Improving Dynamic Placement of Virtual Machines in Cloud Data Centers Based on Open-Source Development Model Algorithm
Although cloud computing can provide information technology services worldwide, data centers hosting cloud applications consume a lot of energy. At the same time, the ever-increasing growth of the number of providers in the market has led to an increase in greenhouse gas emissions and operational co...
Uložené v:
| Vydané v: | Journal of grid computing Ročník 21; číslo 1; s. 13 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.03.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1570-7873, 1572-9184 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Although cloud computing can provide information technology services worldwide, data centers hosting cloud applications consume a lot of energy. At the same time, the ever-increasing growth of the number of providers in the market has led to an increase in greenhouse gas emissions and operational costs. Hence, the optimal configuration of the underlying cloud infrastructure as a green cloud computing solution is needed to manage energy consumption and costs in cloud data centers. An important issue in this field is Virtual Machine Placement (VMP) considering dynamic aspects and demand fluctuations to minimize energy consumption and costs without violating the Service Level Agreement (SLA). We believe that there is a scope of improvement in migrating Virtual Machines (VMs) and subsequently deciding to shutdown hosts with little-load. This study proposes an Open-Source Development Model Algorithm (ODMA) as a meta-heuristic approach to solve the VMP problem, which is named VMP-ODMA. VMP-ODMA seeks to dynamically consolidate VMs into a minimum number of active hosts by migrating VMs over cloud data centers. VMP-ODMA can perform the placement process dynamically and periodically by finding the best sequence of VMs for migration. In addition to minimizing the number of active hosts, a load balancing strategy is included in VMP-ODMA to improve the quality of service without violating the SLA. We demonstrate the effectiveness of the proposed scheme with extensive simulations. Experimental results show that VMP-ODMA can efficiently improve system performance and outperform the best results of existing methods ranging from 11 to 27%. |
|---|---|
| AbstractList | Although cloud computing can provide information technology services worldwide, data centers hosting cloud applications consume a lot of energy. At the same time, the ever-increasing growth of the number of providers in the market has led to an increase in greenhouse gas emissions and operational costs. Hence, the optimal configuration of the underlying cloud infrastructure as a green cloud computing solution is needed to manage energy consumption and costs in cloud data centers. An important issue in this field is Virtual Machine Placement (VMP) considering dynamic aspects and demand fluctuations to minimize energy consumption and costs without violating the Service Level Agreement (SLA). We believe that there is a scope of improvement in migrating Virtual Machines (VMs) and subsequently deciding to shutdown hosts with little-load. This study proposes an Open-Source Development Model Algorithm (ODMA) as a meta-heuristic approach to solve the VMP problem, which is named VMP-ODMA. VMP-ODMA seeks to dynamically consolidate VMs into a minimum number of active hosts by migrating VMs over cloud data centers. VMP-ODMA can perform the placement process dynamically and periodically by finding the best sequence of VMs for migration. In addition to minimizing the number of active hosts, a load balancing strategy is included in VMP-ODMA to improve the quality of service without violating the SLA. We demonstrate the effectiveness of the proposed scheme with extensive simulations. Experimental results show that VMP-ODMA can efficiently improve system performance and outperform the best results of existing methods ranging from 11 to 27%. |
| ArticleNumber | 13 |
| Author | Liu, XiaoLing Li, Na Mojarad, Musa Wang, Yu |
| Author_xml | – sequence: 1 givenname: Na surname: Li fullname: Li, Na email: 20160361@ayit.edu.cn organization: School of Computer Science & Information Engineering, Anyang Institute of Technology – sequence: 2 givenname: XiaoLing surname: Liu fullname: Liu, XiaoLing organization: The Foreign Language Department, Anyang Institute of Technology – sequence: 3 givenname: Yu surname: Wang fullname: Wang, Yu organization: China Mobile Group Henan Co., Ltd. Anyang Branch – sequence: 4 givenname: Musa surname: Mojarad fullname: Mojarad, Musa email: musa.mojarad@iau.ac.ir organization: Depiecement of Computer Engineering, Firoozabad Branch, Islamic Azad University |
| BookMark | eNp9kElPwzAQhS0EEmX5A5wscQ6MncXJEVqWSlRFYrlGjjMpRokdbKdS_z1pi4TEgcNo5vC-mTfvhBwaa5CQCwZXDEBcewaCxxFsq8hSFiUHZMJSwaOC5cnhboZI5CI-JifefwLwNAc-Iet51zu71mZFZxsjO63ocysVdmgCtQ191y4MsqULqT60QU-1odPWDjWdySDpdJSh8_RWeqypNXTZo4le7OAU0hmusbX9btXC1tjSm3ZlnQ4f3Rk5amTr8fynn5K3-7vX6WP0tHyYT2-eIhWzIkSY8CxVrC6UqCsuCoRKxHkua1UVoAQgryFtkCVQN0nFJc-aDKoqzZtcZpI38Sm53O8dn_wa0Ifyc_RmxpMlF0KknDORjqp8r1LOeu-wKZUOMmhrgpO6LRmU25TLfcolbGubcpmMKP-D9k530m3-h-I95EexWaH7dfUP9Q2jE5J9 |
| CitedBy_id | crossref_primary_10_1007_s10586_024_04516_1 crossref_primary_10_1016_j_engappai_2023_107825 crossref_primary_10_1109_JSYST_2024_3459596 crossref_primary_10_1016_j_future_2025_107853 crossref_primary_10_1016_j_suscom_2024_101025 crossref_primary_10_1016_j_suscom_2025_101128 |
| Cites_doi | 10.1007/s00779-018-1111-z 10.1007/s11042-022-12943-8 10.1016/j.future.2021.11.019 10.1007/s00500-014-1536-x 10.1002/rnc.6269 10.1007/s00500-014-1406-6 10.1007/s10586-020-03060-y 10.1016/j.chaos.2022.113034 10.1016/j.apenergy.2021.117514 10.1016/j.future.2020.08.036 10.1109/TPWRS.2022.3170933 10.1016/j.amc.2022.127441 10.1007/s11063-021-10708-2 10.1007/s12652-020-02561-3 10.1016/j.eswa.2022.118886 10.1007/s10462-020-09903-9 10.1016/j.jcss.2013.02.004 10.2174/1574893617666220404145517 10.1016/j.sysarc.2021.102362 10.1093/imamci/dnac015 10.1109/ACCESS.2020.2990828 10.1109/ACCESS.2018.2875034 10.1016/j.neunet.2022.06.039 10.1109/TSTE.2020.2978634 10.1016/j.eswa.2022.117012 10.1002/cpe.7112 10.1109/CC.2015.7084410 10.1080/01969722.2022.2159162 10.1109/TASE.2022.3184022 10.1109/TNSE.2022.3210233 10.1109/TPEL.2015.2499380 10.1002/rnc.6255 10.1002/cpe.6425 10.1145/2208828.2208832 10.1093/nar/gkab957 10.1109/GLOCOM.2014.7037153 10.1109/UCC.2011.21 10.1109/SNPD.2015.7176234 10.1002/ett.4529 10.3390/electronics8020218 10.1109/GLOCOM.2013.6831253 10.1007/978-3-642-10665-1_23 10.1021/acs.est.2c01323 10.1109/CloudNet.2013.6710561 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s10723-023-09651-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: ProQuest Advanced Technologies & Aerospace Database (NC LIVE) url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1572-9184 |
| ExternalDocumentID | 10_1007_s10723_023_09651_4 |
| GroupedDBID | -59 -5G -BR -D3 -D4 -D8 -DT -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHFT ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KZ1 LAK LLZTM LMP M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PT4 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-e4265c1d9c7db279e0b7388adcb90c70e2d05fe140df4b2a26f60bb58f8a6a2f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935871300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1570-7873 |
| IngestDate | Wed Nov 05 04:19:49 EST 2025 Sat Nov 29 03:23:26 EST 2025 Tue Nov 18 22:01:38 EST 2025 Fri Feb 21 02:43:26 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Cloud computing Dynamic placement ODMA Virtual machine VM migration |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-e4265c1d9c7db279e0b7388adcb90c70e2d05fe140df4b2a26f60bb58f8a6a2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2777522175 |
| PQPubID | 2043852 |
| ParticipantIDs | proquest_journals_2777522175 crossref_citationtrail_10_1007_s10723_023_09651_4 crossref_primary_10_1007_s10723_023_09651_4 springer_journals_10_1007_s10723_023_09651_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20230300 2023-03-00 20230301 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | From Grids to Cloud Federations |
| PublicationTitle | Journal of grid computing |
| PublicationTitleAbbrev | J Grid Computing |
| PublicationYear | 2023 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Jazayeri, Shahidinejad, Ghobaei-Arani (CR12) 2021; 12 Xu, Peng, Xiao, Gates, Yu (CR39) 2015; 19 Li, Wang, Zhao, Xu (CR14) 2022; 32 Nasiri, Berahmand, Li (CR2) 2022; 82 Liu, Niu, Zong, Zhao, Xu (CR9) 2022; 435 Si, Yang, Yu, Ding (CR45) 2021; 302 CR35 CR34 CR33 Qin, Wang, Zhu, Zhai (CR38) 2018; 6 Ram, Srivastava, Kumar Mishra (CR11) 2021; 33 CR31 Li, Yang, Wu (CR50) 2021; 12 Liu, Zheng, Sudhoff, Gu, Li (CR43) 2015; 31 Liu, Wang, Zhou, Rezaeipanah (CR46) 2022; 54 Zhang, Zhao, Zhang, Niu, Zong, Xu (CR3) 2022; 32 Arebi, Fatemi, Ramezani (CR42) 2022 CR6 Parvizi, Rezvani (CR17) 2020; 23 Berahmand, Mohammadi, Saberi-Movahed, Li, Xu (CR13) 2022; 10 CR44 Gharehpasha, Masdari, Jafarian (CR37) 2021; 54 Cheng, Liang, Wang, Zong, Xu (CR24) 2022 Camati, Calsavara, Lima (CR28) 2014; 2014 Zhao, Wang, Xu, Zong, Zhao (CR48) 2023; 167 Zhang, Zou, Ju, Song, Chen (CR41) 2022; 17 CR18 Yan, Zhang, Xu, Zhang (CR19) 2018; 22 CR16 Ghobaei-Arani, Shahidinejad (CR10) 2022; 200 Wang, Yang, Fang, Wang, Wu (CR8) 2022 Ram, Srivastava, Mishra (CR5) 2022; 34 Dong, Wang, Cheng (CR30) 2015; 12 Rezaeipanah, Jamshidi, Jafari (CR7) 2021; 36 Hajipour, Khormuji, Rostami (CR21) 2016; 20 Shakarami, Shakarami, Ghobaei-Arani, Nikougoftar, Faraji-Mehmandar (CR1) 2022; 122 Zhang, Zhang, Tong, Rezaeipanah (CR49) 2022; 34 Peake, Amos, Costen, Masala, Lloyd (CR15) 2022; 129 Ibrahim, Noshy, Ali, Badawy (CR40) 2020; 8 Alboaneen, Tianfield, Zhang, Pranggono (CR20) 2021; 115 CR29 CR27 CR26 Gao, Guan, Qi, Hou, Liu (CR36) 2013; 79 CR23 Arebi, Fatemi, Ramezani (CR4) 2023; 213 Zhou, Hu, Li (CR25) 2016; 2016 Zhang, Zhuang, Zhu (CR32) 2013; 6 Tang, Niu, Zong, Zhao, Xu (CR22) 2022; 154 Chang, Niu, Wang, Zhang, Ahmad, Alassafi (CR47) 2022; 39 9651_CR18 P Arebi (9651_CR4) 2023; 213 9651_CR16 F Jazayeri (9651_CR12) 2021; 12 L Zhang (9651_CR32) 2013; 6 A Shakarami (9651_CR1) 2022; 122 J Dong (9651_CR30) 2015; 12 S Gharehpasha (9651_CR37) 2021; 54 J Yan (9651_CR19) 2018; 22 S Liu (9651_CR9) 2022; 435 RS Camati (9651_CR28) 2014; 2014 C Liu (9651_CR46) 2022; 54 9651_CR29 H Zhang (9651_CR3) 2022; 32 9651_CR27 F Cheng (9651_CR24) 2022 9651_CR26 9651_CR23 E Nasiri (9651_CR2) 2022; 82 M Wang (9651_CR8) 2022 E Parvizi (9651_CR17) 2020; 23 Y Zhao (9651_CR48) 2023; 167 Y Qin (9651_CR38) 2018; 6 H Zhang (9651_CR41) 2022; 17 A Rezaeipanah (9651_CR7) 2021; 36 SDK Ram (9651_CR5) 2022; 34 B Xu (9651_CR39) 2015; 19 Y Chang (9651_CR47) 2022; 39 A Ibrahim (9651_CR40) 2020; 8 9651_CR34 P Arebi (9651_CR42) 2022 9651_CR35 Y Li (9651_CR14) 2022; 32 9651_CR33 J Peake (9651_CR15) 2022; 129 9651_CR31 SDK Ram (9651_CR11) 2021; 33 Y Gao (9651_CR36) 2013; 79 Z Si (9651_CR45) 2021; 302 Z Liu (9651_CR43) 2015; 31 Y Zhang (9651_CR49) 2022; 34 9651_CR6 Z Zhou (9651_CR25) 2016; 2016 H Hajipour (9651_CR21) 2016; 20 9651_CR44 K Berahmand (9651_CR13) 2022; 10 P Li (9651_CR50) 2021; 12 D Alboaneen (9651_CR20) 2021; 115 M Ghobaei-Arani (9651_CR10) 2022; 200 F Tang (9651_CR22) 2022; 154 |
| References_xml | – volume: 6 start-page: 333 issue: 6 year: 2013 end-page: 344 ident: CR32 article-title: Constraint programming based virtual cloud resources allocation model publication-title: Int. J. Hybrid Inf. Technol. – ident: CR16 – volume: 22 start-page: 589 issue: 3 year: 2018 end-page: 596 ident: CR19 article-title: Discrete PSO-based workload optimization in virtual machine placement publication-title: Pers. Ubiquit. Comput. doi: 10.1007/s00779-018-1111-z – volume: 82 start-page: 3745 year: 2022 end-page: 3768 ident: CR2 article-title: Robust graph regularization nonnegative matrix factorization for link prediction in attributed networks publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12943-8 – volume: 36 start-page: 1 issue: 3 year: 2021 end-page: 7 ident: CR7 article-title: A shooting strategy when moving on humanoid robots using inverse kinematics and q-learning publication-title: Int. J. Robot. Autom. – volume: 129 start-page: 174 year: 2022 end-page: 186 ident: CR15 article-title: PACO-VMP: parallel ant colony optimization for virtual machine placement publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2021.11.019 – ident: CR35 – volume: 20 start-page: 727 issue: 2 year: 2016 end-page: 747 ident: CR21 article-title: ODMA: a novel swarm-evolutionary metaheuristic optimizer inspired by open-source development model and communities publication-title: Soft. Comput. doi: 10.1007/s00500-014-1536-x – ident: CR29 – volume: 32 start-page: 8163 issue: 14 year: 2022 end-page: 8185 ident: CR3 article-title: Observer-based adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with input quantization publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.6269 – volume: 19 start-page: 2265 issue: 8 year: 2015 end-page: 2273 ident: CR39 article-title: Dynamic deployment of virtual machines in cloud computing using multi-objective optimization publication-title: Soft. Comput. doi: 10.1007/s00500-014-1406-6 – volume: 2014 start-page: 264 year: 2014 ident: CR28 article-title: Solving the virtual machine placement problem as a multiple multidimensional knapsack problem publication-title: ICN – volume: 34 start-page: 7948 issue: 10 year: 2022 end-page: 7960 ident: CR49 article-title: A dynamic planning model for deploying service functions chain in fog-cloud computing publication-title: J. King Saud Univ. Comput. Inf. Sci. – volume: 23 start-page: 2945 issue: 4 year: 2020 end-page: 2967 ident: CR17 article-title: Utilization-aware energy-efficient virtual machine placement in cloud networks using NSGA-III meta-heuristic approach publication-title: Clust. Comput. doi: 10.1007/s10586-020-03060-y – volume: 167 year: 2023 ident: CR48 article-title: Reinforcement learning-based decentralized fault tolerant control for constrained interconnected nonlinear systems publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2022.113034 – volume: 302 year: 2021 ident: CR45 article-title: Photovoltaic power forecast based on satellite images considering effects of solar position publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117514 – volume: 115 start-page: 201 year: 2021 end-page: 212 ident: CR20 article-title: A metaheuristic method for joint task scheduling and virtual machine placement in cloud data centers publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2020.08.036 – year: 2022 ident: CR8 article-title: A practical feeder planning model for urban distribution system publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2022.3170933 – volume: 435 year: 2022 ident: CR9 article-title: Adaptive fixed-time hierarchical sliding mode control for switched under-actuated systems with dead-zone constraints via event-triggered strategy publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2022.127441 – volume: 54 start-page: 1823 issue: 3 year: 2022 end-page: 1854 ident: CR46 article-title: Solving the multi-objective problem of IoT service placement in fog computing using cuckoo search algorithm publication-title: Neural Process. Lett. doi: 10.1007/s11063-021-10708-2 – volume: 12 start-page: 8265 year: 2021 end-page: 8284 ident: CR12 article-title: Autonomous computation offloading and auto-scaling the in the mobile fog computing: a deep reinforcement learning-based approach publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02561-3 – ident: CR26 – volume: 213 year: 2023 ident: CR4 article-title: Event stream controllability on event-based complex networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118886 – volume: 2016 start-page: 1 issue: 1 year: 2016 end-page: 11 ident: CR25 article-title: Virtual machine placement algorithm for both energy-awareness and SLA violation reduction in cloud data centers publication-title: Sci. Program. – volume: 54 start-page: 2221 issue: 3 year: 2021 end-page: 2257 ident: CR37 article-title: Virtual machine placement in cloud data centers using a hybrid multi-verse optimization algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09903-9 – ident: CR18 – volume: 79 start-page: 1230 issue: 8 year: 2013 end-page: 1242 ident: CR36 article-title: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2013.02.004 – volume: 17 start-page: 473 issue: 5 year: 2022 end-page: 482 ident: CR41 article-title: Distance-based support vector machine to predict DNA N6-methyladenine modification publication-title: Curr. Bioinform. doi: 10.2174/1574893617666220404145517 – volume: 122 year: 2022 ident: CR1 article-title: Resource provisioning in edge/fog computing: A comprehensive and systematic review publication-title: J. Syst. Architect. doi: 10.1016/j.sysarc.2021.102362 – volume: 39 start-page: 892 issue: 3 year: 2022 end-page: 911 ident: CR47 article-title: Adaptive tracking control for nonlinear system in pure-feedback form with prescribed performance and unknown hysteresis publication-title: IMA J. Math. Control. Inf. doi: 10.1093/imamci/dnac015 – ident: CR33 – volume: 8 start-page: 81747 year: 2020 end-page: 81764 ident: CR40 article-title: PAPSO: A power-aware VM placement technique based on particle swarm optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990828 – ident: CR6 – volume: 6 start-page: 58912 year: 2018 end-page: 58923 ident: CR38 article-title: A multi-objective ant colony system algorithm for virtual machine placement in traffic intense data centers publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2875034 – volume: 154 start-page: 43 year: 2022 end-page: 55 ident: CR22 article-title: Periodic event-triggered adaptive tracking control design for nonlinear discrete-time systems via reinforcement learning publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.06.039 – volume: 12 start-page: 58 issue: 1 year: 2021 end-page: 69 ident: CR50 article-title: Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2020.2978634 – volume: 200 year: 2022 ident: CR10 article-title: A cost-efficient IoT service placement approach using whale optimization algorithm in fog computing environment publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117012 – volume: 34 issue: 21 year: 2022 ident: CR5 article-title: A new meta-heuristic approach for load aware-cost effective workflow scheduling publication-title: Concurr. Comput.: Pract. Exp. doi: 10.1002/cpe.7112 – ident: CR27 – volume: 12 start-page: 155 issue: 2 year: 2015 end-page: 166 ident: CR30 article-title: Energy-performance tradeoffs in IaaS cloud with virtual machine scheduling publication-title: China Commun. doi: 10.1109/CC.2015.7084410 – ident: CR23 – year: 2022 ident: CR42 article-title: An effective approach based on temporal centrality measures for improving temporal network controllability publication-title: Cybern. Syst. doi: 10.1080/01969722.2022.2159162 – ident: CR44 – year: 2022 ident: CR24 article-title: Adaptive neural self-triggered bipartite fault-tolerant control for nonlinear MASs with dead-zone constraints publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2022.3184022 – volume: 10 start-page: 372 issue: 1 year: 2022 end-page: 385 ident: CR13 article-title: Graph regularized nonnegative matrix factorization for community detection in attributed networks publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2022.3210233 – volume: 31 start-page: 6631 issue: 9 year: 2015 end-page: 6645 ident: CR43 article-title: Reduction of common-mode voltage in multiphase two-level inverters using SPWM with phase-shifted carriers publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2015.2499380 – ident: CR31 – volume: 32 start-page: 7987 issue: 14 year: 2022 end-page: 8011 ident: CR14 article-title: Event-triggered adaptive tracking control for uncertain fractional-order nonstrict-feedback nonlinear systems via command filtering publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.6255 – ident: CR34 – volume: 33 issue: 21 year: 2021 ident: CR11 article-title: A variant of teaching-learning-based optimization and its application for minimizing the cost of workflow execution in the cloud computing publication-title: Concurr. Comput.: Pract. Exp. doi: 10.1002/cpe.6425 – volume: 6 start-page: 58912 year: 2018 ident: 9651_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2875034 – volume: 31 start-page: 6631 issue: 9 year: 2015 ident: 9651_CR43 publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2015.2499380 – volume: 33 issue: 21 year: 2021 ident: 9651_CR11 publication-title: Concurr. Comput.: Pract. Exp. doi: 10.1002/cpe.6425 – volume: 122 year: 2022 ident: 9651_CR1 publication-title: J. Syst. Architect. doi: 10.1016/j.sysarc.2021.102362 – volume: 129 start-page: 174 year: 2022 ident: 9651_CR15 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2021.11.019 – ident: 9651_CR33 doi: 10.1145/2208828.2208832 – volume: 39 start-page: 892 issue: 3 year: 2022 ident: 9651_CR47 publication-title: IMA J. Math. Control. Inf. doi: 10.1093/imamci/dnac015 – volume: 34 issue: 21 year: 2022 ident: 9651_CR5 publication-title: Concurr. Comput.: Pract. Exp. doi: 10.1002/cpe.7112 – volume: 10 start-page: 372 issue: 1 year: 2022 ident: 9651_CR13 publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2022.3210233 – volume: 23 start-page: 2945 issue: 4 year: 2020 ident: 9651_CR17 publication-title: Clust. Comput. doi: 10.1007/s10586-020-03060-y – volume: 22 start-page: 589 issue: 3 year: 2018 ident: 9651_CR19 publication-title: Pers. Ubiquit. Comput. doi: 10.1007/s00779-018-1111-z – volume: 115 start-page: 201 year: 2021 ident: 9651_CR20 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2020.08.036 – volume: 302 year: 2021 ident: 9651_CR45 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117514 – volume: 54 start-page: 1823 issue: 3 year: 2022 ident: 9651_CR46 publication-title: Neural Process. Lett. doi: 10.1007/s11063-021-10708-2 – volume: 54 start-page: 2221 issue: 3 year: 2021 ident: 9651_CR37 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09903-9 – volume: 167 year: 2023 ident: 9651_CR48 publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2022.113034 – ident: 9651_CR23 doi: 10.1093/nar/gkab957 – volume: 2016 start-page: 1 issue: 1 year: 2016 ident: 9651_CR25 publication-title: Sci. Program. – ident: 9651_CR29 doi: 10.1109/GLOCOM.2014.7037153 – ident: 9651_CR35 doi: 10.1109/UCC.2011.21 – volume: 12 start-page: 58 issue: 1 year: 2021 ident: 9651_CR50 publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2020.2978634 – volume: 6 start-page: 333 issue: 6 year: 2013 ident: 9651_CR32 publication-title: Int. J. Hybrid Inf. Technol. – volume: 435 year: 2022 ident: 9651_CR9 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2022.127441 – volume: 200 year: 2022 ident: 9651_CR10 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117012 – volume: 154 start-page: 43 year: 2022 ident: 9651_CR22 publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.06.039 – ident: 9651_CR31 – ident: 9651_CR26 doi: 10.1109/SNPD.2015.7176234 – ident: 9651_CR16 doi: 10.1002/ett.4529 – volume: 82 start-page: 3745 year: 2022 ident: 9651_CR2 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12943-8 – volume: 17 start-page: 473 issue: 5 year: 2022 ident: 9651_CR41 publication-title: Curr. Bioinform. doi: 10.2174/1574893617666220404145517 – volume: 32 start-page: 7987 issue: 14 year: 2022 ident: 9651_CR14 publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.6255 – volume: 12 start-page: 155 issue: 2 year: 2015 ident: 9651_CR30 publication-title: China Commun. doi: 10.1109/CC.2015.7084410 – year: 2022 ident: 9651_CR8 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2022.3170933 – volume: 12 start-page: 8265 year: 2021 ident: 9651_CR12 publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02561-3 – volume: 32 start-page: 8163 issue: 14 year: 2022 ident: 9651_CR3 publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.6269 – ident: 9651_CR18 doi: 10.3390/electronics8020218 – year: 2022 ident: 9651_CR24 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2022.3184022 – volume: 2014 start-page: 264 year: 2014 ident: 9651_CR28 publication-title: ICN – year: 2022 ident: 9651_CR42 publication-title: Cybern. Syst. doi: 10.1080/01969722.2022.2159162 – ident: 9651_CR34 doi: 10.1109/GLOCOM.2013.6831253 – volume: 20 start-page: 727 issue: 2 year: 2016 ident: 9651_CR21 publication-title: Soft. Comput. doi: 10.1007/s00500-014-1536-x – volume: 8 start-page: 81747 year: 2020 ident: 9651_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990828 – ident: 9651_CR44 doi: 10.1007/978-3-642-10665-1_23 – volume: 213 year: 2023 ident: 9651_CR4 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118886 – volume: 36 start-page: 1 issue: 3 year: 2021 ident: 9651_CR7 publication-title: Int. J. Robot. Autom. – ident: 9651_CR6 doi: 10.1021/acs.est.2c01323 – volume: 34 start-page: 7948 issue: 10 year: 2022 ident: 9651_CR49 publication-title: J. King Saud Univ. Comput. Inf. Sci. – ident: 9651_CR27 doi: 10.1109/CloudNet.2013.6710561 – volume: 19 start-page: 2265 issue: 8 year: 2015 ident: 9651_CR39 publication-title: Soft. Comput. doi: 10.1007/s00500-014-1406-6 – volume: 79 start-page: 1230 issue: 8 year: 2013 ident: 9651_CR36 publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2013.02.004 |
| SSID | ssj0025802 |
| Score | 2.3591425 |
| Snippet | Although cloud computing can provide information technology services worldwide, data centers hosting cloud applications consume a lot of energy. At the same... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13 |
| SubjectTerms | Algorithms Cloud computing Computer centers Computer Science Data centers Energy consumption Energy costs Greenhouse gases Heuristic methods Management of Computing and Information Systems Operating costs Placement Processor Architectures User Interfaces and Human Computer Interaction Virtual environments |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFLYo9NALW6kYNr0DN4jqceI4PiFWcQGNxCLUS-S1HWmawEzg9-OXcWZKJbhw8CmxZen5-W2f30fIvmKyKFKH_fBSnmTcBp1jXiaCeprr3IaQwrdkE-L6unh4kIOYcJtEWGV3J7YXta0N5sh_MiFE8BWCtTt6fEqQNQqrq5FC4wtZwi4JSN0w4L9mARcvpphDLhA1J9L4aCY-nRMMK5hhyJyHOOqtYZp7m_8VSFu7c7Hy2R2vkuXoccLx9IiskQVXrZOVjs0BonJ_Jy-z_AKcTWnqYYA5dkwfQu3hfjjGtyZw1cIv3QSGFZyO6mcLZ6pRgGni4ErCSTCLFuoKEKqS3LS1AfgHmgTIvha2M_od9tr8-btB7i7Ob08vk8jKkJigrk3igk3npm-lEVYzIR3VIi0KZY2W1AjqmKXcuxC4WZ9ppljuc6o1L3yhcsV8-oMsVnXlNgk4o4xmhgrN0sx6JxnyCzKV9ZXS0pke6XciKU1sWY7MGaNy3mwZxVhSHCjGMuuRg9mcx2nDjg__3ulkV0blnZRzwfXIYSf9-ef3V9v6eLVt8o21Bw4RbDtksRk_u13y1bw0w8l4rz26r9vn8_c priority: 102 providerName: ProQuest |
| Title | Improving Dynamic Placement of Virtual Machines in Cloud Data Centers Based on Open-Source Development Model Algorithm |
| URI | https://link.springer.com/article/10.1007/s10723-023-09651-4 https://www.proquest.com/docview/2777522175 |
| Volume | 21 |
| WOSCitedRecordID | wos000935871300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Advanced Technologies & Aerospace Database (NC LIVE) customDbUrl: eissn: 1572-9184 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: P5Z dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9184 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: BENPR dateStart: 20030301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1572-9184 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: RSV dateStart: 20030301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6Vx4FLobSIBbqaQ280kteJY_vIU1y6WvES6iXys11pSdBu4PfXzia7UJVKcPApiWXZnszrm_kAvikqhUhd7IeXsiRjNsgc9TLhxJNc5za4FL4hm-DDobi7k6O2KGzWod27lGTzp35W7MZpzDmGIXMWPJ8VWAvqTkTChsur24WbxcQcach4xMrxtC2V-fccL9XR0sb8Ky3aaJvzzfetcws-ttYlHs2vwyf44Mpt2OyYG7AV5M_wtIgl4Omckh5HMZ4eQ4VYebwdT2NdCf5ooJZuhuMSTybVo8VTVSuMIeFgNuJxUIEWqxIjLCW5avIA-AyGhJFpLSxn8quajuvf91_g5vzs-uQiaRkYEhNEs05c0N_MDKw03GrKpSOap0Ioa7QkhhNHLWHeBSfN-kxTRXOfE62Z8ELlivp0B1bLqnS7gM4oo6khXNM0s95JGrkEqcoGSmnpTA8G3UEUpm1PHlkyJsWysXLc2ILEETe2yHpwuPjmYd6c479vH3TnW7SCOiso5zyYoMGI6sH37jyXj1-fbe9tr-_DBm2uRESvHcBqPX10X2HdPNXj2bQPa8dnw9FlH1ZG7Ge_uc5_AMan7Gw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LT9RAGP-CaKIX8BlWUL-DnrRxdtrptAdjlJVAgM0moiFe6jxxk6XF3YLhn_JvdL5uu6smcuPgYU5tJ-30971fAM8Vz7MsdtQPLxZRImygOe7zSDLPUp3aYFL4ZtiEHA6z4-N8tAI_u1oYSqvseGLDqG1lyEf-mkspg64QpN3bs-8RTY2i6Go3QmMOi313-SOYbLM3e4Pwf19wvvPhaHs3aqcKRCbArY5ckEnC9G1upNVc5o5pGWeZskbnzEjmuGXCu2B4WJ9ornjqU6a1yHymUsV9HPa9ATeThDOiopH4sjDwRDbPcRSSsvRk3BbptKV6klPENKw8FcFu-1MQLrXbvwKyjZzbWf_fTugurLUaNb6bk8A9WHHlfVjvplVgy7wewMXCf4KDy1Kdjg2OKIZA7lGsPH4eT6mWBg-b9FI3w3GJ25Pq3OJA1QrJDR5UZXwfxL7FqkRKxYk-NrEP_C31Cmm6XHidyUk4m_rb6UP4dC1f_whWy6p0G4DOKKO5YVLzOLHe5ZzmJ3KV9JXSuTM96HcQKEzbkp0mg0yKZTNpgk3BaBFsiqQHLxfPnM0bklx591aHlaJlTrNiCZQevOrQtrz8790eX73bM7i9e3R4UBzsDfc34Q5vwE7ZeluwWk_P3RO4ZS7q8Wz6tCEbhK_XjcJfYXVS1A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BQagX2vIQgVLm0Bus6ngfXh-hIaIqjSK1VL2t_CyRwm6VbPv769lHEhAgIQ4-rdeybI_m9c18AIeKyzyPHfXDi9MoSW2QOe5lJJhnmc5scCl8QzYhJpP86kpON6r4G7R7n5JsaxqoS1NZH91Yf7RR-CY45R_DkFkavKCH8CghID356-eXK5crzVvUYSoINyfirmzm92v8rJrW9uYvKdJG84x3_n_Pu_C0szrxY_tM9uCBK5_BTs_ogJ2AP4e7VYwBRy1VPU4pzk4hRKw8Xs4WVG-CZw0E0y1xVuLxvLq1OFK1QgoVB3MSPwXVaLEqkeAq0XmTH8ANeBISA1vYzvy6Wszq7z9ewLfx54vjL1HHzBCZILJ15IJeT83QSiOs5kI6pkWc58oaLZkRzHHLUu-C82Z9ornimc-Y1mnuc5Up7uOXsFVWpXsF6IwymhsmNI8T653kxDHIVTJUSktnBjDsL6UwXdtyYs-YF-uGy3SwBaNBB1skA3i_-uembdrx19n7_V0XnQAvCy6ECKZpMK4G8KG_2_XnP6_2-t-mv4Mn09G4-HoyOX0D27x5HQRw24etenHr3sJjc1fPlouD5l3fA5Uu9Zo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Dynamic+Placement+of+Virtual+Machines+in+Cloud+Data+Centers+Based+on+Open-Source+Development+Model+Algorithm&rft.jtitle=Journal+of+grid+computing&rft.au=Li%2C+Na&rft.au=Liu%2C+XiaoLing&rft.au=Wang%2C+Yu&rft.au=Mojarad%2C+Musa&rft.date=2023-03-01&rft.pub=Springer+Netherlands&rft.issn=1570-7873&rft.eissn=1572-9184&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1007%2Fs10723-023-09651-4&rft.externalDocID=10_1007_s10723_023_09651_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7873&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7873&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7873&client=summon |