Quantum Hamiltonian complexity in thermal equilibrium

The physical properties of a quantum many-body system in thermal equilibrium are determined by its partition function and free energy. Here we study the computational complexity of approximating these quantities for n -qubit local Hamiltonians. First, we report a classical algorithm with poly( n ) r...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics Vol. 18; no. 11; pp. 1367 - 1370
Main Authors: Bravyi, Sergey, Chowdhury, Anirban, Gosset, David, Wocjan, Pawel
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.11.2022
Nature Publishing Group
Subjects:
ISSN:1745-2473, 1745-2481
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The physical properties of a quantum many-body system in thermal equilibrium are determined by its partition function and free energy. Here we study the computational complexity of approximating these quantities for n -qubit local Hamiltonians. First, we report a classical algorithm with poly( n ) runtime, which approximates the free energy of a given 2-local Hamiltonian provided that it satisfies a certain denseness condition. Our algorithm contributes to a body of work investigating the hardness of approximation for difficult optimization problems. Specifically, this extends existing efficient approximation algorithms for dense instances of the ground energy of 2-local quantum Hamiltonians and the free energy of classical Ising models. Second, we establish polynomial-time equivalence between the problem of approximating the free energy of local Hamiltonians and several other natural tasks ubiquitous in condensed-matter physics and quantum computing, such as the problem of approximating the number of input states accepted by a polynomial-size quantum circuit. These results suggest that the simulation of quantum many-body systems in thermal equilibrium may precisely capture the complexity of a broad family of computational problems that have yet to be defined or characterized in terms of known complexity classes. Finally, we summarize state-of-the-art classical and quantum algorithms for approximating the free energy and show how to improve their runtime and memory footprint. A quantum many-body system’s equilibrium behaviour is described by its partition function, which is hard to compute. Now it has been shown that the easier task of finding an approximation could define a distinct class of computational problems.
AbstractList The physical properties of a quantum many-body system in thermal equilibrium are determined by its partition function and free energy. Here we study the computational complexity of approximating these quantities for n-qubit local Hamiltonians. First, we report a classical algorithm with poly(n) runtime, which approximates the free energy of a given 2-local Hamiltonian provided that it satisfies a certain denseness condition. Our algorithm contributes to a body of work investigating the hardness of approximation for difficult optimization problems. Specifically, this extends existing efficient approximation algorithms for dense instances of the ground energy of 2-local quantum Hamiltonians and the free energy of classical Ising models. Second, we establish polynomial-time equivalence between the problem of approximating the free energy of local Hamiltonians and several other natural tasks ubiquitous in condensed-matter physics and quantum computing, such as the problem of approximating the number of input states accepted by a polynomial-size quantum circuit. These results suggest that the simulation of quantum many-body systems in thermal equilibrium may precisely capture the complexity of a broad family of computational problems that have yet to be defined or characterized in terms of known complexity classes. Finally, we summarize state-of-the-art classical and quantum algorithms for approximating the free energy and show how to improve their runtime and memory footprint.A quantum many-body system’s equilibrium behaviour is described by its partition function, which is hard to compute. Now it has been shown that the easier task of finding an approximation could define a distinct class of computational problems.
The physical properties of a quantum many-body system in thermal equilibrium are determined by its partition function and free energy. Here we study the computational complexity of approximating these quantities for n -qubit local Hamiltonians. First, we report a classical algorithm with poly( n ) runtime, which approximates the free energy of a given 2-local Hamiltonian provided that it satisfies a certain denseness condition. Our algorithm contributes to a body of work investigating the hardness of approximation for difficult optimization problems. Specifically, this extends existing efficient approximation algorithms for dense instances of the ground energy of 2-local quantum Hamiltonians and the free energy of classical Ising models. Second, we establish polynomial-time equivalence between the problem of approximating the free energy of local Hamiltonians and several other natural tasks ubiquitous in condensed-matter physics and quantum computing, such as the problem of approximating the number of input states accepted by a polynomial-size quantum circuit. These results suggest that the simulation of quantum many-body systems in thermal equilibrium may precisely capture the complexity of a broad family of computational problems that have yet to be defined or characterized in terms of known complexity classes. Finally, we summarize state-of-the-art classical and quantum algorithms for approximating the free energy and show how to improve their runtime and memory footprint. A quantum many-body system’s equilibrium behaviour is described by its partition function, which is hard to compute. Now it has been shown that the easier task of finding an approximation could define a distinct class of computational problems.
Author Gosset, David
Chowdhury, Anirban
Wocjan, Pawel
Bravyi, Sergey
Author_xml – sequence: 1
  givenname: Sergey
  surname: Bravyi
  fullname: Bravyi, Sergey
  organization: IBM Quantum, IBM T.J. Watson Research Center
– sequence: 2
  givenname: Anirban
  orcidid: 0000-0001-9743-7978
  surname: Chowdhury
  fullname: Chowdhury, Anirban
  email: anirban.n.chowdhury@gmail.com
  organization: Institute for Quantum Computing, University of Waterloo, Department of Combinatorics and Optimization, University of Waterloo, Perimeter Institute for Theoretical Physics
– sequence: 3
  givenname: David
  surname: Gosset
  fullname: Gosset, David
  organization: Institute for Quantum Computing, University of Waterloo, Department of Combinatorics and Optimization, University of Waterloo, Perimeter Institute for Theoretical Physics
– sequence: 4
  givenname: Pawel
  surname: Wocjan
  fullname: Wocjan, Pawel
  organization: IBM Quantum, IBM T.J. Watson Research Center
BookMark eNp9kE1Lw0AQhhepYFv9A54CnqP7lWxylKJWKIig52W6meiWZNPubsD-e9NGFDz0NO_hfWaGZ0YmrnNIyDWjt4yK4i5IluUqpZynlCnJ0-yMTIeQpVwWbPKblbggsxA2lEqeMzEl2WsPLvZtsoTWNrFzFlxiunbb4JeN-8S6JH6ib6FJcNfbxq697dtLcl5DE_DqZ87J--PD22KZrl6enhf3q9QIVsYUJVWsBMGEoUUJqgJkuQJWQ6V4VUNBpSgqRbHGGows8gw5X4uSlmhyg6WYk5tx79Z3ux5D1Juu9244qbkSvGQyF4dWMbaM70LwWGtjI0TbuejBNppRfZCkR0l6kKSPknQ2oPwfuvW2Bb8_DYkRCkPZfaD_--oE9Q3px3vj
CitedBy_id crossref_primary_10_1103_k5tx_xtr3
crossref_primary_10_1137_24M1654749
crossref_primary_10_1038_s41534_024_00883_0
crossref_primary_10_1063_5_0218349
crossref_primary_10_22331_q_2025_08_29_1843
crossref_primary_10_1038_s41598_024_64854_3
crossref_primary_10_1038_s42005_024_01763_x
crossref_primary_10_1103_PRXQuantum_5_010329
crossref_primary_10_1038_s41467_024_54118_z
crossref_primary_10_1103_PRXQuantum_5_010305
crossref_primary_10_1103_PhysRevX_14_011013
crossref_primary_10_1103_PRXQuantum_4_040201
crossref_primary_10_1038_s41467_024_51592_3
crossref_primary_10_1186_s13321_025_01026_z
crossref_primary_10_1038_s41467_024_51439_x
Cites_doi 10.1145/3313276.3316366
10.1090/conm/305/05215
10.1137/S0097539704445226
10.1145/2554797.2554836
10.1103/PhysRevA.103.032422
10.1103/PhysRevLett.124.220601
10.1103/PhysRevA.80.012304
10.1145/800061.808740
10.1145/1236457.1236459
10.1137/110842272
10.1137/1.9781611976014.5
10.1142/2262
10.1145/3357713.3384322
10.1007/s00023-021-01111-7
10.22331/q-2020-02-14-230
10.1090/gsm/047
10.1145/2488608.2488719
10.26421/QIC16.9-10-1
10.26421/QIC8.5-1
10.1073/pnas.1804949115
10.1109/TIT.2021.3081415
10.1080/03610918908812806
10.1145/1008731.1008733
10.1007/978-3-319-51829-9_2
10.1103/PhysRevLett.103.220502
10.1103/PRXQuantum.3.010308
10.1103/PhysRevLett.119.100503
10.1103/PhysRevLett.81.5672
10.22331/q-2021-02-11-395
10.1109/FOCS.2011.95
10.1007/s00037-017-0162-2
10.1038/s41567-020-0932-7
10.1007/s00037-005-0194-x
10.1007/3-540-62592-5_80
10.22331/q-2022-03-17-668
10.1137/1.9781611976496.16
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/s41567-022-01742-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 1370
ExternalDocumentID 10_1038_s41567_022_01742_5
GrantInformation_xml – fundername: Canadian Institute for Advanced Research (L'Institut Canadien de Recherches Avancées)
  funderid: https://doi.org/10.13039/100007631
– fundername: IBM Research
– fundername: IBM Research Frontiers
– fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
  grantid: W911NF-20-1-001; W911NF-20-1-001; W911NF-20-1-001
  funderid: https://doi.org/10.13039/100000183
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-e40719a313c089a7dae167a1fad72dfa80438d70efefac4865e22b3909ec6ce93
IEDL.DBID M2P
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864597400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1745-2473
IngestDate Sat Aug 16 18:51:26 EDT 2025
Tue Nov 18 21:04:29 EST 2025
Sat Nov 29 01:38:11 EST 2025
Fri Feb 21 02:38:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e40719a313c089a7dae167a1fad72dfa80438d70efefac4865e22b3909ec6ce93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9743-7978
PQID 2732914639
PQPubID 27545
PageCount 4
ParticipantIDs proquest_journals_2732914639
crossref_citationtrail_10_1038_s41567_022_01742_5
crossref_primary_10_1038_s41567_022_01742_5
springer_journals_10_1038_s41567_022_01742_5
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Barak, B., Raghavendra, P. & Steurer, D. Rounding semidefinite programming hierarchies via global correlation. IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 472-481 (2011).
Risteski, A. How to calculate partition functions using convex programming hierarchies: provable bounds for variational methods. In 29th Annual Conference on Learning Theory (eds. Feldman, V., Rakhlin, A. & Shamir, O.) vol. 49 of Proceedings of Machine Learning Research 1402–1416 (PMLR, 2016).
DinurIThe PCP theorem by gap amplificationJ. ACM20075412es231425410.1145/1236457.12364591292.68074
van ApeldoornJGilyénAGriblingSde WolfRQuantum SDP-solvers: better upper and lower boundsQuantum2020423010.22331/q-2020-02-14-230
Cade, C. & Montanaro, A. The quantum complexity of computing Schatten p-norms. In 13th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2018) (Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik 2018).
Brandão, F. G. S. L. Entanglement Theory and the Quantum Simulation of Many-Body Physics. PhD thesis, Imperial College of Science, Technology and Medicine (2008).
DankertCCleveREmersonJLivineEExact and approximate unitary 2-designs and their application to fidelity estimationPhys. Rev. A2009800123042009PhRvA..80a2304D10.1103/PhysRevA.80.012304
Brassard, G., Høyer, P., Mosca, M. and Tapp, A. Quantum amplitude amplification and estimation. In Quantum Computation and Information Vol. 305 of Contemporary Mathematics 53–74 (AMS, 2002).
KitaevAYShenAHVyalyiMNClassical and Quantum Computation2002American Mathematical Society10.1090/gsm/0471022.68001
Kohler, T., Piddock, S., Bausch, J. & Cubitt, T. General conditions for universality of quantum Hamiltonians. PRX Quantum 3, 010308 (2022).
BravyiSGossetDPolynomial-time classical simulation of quantum ferromagnetsPhys. Rev. Lett.20171191005032017PhRvL.119j0503B10.1103/PhysRevLett.119.100503
HuangH-YKuengRPreskillJPredicting many properties of a quantum system from very few measurementsNat. Phys.2020161050105710.1038/s41567-020-0932-7
CrossonEHarrowAWRapid mixing of path integral Monte Carlo for 1D stoquastic HamiltoniansQuantum2021539510.22331/q-2021-02-11-395
CubittTSMontanaroAPiddockSUniversal quantum HamiltoniansProc. Natl Acad. Sci. USA2018115949795022018PNAS..115.9497C385903710.1073/pnas.18049491151416.82008
HutchinsonMFA stochastic estimator of the trace of the influence matrix for Laplacian smoothing splinesCommun. Stat. Simul. Comput.19891810591076103184010.1080/036109189088128060695.62113
Harrow, A. W., Mehraban, S. & Soleimanifar, M. Classical algorithms, correlation decay, and complex zeros of partition functions of quantum many-body systems. In Proc. 52nd Annual ACM SIGACT Symposium on Theory of Computing 378–386 (ACM, 2020).
KempeJKitaevARegevOThe complexity of the local Hamiltonian problemSIAM J. Comput.20063510701097221713810.1137/S00975397044452261102.81032
Brandao, F. G. & Harrow, A. W. Product-state approximations to quantum ground states. In Proc. Forty-Fifth Annual ACM Symposium on Theory of Computing STOC ’13 871–880 (ACM, 2013).
Aaronson, S. and Rall, P. Quantum approximate counting, simplified. In Symposium on Simplicity in Algorithms 24–32 (SIAM, 2020).
Zhou, L. & Aharonov, D. Strongly universal Hamiltonian simulators. Preprint at https://arxiv.org/abs/2102.02991 (2021).
KuwaharaTKatoKBrandãoFGSLClustering of conditional mutual information for quantum Gibbs states above a threshold temperaturePhys. Rev. Lett.20201242206012020PhRvL.124v0601K411120410.1103/PhysRevLett.124.220601
Grötschel, M., Lovász, L. & Schrijver, A. Geometric Algorithms and Combinatorial Optimization Vol. 2 (Springer Science & Business Media, 2012).
Stockmeyer, L. The complexity of approximate counting. In Proc. Fifteenth Annual ACM Symposium on Theory of Computing STOC ’83 118–126 (ACM, 1983).
BravyiSMaslovDHadamard-free circuits expose the structure of the Clifford groupIEEE Trans. Inf. Theory20216745464563430628410.1109/TIT.2021.30814151475.68132
BertsimasDVempalaSSolving convex programs by random walksJ. ACM200451540556214784710.1145/1008731.10087331204.90074
Gosset, D. & Smolin, J. A compressed classical description of quantum states. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019) (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019).
PoulinDWocjanPSampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computerPhys. Rev. Lett.20091032205022009PhRvL.103v0502P257021810.1103/PhysRevLett.103.220502
GoldbergLAGuoHThe complexity of approximating complex-valued Ising and Tutte partition functionscomput. complex.201726765833372334910.1007/s00037-017-0162-21382.68090
Yoshida, Y. & Zhou, Y. Approximation schemes via Sherali-Adams hierarchy for dense constraint satisfaction problems and assignment problems. In Proc. 5th Conference on Innovations in Theoretical Computer Science ITCS ’14 423–438 (ACM, 2014).
KnillELaflammeRPower of one bit of quantum informationPhys. Rev. Lett.19988156721998PhRvL..81.5672K10.1103/PhysRevLett.81.5672
Bravyi, S., Divincenzo, D. P., Oliveira, R. I. & Terhal, B. M. The complexity of stoquastic local Hamiltonian problems. Quant. Inf. Comp. vol. 8, no. 5, pp. 0361-0385 (2008).
ChowdhuryANSommaRDSubasiYComputing partition functions in the one-clean-qubit modelPhys. Rev. A20211030324222021PhRvA.103c2422C424393610.1103/PhysRevA.103.032422
Aharonov, D., Ben-Or, M., Brandao, F. G. & Sattath, O. The pursuit for uniqueness: extending Valiant-Vazirani theorem to the probabilistic and quantum settings. Quantum 6, 668 (2022).
GharibianSKempeJApproximation algorithms for QMA-complete problemsSIAM J. Comput.20124110281050297476110.1137/1108422721286.68496
Marriott, C. & Watrous, J. Quantum Arthur–Merlin games. Comput. Complex.14, 122–152 (2005).
ChowdhuryANSommaRDQuantum algorithms for Gibbs sampling and hitting-time estimationQuant. Inf. Comp.20171741643676655
Suzuki, M. Quantum Monte Carlo Methods in Condensed Matter Physics (World Scientific, 1993).
Barvinok, A. Combinatorics and Complexity of Partition Functions Vol. 9 (Springer, 2016).
Gilyén, A., Su, Y., Low, G. H. & Wiebe, N. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing 193–204 (ACM, 2019).
Kohler, T., Piddock, S., Bausch, J. & Cubitt, T. Translationally-invariant universal quantum Hamiltonians in 1D. Annales Henri Poincaré Vol. 23, pp. 223–254 (2022).
Meyer, R. A., Musco, C., Musco, C. & Woodruff, D. P. Hutch++: optimal stochastic trace estimation. In Symposium on Simplicity in Algorithms (SOSA) 142–155 (SIAM, 2021).
Alimonti, P. & Kann, V. Hardness of approximating problems on cubic graphs. In Italian Conference on Algorithms and Complexity 288–298 (Springer, 1997).
Cleve, R., Leung, D., Liu, L. & Wang, C. Near-linear constructions of exact unitary 2-designs. Quant. Info. Comp. vol. 16, no. 9–10 pp. 721–756 (2016).
1742_CR22
AN Chowdhury (1742_CR36) 2017; 17
1742_CR42
1742_CR26
1742_CR27
1742_CR24
I Dinur (1742_CR2) 2007; 54
T Kuwahara (1742_CR10) 2020; 124
J van Apeldoorn (1742_CR38) 2020; 4
1742_CR41
TS Cubitt (1742_CR25) 2018; 115
J Kempe (1742_CR40) 2006; 35
S Bravyi (1742_CR43) 2021; 67
E Crosson (1742_CR8) 2021; 5
1742_CR28
1742_CR29
AY Kitaev (1742_CR1) 2002
1742_CR11
1742_CR12
1742_CR34
1742_CR31
1742_CR15
1742_CR37
1742_CR16
S Gharibian (1742_CR17) 2012; 41
1742_CR14
LA Goldberg (1742_CR23) 2017; 26
C Dankert (1742_CR32) 2009; 80
1742_CR3
H-Y Huang (1742_CR30) 2020; 16
MF Hutchinson (1742_CR33) 1989; 18
1742_CR5
1742_CR4
1742_CR7
E Knill (1742_CR21) 1998; 81
1742_CR6
D Bertsimas (1742_CR13) 2004; 51
1742_CR19
1742_CR39
1742_CR18
AN Chowdhury (1742_CR20) 2021; 103
D Poulin (1742_CR35) 2009; 103
S Bravyi (1742_CR9) 2017; 119
References_xml – reference: ChowdhuryANSommaRDQuantum algorithms for Gibbs sampling and hitting-time estimationQuant. Inf. Comp.20171741643676655
– reference: ChowdhuryANSommaRDSubasiYComputing partition functions in the one-clean-qubit modelPhys. Rev. A20211030324222021PhRvA.103c2422C424393610.1103/PhysRevA.103.032422
– reference: Brandão, F. G. S. L. Entanglement Theory and the Quantum Simulation of Many-Body Physics. PhD thesis, Imperial College of Science, Technology and Medicine (2008).
– reference: BertsimasDVempalaSSolving convex programs by random walksJ. ACM200451540556214784710.1145/1008731.10087331204.90074
– reference: CubittTSMontanaroAPiddockSUniversal quantum HamiltoniansProc. Natl Acad. Sci. USA2018115949795022018PNAS..115.9497C385903710.1073/pnas.18049491151416.82008
– reference: Kohler, T., Piddock, S., Bausch, J. & Cubitt, T. Translationally-invariant universal quantum Hamiltonians in 1D. Annales Henri Poincaré Vol. 23, pp. 223–254 (2022).
– reference: Meyer, R. A., Musco, C., Musco, C. & Woodruff, D. P. Hutch++: optimal stochastic trace estimation. In Symposium on Simplicity in Algorithms (SOSA) 142–155 (SIAM, 2021).
– reference: van ApeldoornJGilyénAGriblingSde WolfRQuantum SDP-solvers: better upper and lower boundsQuantum2020423010.22331/q-2020-02-14-230
– reference: Stockmeyer, L. The complexity of approximate counting. In Proc. Fifteenth Annual ACM Symposium on Theory of Computing STOC ’83 118–126 (ACM, 1983).
– reference: Zhou, L. & Aharonov, D. Strongly universal Hamiltonian simulators. Preprint at https://arxiv.org/abs/2102.02991 (2021).
– reference: Kohler, T., Piddock, S., Bausch, J. & Cubitt, T. General conditions for universality of quantum Hamiltonians. PRX Quantum 3, 010308 (2022).
– reference: DinurIThe PCP theorem by gap amplificationJ. ACM20075412es231425410.1145/1236457.12364591292.68074
– reference: DankertCCleveREmersonJLivineEExact and approximate unitary 2-designs and their application to fidelity estimationPhys. Rev. A2009800123042009PhRvA..80a2304D10.1103/PhysRevA.80.012304
– reference: BravyiSGossetDPolynomial-time classical simulation of quantum ferromagnetsPhys. Rev. Lett.20171191005032017PhRvL.119j0503B10.1103/PhysRevLett.119.100503
– reference: KnillELaflammeRPower of one bit of quantum informationPhys. Rev. Lett.19988156721998PhRvL..81.5672K10.1103/PhysRevLett.81.5672
– reference: Cleve, R., Leung, D., Liu, L. & Wang, C. Near-linear constructions of exact unitary 2-designs. Quant. Info. Comp. vol. 16, no. 9–10 pp. 721–756 (2016).
– reference: Marriott, C. & Watrous, J. Quantum Arthur–Merlin games. Comput. Complex.14, 122–152 (2005).
– reference: HuangH-YKuengRPreskillJPredicting many properties of a quantum system from very few measurementsNat. Phys.2020161050105710.1038/s41567-020-0932-7
– reference: Gilyén, A., Su, Y., Low, G. H. & Wiebe, N. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing 193–204 (ACM, 2019).
– reference: Alimonti, P. & Kann, V. Hardness of approximating problems on cubic graphs. In Italian Conference on Algorithms and Complexity 288–298 (Springer, 1997).
– reference: Cade, C. & Montanaro, A. The quantum complexity of computing Schatten p-norms. In 13th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2018) (Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik 2018).
– reference: KitaevAYShenAHVyalyiMNClassical and Quantum Computation2002American Mathematical Society10.1090/gsm/0471022.68001
– reference: Barvinok, A. Combinatorics and Complexity of Partition Functions Vol. 9 (Springer, 2016).
– reference: Grötschel, M., Lovász, L. & Schrijver, A. Geometric Algorithms and Combinatorial Optimization Vol. 2 (Springer Science & Business Media, 2012).
– reference: BravyiSMaslovDHadamard-free circuits expose the structure of the Clifford groupIEEE Trans. Inf. Theory20216745464563430628410.1109/TIT.2021.30814151475.68132
– reference: GoldbergLAGuoHThe complexity of approximating complex-valued Ising and Tutte partition functionscomput. complex.201726765833372334910.1007/s00037-017-0162-21382.68090
– reference: KuwaharaTKatoKBrandãoFGSLClustering of conditional mutual information for quantum Gibbs states above a threshold temperaturePhys. Rev. Lett.20201242206012020PhRvL.124v0601K411120410.1103/PhysRevLett.124.220601
– reference: Aaronson, S. and Rall, P. Quantum approximate counting, simplified. In Symposium on Simplicity in Algorithms 24–32 (SIAM, 2020).
– reference: Barak, B., Raghavendra, P. & Steurer, D. Rounding semidefinite programming hierarchies via global correlation. IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 472-481 (2011).
– reference: KempeJKitaevARegevOThe complexity of the local Hamiltonian problemSIAM J. Comput.20063510701097221713810.1137/S00975397044452261102.81032
– reference: Brandao, F. G. & Harrow, A. W. Product-state approximations to quantum ground states. In Proc. Forty-Fifth Annual ACM Symposium on Theory of Computing STOC ’13 871–880 (ACM, 2013).
– reference: Bravyi, S., Divincenzo, D. P., Oliveira, R. I. & Terhal, B. M. The complexity of stoquastic local Hamiltonian problems. Quant. Inf. Comp. vol. 8, no. 5, pp. 0361-0385 (2008).
– reference: Gosset, D. & Smolin, J. A compressed classical description of quantum states. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019) (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019).
– reference: Brassard, G., Høyer, P., Mosca, M. and Tapp, A. Quantum amplitude amplification and estimation. In Quantum Computation and Information Vol. 305 of Contemporary Mathematics 53–74 (AMS, 2002).
– reference: Suzuki, M. Quantum Monte Carlo Methods in Condensed Matter Physics (World Scientific, 1993).
– reference: Harrow, A. W., Mehraban, S. & Soleimanifar, M. Classical algorithms, correlation decay, and complex zeros of partition functions of quantum many-body systems. In Proc. 52nd Annual ACM SIGACT Symposium on Theory of Computing 378–386 (ACM, 2020).
– reference: PoulinDWocjanPSampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computerPhys. Rev. Lett.20091032205022009PhRvL.103v0502P257021810.1103/PhysRevLett.103.220502
– reference: GharibianSKempeJApproximation algorithms for QMA-complete problemsSIAM J. Comput.20124110281050297476110.1137/1108422721286.68496
– reference: Aharonov, D., Ben-Or, M., Brandao, F. G. & Sattath, O. The pursuit for uniqueness: extending Valiant-Vazirani theorem to the probabilistic and quantum settings. Quantum 6, 668 (2022).
– reference: CrossonEHarrowAWRapid mixing of path integral Monte Carlo for 1D stoquastic HamiltoniansQuantum2021539510.22331/q-2021-02-11-395
– reference: Risteski, A. How to calculate partition functions using convex programming hierarchies: provable bounds for variational methods. In 29th Annual Conference on Learning Theory (eds. Feldman, V., Rakhlin, A. & Shamir, O.) vol. 49 of Proceedings of Machine Learning Research 1402–1416 (PMLR, 2016).
– reference: Yoshida, Y. & Zhou, Y. Approximation schemes via Sherali-Adams hierarchy for dense constraint satisfaction problems and assignment problems. In Proc. 5th Conference on Innovations in Theoretical Computer Science ITCS ’14 423–438 (ACM, 2014).
– reference: HutchinsonMFA stochastic estimator of the trace of the influence matrix for Laplacian smoothing splinesCommun. Stat. Simul. Comput.19891810591076103184010.1080/036109189088128060695.62113
– ident: 1742_CR37
  doi: 10.1145/3313276.3316366
– ident: 1742_CR41
  doi: 10.1090/conm/305/05215
– volume: 35
  start-page: 1070
  year: 2006
  ident: 1742_CR40
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539704445226
– ident: 1742_CR12
  doi: 10.1145/2554797.2554836
– volume: 103
  start-page: 032422
  year: 2021
  ident: 1742_CR20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.032422
– volume: 124
  start-page: 220601
  year: 2020
  ident: 1742_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.220601
– volume: 80
  start-page: 012304
  year: 2009
  ident: 1742_CR32
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.80.012304
– ident: 1742_CR22
  doi: 10.1145/800061.808740
– volume: 17
  start-page: 41
  year: 2017
  ident: 1742_CR36
  publication-title: Quant. Inf. Comp.
– volume: 54
  start-page: 12
  year: 2007
  ident: 1742_CR2
  publication-title: J. ACM
  doi: 10.1145/1236457.1236459
– volume: 41
  start-page: 1028
  year: 2012
  ident: 1742_CR17
  publication-title: SIAM J. Comput.
  doi: 10.1137/110842272
– ident: 1742_CR42
  doi: 10.1137/1.9781611976014.5
– ident: 1742_CR26
– ident: 1742_CR4
  doi: 10.1142/2262
– ident: 1742_CR6
  doi: 10.1145/3357713.3384322
– ident: 1742_CR27
  doi: 10.1007/s00023-021-01111-7
– volume: 4
  start-page: 230
  year: 2020
  ident: 1742_CR38
  publication-title: Quantum
  doi: 10.22331/q-2020-02-14-230
– volume-title: Classical and Quantum Computation
  year: 2002
  ident: 1742_CR1
  doi: 10.1090/gsm/047
– ident: 1742_CR16
  doi: 10.1145/2488608.2488719
– ident: 1742_CR11
– ident: 1742_CR31
  doi: 10.26421/QIC16.9-10-1
– ident: 1742_CR7
  doi: 10.26421/QIC8.5-1
– volume: 115
  start-page: 9497
  year: 2018
  ident: 1742_CR25
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1804949115
– volume: 67
  start-page: 4546
  year: 2021
  ident: 1742_CR43
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2021.3081415
– volume: 18
  start-page: 1059
  year: 1989
  ident: 1742_CR33
  publication-title: Commun. Stat. Simul. Comput.
  doi: 10.1080/03610918908812806
– volume: 51
  start-page: 540
  year: 2004
  ident: 1742_CR13
  publication-title: J. ACM
  doi: 10.1145/1008731.1008733
– ident: 1742_CR5
  doi: 10.1007/978-3-319-51829-9_2
– ident: 1742_CR19
– volume: 103
  start-page: 220502
  year: 2009
  ident: 1742_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.220502
– ident: 1742_CR28
  doi: 10.1103/PRXQuantum.3.010308
– volume: 119
  start-page: 100503
  year: 2017
  ident: 1742_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.100503
– volume: 81
  start-page: 5672
  year: 1998
  ident: 1742_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.5672
– volume: 5
  start-page: 395
  year: 2021
  ident: 1742_CR8
  publication-title: Quantum
  doi: 10.22331/q-2021-02-11-395
– ident: 1742_CR29
– ident: 1742_CR15
  doi: 10.1109/FOCS.2011.95
– ident: 1742_CR14
– volume: 26
  start-page: 765
  year: 2017
  ident: 1742_CR23
  publication-title: comput. complex.
  doi: 10.1007/s00037-017-0162-2
– volume: 16
  start-page: 1050
  year: 2020
  ident: 1742_CR30
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0932-7
– ident: 1742_CR39
  doi: 10.1007/s00037-005-0194-x
– ident: 1742_CR3
  doi: 10.1007/3-540-62592-5_80
– ident: 1742_CR24
  doi: 10.22331/q-2022-03-17-668
– ident: 1742_CR34
  doi: 10.1137/1.9781611976496.16
– ident: 1742_CR18
SSID ssj0042613
Score 2.5094795
Snippet The physical properties of a quantum many-body system in thermal equilibrium are determined by its partition function and free energy. Here we study the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1367
SubjectTerms 639/766/483/481
639/766/530/2804
639/766/530/951
Algorithms
Approximation
Atomic
Circuits
Classical and Continuum Physics
Complex Systems
Complexity
Condensed Matter Physics
Energy
Equilibrium
Free energy
Hamiltonian functions
Ising model
Mathematical analysis
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Optimization
Partitions (mathematics)
Physical properties
Physics
Physics and Astronomy
Polynomials
Quantum computing
Qubits (quantum computing)
Run time (computers)
Theoretical
Title Quantum Hamiltonian complexity in thermal equilibrium
URI https://link.springer.com/article/10.1038/s41567-022-01742-5
https://www.proquest.com/docview/2732914639
Volume 18
WOSCitedRecordID wos000864597400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: P5Z
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: PCBAR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: M2P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58ghff4vqiB29abJLtJjmJiuJBl1UUxEtJ0wksuOujW_HnO8m2Lgp68dJL2yF8mcx7MgD7PGdc2sJH7lMbt40TsRFWxYnhVjokFVGEK_OvZLerHh50rw64lXVZZSMTg6Aunq2PkR-RmuWajrXQxy-vsZ8a5bOr9QiNaZgly4b5kq5r3msksfcOxLghMqW1SFE3zSRCHZXecZGxr2UnnmyTQ_ZdMU2szR8J0qB3Lpb-u-JlWKwtzuhkzCIrMIXDVZgPlZ-2XIP0piJwq0F06UMdZAkSv0Sh0Bw_yEKP-sPI24gDIoGvVT-0CFSDdbi_OL87u4zrWQqxpUM2itE7btoIJmyitJGFQdaRhjlTSF44o3xGsJAJOnTGtlUnRc5zoRONtmNRiw2YGT4PcRMikzuWG63z1LE2IlOOHGyFknSdUchtC1gDZGbri8b9vIunLCS8hcrG4GcEfhbAz9IWHHz98zK-ZuPPr3caxLP6yJXZBO4WHDZ7Nnn9O7Wtv6ltwwL3bBL6D3dgZvRW4S7M2fdRv3zbg9nT827vdi8wHj176eMnr5ndKA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQSX8qzYUiAHOEHUxE7W9gEhBFRbdVkVqUi9GccZSyux20c2PP4Uv5EZJ2EFEr31wDnJKMk3T88L4JmocqF8zSf3pU8LF2TqpNdp5oRXAclE1HFk_lTNZvrkxBxtwM-hF4bLKgedGBV1fer5jHyPzKwwJNbSvD47T3lrFGdXhxUaHVsc4o9vFLI1rw7eEb7Phdh_f_x2kvZbBVJP7LZKkUMY42QufaaNU7XDfKxcHlytRB2c5txYrTIMGJwv9LhEISppMoN-7JGHL5HKv1bwZDEuFRRHg-bnaER2DZglfbuSfZNOJvVew4GSSrl2nmSgoADwT0O49m7_SshGO7d_-3_7Q3dgq_eokzedCNyFDVzegxuxstU396H82BLztItkwkc55OmSPCSxkB6_UwSSzJcJ-8ALIoHn7Ty2QLSLB_DpSt55GzaXp0t8CImrQl45Y6oy5AViroMhPwoV2XKnUfgR5ANw1veD1HmfxxcbE_pS2w5sS2DbCLYtR_Di9zNn3RiRS-_eHRC2vUpp7BreEbwceGR9-d_Udi6n9hRuTo4_TO30YHb4CG4JZtHYa7kLm6uLFh_Ddf91NW8unkRmT-DzVfPOL_mQOPY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VhSIuFFoqAgV8KCdqxd6Ns7uHqkKEqFWjKEggRb1s1-tZKRJJH455_DV-XWfXdiOQyK0HzrZH1s43r50XwAHLUyZs4W_uMxv3jOOx4VbGiWFWOCQTUYSR-SMxHsvpVE024HfbC-PLKludGBR1cWn9HXmXzCxTJNZcdV1TFjEZDI-vrmO_QcpnWtt1GjVEzvDXDwrfyqPTAfH6HWPDT18-nsTNhoHYEvSWMfpwRhmecptIZURhMO0LkzpTCFY4I32erBAJOnTG9mQ_Q8ZyrhKFtm_RD2Ii9f9AUIzpywkn2XlrBXxkwutmzIzOQfCmYSfhslv6oEnEvo6e5KFHweCfRnHl6f6VnA02b7j9P5_WU3jSeNrRh1o0nsEGLnZgK1S82nIXss8VgaqaRyf-ioc8YJKTKBTY40-KTKLZIvK-8ZxI4HU1C60R1fw5fL2Xf96DzcXlAl9AZHKX5kapPHNpDzGVTpF_hYJsvJHIbAfSlonaNgPW_Z6Pbzok-rnUNeM1MV4HxuusA-_vvrmqx4usfXu_5bZuVE2pV6zuwGGLl9Xjf1N7uZ7aW3hEkNGj0_HZK3jMPFpDC-Y-bC5vKnwND-335ay8eRNwH8HFfUPnFgHmQeI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Hamiltonian+complexity+in+thermal+equilibrium&rft.jtitle=Nature+physics&rft.au=Bravyi%2C+Sergey&rft.au=Chowdhury%2C+Anirban&rft.au=Gosset%2C+David&rft.au=Wocjan%2C+Pawel&rft.date=2022-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=18&rft.issue=11&rft.spage=1367&rft.epage=1370&rft_id=info:doi/10.1038%2Fs41567-022-01742-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon