Optimization of Mining–Mineral Processing Integration Using Unsupervised Machine Learning Algorithms
Traditional ore-waste discrimination schemes often do not take into consideration the impact of fluctuations of the head grade, which have on the performance of mineral processing facilities. This research introduces the use of target grades for processing destinations as an alternative to cut off g...
Uložené v:
| Vydané v: | Natural resources research (New York, N.Y.) Ročník 29; číslo 5; s. 3035 - 3046 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.10.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1520-7439, 1573-8981 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Traditional ore-waste discrimination schemes often do not take into consideration the impact of fluctuations of the head grade, which have on the performance of mineral processing facilities. This research introduces the use of target grades for processing destinations as an alternative to cut off grade-based methods and models, in each processing destination, the losses due to deviation from targets via the Taguchi loss function. Three unsupervised learning algorithms,
k
-means clustering, CLARA and
k
-mean-based approximate spectral clustering, are presented to group mine planning blocks into clusters of similar grades with different processing destinations. In addition, a technique considering uncertainties associated with block grades is proposed to generate new sequences that reduce variation in processing capacities across the life of mine (LoM). The case study in this paper involves the treatment of a realistically large mining dataset. The results showed that clustering methods outperform cutoff grade-based method when divergence from target grades is penalized and that reclassification of blocks based on data from geostatistical simulations could achieve smoother capacities for processing streams across the LoM. |
|---|---|
| AbstractList | Traditional ore-waste discrimination schemes often do not take into consideration the impact of fluctuations of the head grade, which have on the performance of mineral processing facilities. This research introduces the use of target grades for processing destinations as an alternative to cut off grade-based methods and models, in each processing destination, the losses due to deviation from targets via the Taguchi loss function. Three unsupervised learning algorithms, k-means clustering, CLARA and k-mean-based approximate spectral clustering, are presented to group mine planning blocks into clusters of similar grades with different processing destinations. In addition, a technique considering uncertainties associated with block grades is proposed to generate new sequences that reduce variation in processing capacities across the life of mine (LoM). The case study in this paper involves the treatment of a realistically large mining dataset. The results showed that clustering methods outperform cutoff grade-based method when divergence from target grades is penalized and that reclassification of blocks based on data from geostatistical simulations could achieve smoother capacities for processing streams across the LoM. Traditional ore-waste discrimination schemes often do not take into consideration the impact of fluctuations of the head grade, which have on the performance of mineral processing facilities. This research introduces the use of target grades for processing destinations as an alternative to cut off grade-based methods and models, in each processing destination, the losses due to deviation from targets via the Taguchi loss function. Three unsupervised learning algorithms, k -means clustering, CLARA and k -mean-based approximate spectral clustering, are presented to group mine planning blocks into clusters of similar grades with different processing destinations. In addition, a technique considering uncertainties associated with block grades is proposed to generate new sequences that reduce variation in processing capacities across the life of mine (LoM). The case study in this paper involves the treatment of a realistically large mining dataset. The results showed that clustering methods outperform cutoff grade-based method when divergence from target grades is penalized and that reclassification of blocks based on data from geostatistical simulations could achieve smoother capacities for processing streams across the LoM. |
| Author | Li, Siyi Sari, Yuksel Asli Kumral, Mustafa |
| Author_xml | – sequence: 1 givenname: Siyi surname: Li fullname: Li, Siyi organization: Department of Mining and Materials Engineering, McGill University – sequence: 2 givenname: Yuksel Asli surname: Sari fullname: Sari, Yuksel Asli organization: Department of Mining and Materials Engineering, McGill University – sequence: 3 givenname: Mustafa orcidid: 0000-0003-1370-7446 surname: Kumral fullname: Kumral, Mustafa email: mustafa.kumral@mcgill.ca organization: Department of Mining and Materials Engineering, McGill University |
| BookMark | eNp9kM1OAjEQxxuDiYC-gKdNPK92Wna3eyTEDxIIHuTcdMsUSqCL7WKiJ9_BN_RJLKyJiQdOM5n5_-bj3yMdVzsk5BroLVBa3AUAmvGUMprSMmcipWekC1nBU1EK6Bzy2CoGvLwgvRDWNEJcZF1iZrvGbu2HamztktokU-usW35_fsUEvdokz77WGEIsJmPX4NK30vmxMndhv0P_ZgMukqnSqwglE1T-MCQZbpa1t81qGy7JuVGbgFe_sU_mD_cvo6d0Mnscj4aTVHMomxTZAAUOcuBKQcEyg5RpTnWusTTKZNWigAxUxXLkguc5VlAZUzENoPMFY7xPbtq5O1-_7jE0cl3vvYsrJStBcAaiEFElWpX2dQgejdS2Ob7VeGU3Eqg8uCpbV2V0VR5dlTSi7B-683ar_PtpiLdQiGK3RP931QnqB9ZLjxc |
| CitedBy_id | crossref_primary_10_1080_10106049_2022_2025917 crossref_primary_10_1016_j_resourpol_2022_102727 crossref_primary_10_1007_s11053_021_09864_y crossref_primary_10_1007_s11053_022_10029_8 crossref_primary_10_1080_17480930_2023_2281201 crossref_primary_10_1007_s11053_021_09911_8 |
| Cites_doi | 10.1111/j.1365-3121.1989.tb00344.x 10.1007/s11053-016-9296-1 10.1016/j.asoc.2015.11.038 10.1016/j.ecoinf.2012.06.005 10.1007/978-1-4614-7138-7 10.1007/s004770050037 10.1007/s11053-019-09498-1 10.1108/IJQRM-08-2013-0134 10.1002/9781118136188 10.1007/s11053-018-9388-1 10.1007/s11053-018-9395-2 10.1057/s41274-017-0201-z 10.1007/s12613-019-1849-y 10.1007/s11004-005-6660-9 10.1007/s11004-018-9751-0 10.1007/s11053-016-9301-8 10.1016/j.catena.2009.08.001 10.1007/s11053-018-9411-6 10.1016/j.enggeo.2010.04.012 10.1007/s11222-007-9033-z 10.1007/s11053-019-09470-z 10.1007/s12613-011-0451-8 10.1145/1557019.1557118 10.1002/9780470316801.ch3 |
| ContentType | Journal Article |
| Copyright | International Association for Mathematical Geosciences 2020 International Association for Mathematical Geosciences 2020. |
| Copyright_xml | – notice: International Association for Mathematical Geosciences 2020 – notice: International Association for Mathematical Geosciences 2020. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY |
| DOI | 10.1007/s11053-020-09628-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering Geology Physics Computer Science |
| EISSN | 1573-8981 |
| EndPage | 3046 |
| ExternalDocumentID | 10_1007_s11053_020_09628_0 |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: 531469 - 18 funderid: http://dx.doi.org/10.13039/501100000038 |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAK LLZTM M4Y MA- N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PDBOC PF0 PT4 PT5 PYCSY QOK QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-e24e8e4613aa1725fe02c30c6ce9faf5bd7151ab26e38366eb1bffb2c11c6d223 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513046300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-7439 |
| IngestDate | Wed Nov 05 04:11:32 EST 2025 Sat Nov 29 06:27:44 EST 2025 Tue Nov 18 21:51:52 EST 2025 Fri Feb 21 02:32:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Robust clustering Taguchi loss function Spectral clustering Target grades CLARA Mining and mineral processing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-e24e8e4613aa1725fe02c30c6ce9faf5bd7151ab26e38366eb1bffb2c11c6d223 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1370-7446 |
| PQID | 2918321878 |
| PQPubID | 2043663 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2918321878 crossref_citationtrail_10_1007_s11053_020_09628_0 crossref_primary_10_1007_s11053_020_09628_0 springer_journals_10_1007_s11053_020_09628_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20201000 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | Official Journal of the International Association for Mathematical Geosciences |
| PublicationTitle | Natural resources research (New York, N.Y.) |
| PublicationTitleAbbrev | Nat Resour Res |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Verly (CR26) 2005; 37 Srivastava (CR24) 1987; 80 Nguyen, Drebenstedt, Bui, Bui (CR16) 2019 Rajabinasab, Asghari (CR19) 2019; 28 von Luxburg (CR28) 2007; 17 James, Witten, Hastie, Tibshirani (CR9) 2013 CR12 Sepúlveda, Dowd, Xu (CR23) 2018 Journel, Alabert (CR10) 1989; 1 CR11 Kumral (CR13) 2015; 32 CR30 Qu, Li, Zhang (CR18) 2013; 13 Ruiseco, Williams, Kumral (CR21) 2016; 25 Zhang, Liu, Zhu (CR31) 2011; 18 Ruiseco, Kumral (CR20) 2017; 26 Li, de Werk, St-Pierre, Kumral (CR14) 2019; 26 CR4 CR8 CR29 Goodfellow, Dimitrakopoulos (CR6) 2016; 40 Chilès, Delfiner (CR2) 2012 Sari, Kumral (CR22) 2018; 69 Taguchi (CR25) 1986 Goovaerts (CR7) 1999; 13 Glacken, Baafi, Schofield (CR5) 1997 Liu, Cheng, Carranza, Zhou (CR15) 2018; 28 Basarir, Kumral, Karpuz, Tutluoglu (CR1) 2010; 114 Delbari, Afrasiab, Loiskandl (CR3) 2009; 79 Villalba Matamoros, Kumral (CR27) 2019; 28 Nwaila, Zhang, Frimmel, Manzi, Dohm, Durrheim, Tolmay (CR17) 2019 JR Ruiseco (9628_CR21) 2016; 25 U von Luxburg (9628_CR28) 2007; 17 M Qu (9628_CR18) 2013; 13 J Ruiseco (9628_CR20) 2017; 26 H Basarir (9628_CR1) 2010; 114 9628_CR8 YA Sari (9628_CR22) 2018; 69 G Verly (9628_CR26) 2005; 37 G-Y Zhang (9628_CR31) 2011; 18 9628_CR4 ME Villalba Matamoros (9628_CR27) 2019; 28 9628_CR29 G James (9628_CR9) 2013 J-P Chilès (9628_CR2) 2012 M Kumral (9628_CR13) 2015; 32 Y Liu (9628_CR15) 2018; 28 G Taguchi (9628_CR25) 1986 E Sepúlveda (9628_CR23) 2018 RC Goodfellow (9628_CR6) 2016; 40 B Rajabinasab (9628_CR19) 2019; 28 9628_CR12 P Goovaerts (9628_CR7) 1999; 13 RM Srivastava (9628_CR24) 1987; 80 M Delbari (9628_CR3) 2009; 79 IM Glacken (9628_CR5) 1997 9628_CR30 9628_CR11 S Li (9628_CR14) 2019; 26 GT Nwaila (9628_CR17) 2019 H Nguyen (9628_CR16) 2019 AG Journel (9628_CR10) 1989; 1 |
| References_xml | – volume: 1 start-page: 123 issue: 2 year: 1989 end-page: 134 ident: CR10 article-title: Non-Gaussian data expansion in the earth sciences publication-title: Terra Nova doi: 10.1111/j.1365-3121.1989.tb00344.x – volume: 25 start-page: 473 issue: 4 year: 2016 end-page: 485 ident: CR21 article-title: Optimizing ore–waste dig-limits as part of operational mine planning through genetic algorithms publication-title: Natural Resources Research doi: 10.1007/s11053-016-9296-1 – volume: 40 start-page: 292 year: 2016 end-page: 304 ident: CR6 article-title: Global optimization of open pit mining complexes with uncertainty publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.11.038 – year: 1986 ident: CR25 publication-title: Introduction to quality engineering: Designing quality into products and processes – ident: CR4 – volume: 13 start-page: 99 year: 2013 end-page: 105 ident: CR18 article-title: Assessing the risk costs in delineating soil nickel contamination using sequential Gaussian simulation and transfer functions publication-title: Ecological Informatics doi: 10.1016/j.ecoinf.2012.06.005 – year: 2013 ident: CR9 publication-title: An introduction to statistical learning: With applications in R doi: 10.1007/978-1-4614-7138-7 – ident: CR12 – ident: CR30 – volume: 80 start-page: 63 issue: 901 year: 1987 end-page: 98 ident: CR24 article-title: Minimum variance or maximum profitability publication-title: CIM Bulletin – volume: 13 start-page: 161 issue: 3 year: 1999 end-page: 182 ident: CR7 article-title: Impact of the simulation algorithm, magnitude of ergodic fluctuations and number of realizations on the spaces of uncertainty of flow properties publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s004770050037 – ident: CR29 – ident: CR8 – year: 2019 ident: CR17 publication-title: Local and target exploration of conglomerate-hosted gold deposits using machine learning algorithms: A case study of the Witwatersrand gold ores doi: 10.1007/s11053-019-09498-1 – volume: 32 start-page: 334 issue: 4 year: 2015 end-page: 345 ident: CR13 article-title: Grade control in multi-variable ore deposits as a quality management problem under uncertainty publication-title: International Journal of Quality & Reliability Management doi: 10.1108/IJQRM-08-2013-0134 – year: 2012 ident: CR2 publication-title: Geostatistics: Modeling spatial uncertainty doi: 10.1002/9781118136188 – volume: 28 start-page: 199 issue: 1 year: 2018 end-page: 212 ident: CR15 article-title: Assessment of geochemical anomaly uncertainty through geostatistical simulation and singularity analysis publication-title: Natural Resources Research doi: 10.1007/s11053-018-9388-1 – volume: 28 start-page: 443 issue: 2 year: 2019 end-page: 456 ident: CR27 article-title: Calibration of genetic algorithm parameters for mining-related optimization problems publication-title: Natural Resources Research doi: 10.1007/s11053-018-9395-2 – volume: 69 start-page: 171 issue: 2 year: 2018 end-page: 182 ident: CR22 article-title: Dig-limits optimization through mixed-integer linear programming in open-pit mines publication-title: Journal of the Operational Research Society doi: 10.1057/s41274-017-0201-z – volume: 26 start-page: 1485 issue: 12 year: 2019 end-page: 1494 ident: CR14 article-title: Dimensioning a stockpile operation using principal component analysis publication-title: International Journal of Minerals, Metallurgy and Materials doi: 10.1007/s12613-019-1849-y – volume: 37 start-page: 451 issue: 5 year: 2005 end-page: 475 ident: CR26 article-title: Grade control classification of ore and waste: A critical review of estimation and simulation based procedures publication-title: Mathematical Geology doi: 10.1007/s11004-005-6660-9 – ident: CR11 – year: 2018 ident: CR23 article-title: Fuzzy clustering with spatial correction and its application to geometallurgical domaining publication-title: Mathematical Geosciences doi: 10.1007/s11004-018-9751-0 – volume: 26 start-page: 23 issue: 1 year: 2017 end-page: 35 ident: CR20 article-title: A practical approach to mine equipment sizing in relation to dig-limit optimization in complex orebodies: Multi-Rock Type, Multi-Process, and Multi-Metal Case publication-title: Natural Resources Research doi: 10.1007/s11053-016-9301-8 – volume: 79 start-page: 163 issue: 2 year: 2009 end-page: 169 ident: CR3 article-title: Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content publication-title: CATENA doi: 10.1016/j.catena.2009.08.001 – year: 1997 ident: CR5 article-title: Change of support and use of economic parameters for block selection publication-title: Geostatistics Wollongong ‘96 – volume: 28 start-page: 665 issue: 3 year: 2019 end-page: 684 ident: CR19 article-title: Geometallurgical domaining by cluster analysis: Iron ore deposit case study publication-title: Natural Resources Research doi: 10.1007/s11053-018-9411-6 – volume: 114 start-page: 154 issue: 3 year: 2010 end-page: 163 ident: CR1 article-title: Geostatistical modeling of spatial variability of SPT data for a borax stockpile site publication-title: Engineering Geology doi: 10.1016/j.enggeo.2010.04.012 – volume: 17 start-page: 395 issue: 4 year: 2007 end-page: 416 ident: CR28 article-title: A tutorial on spectral clustering publication-title: Statistics and Computing doi: 10.1007/s11222-007-9033-z – year: 2019 ident: CR16 article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network publication-title: Natural Resources Research doi: 10.1007/s11053-019-09470-z – volume: 18 start-page: 385 issue: 4 year: 2011 end-page: 389 ident: CR31 article-title: Segmentation algorithm of complex ore images based on templates transformation and reconstruction publication-title: International Journal of Minerals, Metallurgy, and Materials doi: 10.1007/s12613-011-0451-8 – volume: 28 start-page: 199 issue: 1 year: 2018 ident: 9628_CR15 publication-title: Natural Resources Research doi: 10.1007/s11053-018-9388-1 – ident: 9628_CR11 – volume: 28 start-page: 665 issue: 3 year: 2019 ident: 9628_CR19 publication-title: Natural Resources Research doi: 10.1007/s11053-018-9411-6 – ident: 9628_CR29 doi: 10.1145/1557019.1557118 – year: 2018 ident: 9628_CR23 publication-title: Mathematical Geosciences doi: 10.1007/s11004-018-9751-0 – ident: 9628_CR30 – volume-title: Geostatistics: Modeling spatial uncertainty year: 2012 ident: 9628_CR2 doi: 10.1002/9781118136188 – volume-title: An introduction to statistical learning: With applications in R year: 2013 ident: 9628_CR9 doi: 10.1007/978-1-4614-7138-7 – volume: 69 start-page: 171 issue: 2 year: 2018 ident: 9628_CR22 publication-title: Journal of the Operational Research Society doi: 10.1057/s41274-017-0201-z – ident: 9628_CR12 doi: 10.1002/9780470316801.ch3 – volume: 25 start-page: 473 issue: 4 year: 2016 ident: 9628_CR21 publication-title: Natural Resources Research doi: 10.1007/s11053-016-9296-1 – year: 2019 ident: 9628_CR16 publication-title: Natural Resources Research doi: 10.1007/s11053-019-09470-z – volume: 80 start-page: 63 issue: 901 year: 1987 ident: 9628_CR24 publication-title: CIM Bulletin – volume: 13 start-page: 99 year: 2013 ident: 9628_CR18 publication-title: Ecological Informatics doi: 10.1016/j.ecoinf.2012.06.005 – volume: 40 start-page: 292 year: 2016 ident: 9628_CR6 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.11.038 – volume: 26 start-page: 23 issue: 1 year: 2017 ident: 9628_CR20 publication-title: Natural Resources Research doi: 10.1007/s11053-016-9301-8 – volume: 26 start-page: 1485 issue: 12 year: 2019 ident: 9628_CR14 publication-title: International Journal of Minerals, Metallurgy and Materials doi: 10.1007/s12613-019-1849-y – volume: 13 start-page: 161 issue: 3 year: 1999 ident: 9628_CR7 publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s004770050037 – volume-title: Introduction to quality engineering: Designing quality into products and processes year: 1986 ident: 9628_CR25 – volume: 114 start-page: 154 issue: 3 year: 2010 ident: 9628_CR1 publication-title: Engineering Geology doi: 10.1016/j.enggeo.2010.04.012 – volume: 18 start-page: 385 issue: 4 year: 2011 ident: 9628_CR31 publication-title: International Journal of Minerals, Metallurgy, and Materials doi: 10.1007/s12613-011-0451-8 – ident: 9628_CR4 – volume-title: Geostatistics Wollongong ‘96 year: 1997 ident: 9628_CR5 – volume: 37 start-page: 451 issue: 5 year: 2005 ident: 9628_CR26 publication-title: Mathematical Geology doi: 10.1007/s11004-005-6660-9 – volume: 28 start-page: 443 issue: 2 year: 2019 ident: 9628_CR27 publication-title: Natural Resources Research doi: 10.1007/s11053-018-9395-2 – ident: 9628_CR8 – volume: 1 start-page: 123 issue: 2 year: 1989 ident: 9628_CR10 publication-title: Terra Nova doi: 10.1111/j.1365-3121.1989.tb00344.x – volume: 79 start-page: 163 issue: 2 year: 2009 ident: 9628_CR3 publication-title: CATENA doi: 10.1016/j.catena.2009.08.001 – volume: 32 start-page: 334 issue: 4 year: 2015 ident: 9628_CR13 publication-title: International Journal of Quality & Reliability Management doi: 10.1108/IJQRM-08-2013-0134 – volume-title: Local and target exploration of conglomerate-hosted gold deposits using machine learning algorithms: A case study of the Witwatersrand gold ores year: 2019 ident: 9628_CR17 doi: 10.1007/s11053-019-09498-1 – volume: 17 start-page: 395 issue: 4 year: 2007 ident: 9628_CR28 publication-title: Statistics and Computing doi: 10.1007/s11222-007-9033-z |
| SSID | ssj0007385 |
| Score | 2.2740166 |
| Snippet | Traditional ore-waste discrimination schemes often do not take into consideration the impact of fluctuations of the head grade, which have on the performance... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3035 |
| SubjectTerms | Algorithms Chemistry and Earth Sciences Cluster analysis Clustering Computer Science Cut off grades Divergence Earth and Environmental Science Earth Sciences Fossil Fuels (incl. Carbon Capture) Geography Learning algorithms Machine learning Mathematical Modeling and Industrial Mathematics Mineral processing Mineral Resources Original Paper Physics Reclassification Statistics for Engineering Sustainable Development Unsupervised learning Vector quantization |
| SummonAdditionalLinks | – databaseName: Springer Journals New Starts & Take-Overs Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oVNQHL1Nx3siDb1poszZLH4c4FdwUb_hWmjTRwW6sneCb_8F_6C8xydJVRQV9K-1pKCfJOV_JOd8HsE8oDQlOpCMC6WpSbeHQJEkcGgaMVwPfw6aq8u681mrR-_vw0jaFpXm1e34kaSJ10eymoIA-c3QdBbs1r_I0zKh0R7Vgw9X13ST-an4Ww5KqLDXctq0y34_xOR0VGPPLsajJNo3l_33nCixZdInq4-WwClOiV4blXLkB2Y1chsUPNIRlmLdK6I_PZZg7MVK_-soUh_J0DeSFiitd27CJ-hI1jarE28trs21Iq5FtN1A30Znln9Cmph4B3fbS0UCHpFQkqGmKNwWyvK4PqN556A_b2WM3XYfbxvHN0alj9RkcrjZu5gjsCyp8BQjiWOGgQAoX86rLCRehjGXAkprCEzHDRKj_YEJUWmBSMsw9j5NE4ZINKPX6PbEJKPAIi31GWCCrPuVVRmsslJra38Mqe8YV8PJpirglL9caGp2ooF3Wbo-U2yPj9sitwMHkncGYuuNX65189iO7jdMIhzriebRGK3CYz3bx-OfRtv5mvg0LWC8YUyS4A6VsOBK7MMufsnY63DPL-x37zPP2 priority: 102 providerName: Springer Nature |
| Title | Optimization of Mining–Mineral Processing Integration Using Unsupervised Machine Learning Algorithms |
| URI | https://link.springer.com/article/10.1007/s11053-020-09628-0 https://www.proquest.com/docview/2918321878 |
| Volume | 29 |
| WOSCitedRecordID | wos000513046300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1573-8981 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: PCBAR dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1573-8981 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: PATMY dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1573-8981 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: KB. dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-8981 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1573-8981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: RSV dateStart: 19990301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLaAgQQH3ojxUg7coNBmbZaeECAGCDam8RC3qkmTgQTboAOJG_-Bf8gvwckyBkhw4dJDm0aR7NhfYvszwDrjPGY0056KtG9ItZXHsyzzeBwJWYrCgNqsyqvTcq3Gr6_jurtwy11aZd8mWkOdtaW5I9-msVG-gJf5TufBM12jTHTVtdAYhoJhKkM9L-wd1OqNT1tsuFosYyoekgz0dmUzveI5hBYmhul7COMNT_N31zTAmz9CpNbzVKb-u-ZpmHSYk-z2lGQGhlRrFia-MBHOwtih7fD7Mgf6DI3IvavOJG1NqraFxPvrW_XWMlQTV1uAL8mxI5swQ23yAbls5U8dY39ylZGqzdRUxJG4NsnuXRPX1725z-fhsnJwsX_kuWYMnsRd2vUUDRVXIXr_NEXQE2nlU1nyJZMq1qmORFZG8JAKyhQeehlDHyC0FlQGgWQZgpAFGGm1W2oRSBQwkYaCiUiXQi5LgpdFrA2Pf0DRVaZFCPpySKRjKjcNM-6SAceykV2Cskus7BK_CBuf_3R6PB1_jl7pCyxxezZPBtIqwmZf5IPPv8-29PdsyzBOjZbZDMAVGOk-PqlVGJXP3dv8cc1p7BoMn-xt4bNxfvUB7T_0YQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThRBEK4Q1KAHlR_jImIf4AQDMz0zvT0HY1BENuwuHIDsbZju6UYS2F2YRcPNd_A9fCifxKreHlZN5MbB6_x0Mt1ff1U9VfUVwIqQMhO8tIFJbUii2iaQZVkGMkuVjtMk4i6r8rjd7HZlr5cdTMGPuhaG0iprTnREXQ40_SPf5BmBL5JN-W54GVDXKIqu1i00xrDYMzdf8chWvW1t4_qucr7z8fDDbuC7CgQa4TYKDE-MNAmasaJA651aE3Idh1pok9nCpqpsohUsFBcGT29CIJkpaxXXUaRFyUnoACn_QRKjb0pB4Pcbt8xPyjBOnxWPZOTo-yKdcakeOjIUMQ0DPDSQKvSfhnDi3f4VkHV2bufZ_zZDz-Gp96jZ1ngLzMKU6c_Bk990Fufg0SfXv_hmHuw-UuSFrz1lA8s6rkHGz2_fO2dOf5v5ygm8yFpeSoMedakV7KhfXQ-JXStTso7LQzXMS9Sesq3zU5yP0eeLagGO7uWTX8B0f9A3L4GlkVBFooRKbZxIHSvZVJmlLgURR0egaEBUr3uuvQ47tQM5zycK0oSVHLGSO6zkYQPWbt8ZjlVI7nx6qQZI7hmpyifoaMB6DbHJ7X-Ptnj3aG9gZvew087bre7eK3jMCeEu13EJpkdX1-Y1PNRfRmfV1bLbKwxO7ht6vwCYVE-N |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1B2Q8sBURZfeAGEYmbuM4RAQUELUgs4hbFjg2VaFo1AYkb_8Af8iXYrkMBARLiFiUTK7LHMy_ymzcAm4TSkOBEOiKQrhbVFg5NksShYcB4NfA9bFiV16e1ZpPe3ITnH6r4Ddu9OJLs1zRolaY03-kmcmdQ-KZggT5_dB0FwbXG8jCM-JpIr__XL67fY7HWajGKqcpSQ29bNvP9GJ9T0wBvfjkiNZmnPvP_b56FaYs60W7fTeZgSKRlmCk6OiC7wcsw9UGesAwTtkP63VMZxg5NC2B9ZUijPJsHeabiTdsWcqKORA3TbeL1-aXRMmLWyJYhqJvo2OpSaFPDU0BXafbQ1aEqEwlqGFKnQFbv9Rbt3t92eq38rp0twFX94HLvyLF9GxyuNnTuCOwLKnwFFOJY4aNAChfzqssJF6GMZcCSmsIZMcNEqP9jQlS6YFIyzD2Pk0ThlUUopZ1ULAEKPMJinxEWyKpPeZXRGgullvz3sMqqcQW8YskibkXNdW-N-2ggx6ynPVLTHplpj9wKbL2_0-1LevxqvVp4QmS3dxbhUEdCj9ZoBbaLlR88_nm05b-Zb8D4-X49Oj1unqzAJNa-Y3iEq1DKew9iDUb5Y97KeuvG698ANNf_vg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Mining%E2%80%93Mineral+Processing+Integration+Using+Unsupervised+Machine+Learning+Algorithms&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Li%2C+Siyi&rft.au=Sari%2C+Yuksel+Asli&rft.au=Kumral%2C+Mustafa&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=29&rft.issue=5&rft.spage=3035&rft.epage=3046&rft_id=info:doi/10.1007%2Fs11053-020-09628-0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon |