPejBt1itkoM3DXafSU4iZVsRWnpQ6G3Z3SRQqLu1XaVH_4P_0F_iJPuoCvbiZQlsEkImyUxmvnyD0CXoeMlBcxDh2RwuKJ4iUZS4xPIjv-2AveFFzCSboIMBG434sHS4zUtYZXUmmoNaZIn2kd_YFBQvrBjm3U5fiM4apaOrZQqNdbQBlo2lIV19e1hHEbhrkiLr4BoB1TcqH82Yp3OGmYVoLDsYTNQii5-KaWlt_gqQGr3T3f3viPfQTmlx4rtiieyjNZkeoO1vPISHaPKQjdMcB53e5_tH0DffoIc1tgNaatR5gZZNcZQKbO7QNe8s1p5cPE6TwtEI9Q1G8TkTUIxe80wzZQo5wxV7-RF66gaPnXtSpmEgCezPnEg3sWGeYqo8R3iqzSlnfmRTWzk89tqSxpo0zHKglvJVW2pouRKa5YcJqlzmHKNGmqXyBGHJJLU9loDVoFyLCw59KlCXyomFEL5sIquSQZiUHOU6VcYkrNmVjdxCGE9o5BYumuiqbjMtGDpW1m5VwgrL3ToPl5JqoutK3Mvff_d2urq3M7SlZ654uthCDZCMPEebyVs-ns8uzFr9AsYe8GY priority: 102 providerName: ProQuest |
| Title | Joint ECG–EMG–EEG signal compression and reconstruction with incremental multimodal autoencoder approach |
| URI | https://link.springer.com/article/10.1007/s00034-022-02071-x https://www.proquest.com/docview/2715905385 |
| Volume | 41 |
| WOSCitedRecordID | wos000817841400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1531-5878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgQxEC3cDnpwF8dlyMGbBqaXdJKjSqsoDoMbg5emp5PAgPaIM4pH_8E_9EuspBcXVNBL0dCVECpLVVJVrwC2UMdriZqDKuZLvKAwQ9M0C6kXpVErQHuDpcIVm-Dttuh2ZadMChtW0e6VS9Kd1HWym8NSoTb6HE0c7lG0HCdR3QlbsOHs_Kr2HcjQlUK2LjWKCq9bpsp838dndfRuY35xizptczD3v3HOw2xpXZLdYjkswJjOF2HmA-bgEtwcD_r5iMT7h6_PL_Gpo_EhsXEc2NJGmBeRsTlJc0XcfbnGmCX21Zb086x4VER-F494O1D4mT6MBhYVU-l7UiGVL8PlQXyxf0TLkgs0w704ojrMfBx5jxsWKGZakksRpT73TSB7rKV5zwKEeQFymci0tA0jN8oi-gjFTSiCFZjIB7leBaKF5j4TGVoIJvSkktinQdVogp5SKtIN8CrJJ1mJR27LYtwkNZKyk2SC40mcJJOnBmzXbe4KNI5fuTeqCU3KnTlMfI4GHJ48gjVgp5rA998_97b2N_Z1mLaSLNIWN2ACZ0pvwlT2OOoP75swuRe3O2dNGD_hFOmp37GUnyPtsOumW9FvtTDsQg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQGo5lEdbsTyKD3CiVjfOw_EBIQTLmxUHKu0tzca2tBIkwC6P3vof-j_6o_pLmHGSXUAqNw5cokixR4n9xTOeGX8DsIo63ijUHFyHQuEGJbQ8TbOAe1EaNX20N8I0dsUmZLsddzrqdAz-1mdhKK2yXhPdQq2LjHzk34VExYuIicPNyytOVaMoulqX0ChhcWR-3eGWrb9xsIPzuybEbutse59XVQV4hnAbcBNkuOEXXWlDX4e2qaSKo1RIYX3VDZtGdokDy_OxlY1s01CmtNVEWhNraYPYR7nvYCIgZjFKFRSnw6iFClwRZgrmcVS1neqQjjuq55hgOOXOo4EmPX7_VBGOrNtnAVmn53an39oIzcDHyqJmW-UvMAtjJp-DqUc8i5_g_LDo5QPW2t779_tP68RdW3uMclewJ2XVl9nAOUtzzZyPYMiry8hTzXp5VjpSsb3LwbwoNN6mN4OCmEC1uWY1O_tn-PEqn_sFxvMiN_PATGykCOMMrSIbeEorlGnRHLB-V2sdmQZ49ZwnWcXBTqVAzpMhe7TDSYLvkzicJPcNWB_2uSwZSF5svVSDI6lWo34yQkYDvtXwGj3-v7SFl6WtwPv9s5Pj5PigfbQIH2gUy2OaSzCOs2SWYTK7HfT611_df8Lg52vD7gFbc0pR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTuMwFL3iMUKw4DGAKK_xAlaMRfNwHC8QQtAyPKbqgpEqNiGNbakSJEDLa8c_8Dd8Dl_CtZO0gDTsWLCJIsW2EvvE9_r6-FyANbTxSqDloJK5AhcoTNM4TnzqBHFQ9dDfYHFok03wRiNstURzCJ7LszCGVlnOiXaillliYuSbLkfDi4gJ2aYuaBHNvfr25RU1GaTMTmuZTiOHyJF6uMPlW3frYA_Het1167WT3T-0yDBAE4Rejyo_wcW_2-aaeZLpquAiDGKXu9oTbVZVvG30sBwPS-lAV5VhTWtpBGxCybUfetjuMIxyXGMaOmGTnfZ3MIRvEzKbjT2KZrdVHNixx_asKgw1PHp01rhD798bxYGn-2Fz1tq8-tR37q1pmCw8bbKT_xozMKTSnzDxRn9xFs4Ps07aI7Xd_ZfHp9pfe63tE8NpwZqGbZ-zhFMSp5LY2EFfb5eYCDbppEkeYMXylpt5kUm8jW96mVEIleqalKrtc_DvSz53HkbSLFULQFSouMvCBL0l7TtCCmxTo5ugvbaUMlAVcMrxj5JCm92kCDmP-qrSFjMRvk9kMRPdV2CjX-cyVyb5tPRyCZSomKW60QAlFfhdQm3w-P-tLX7e2i8YQ7RFxweNoyUYN52Yn95chhEcJLUCP5LbXqd7vWp_GQJnX426V0zyUz0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+ECG%E2%80%93EMG%E2%80%93EEG+signal+compression+and+reconstruction+with+incremental+multimodal+autoencoder+approach&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Dasan%2C+Evangelin&rft.au=Gnanaraj%2C+Rajakumar&rft.date=2022-11-01&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=41&rft.issue=11&rft.spage=6152&rft.epage=6181&rft_id=info:doi/10.1007%2Fs00034-022-02071-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00034_022_02071_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon |