Optimization of Mining–Mineral Processing Integration Using Unsupervised Machine Learning Algorithms

Traditional ore-waste discrimination schemes often do not take into consideration the impact of fluctuations of the head grade, which have on the performance of mineral processing facilities. This research introduces the use of target grades for processing destinations as an alternative to cut off g...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Natural resources research (New York, N.Y.) Ročník 29; číslo 5; s. 3035 - 3046
Hlavní autori: Li, Siyi, Sari, Yuksel Asli, Kumral, Mustafa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2020
Springer Nature B.V
Predmet:
ISSN:1520-7439, 1573-8981
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Traditional ore-waste discrimination schemes often do not take into consideration the impact of fluctuations of the head grade, which have on the performance of mineral processing facilities. This research introduces the use of target grades for processing destinations as an alternative to cut off grade-based methods and models, in each processing destination, the losses due to deviation from targets via the Taguchi loss function. Three unsupervised learning algorithms, k -means clustering, CLARA and k -mean-based approximate spectral clustering, are presented to group mine planning blocks into clusters of similar grades with different processing destinations. In addition, a technique considering uncertainties associated with block grades is proposed to generate new sequences that reduce variation in processing capacities across the life of mine (LoM). The case study in this paper involves the treatment of a realistically large mining dataset. The results showed that clustering methods outperform cutoff grade-based method when divergence from target grades is penalized and that reclassification of blocks based on data from geostatistical simulations could achieve smoother capacities for processing streams across the LoM.
AbstractList Traditional ore-waste discrimination schemes often do not take into consideration the impact of fluctuations of the head grade, which have on the performance of mineral processing facilities. This research introduces the use of target grades for processing destinations as an alternative to cut off grade-based methods and models, in each processing destination, the losses due to deviation from targets via the Taguchi loss function. Three unsupervised learning algorithms, k-means clustering, CLARA and k-mean-based approximate spectral clustering, are presented to group mine planning blocks into clusters of similar grades with different processing destinations. In addition, a technique considering uncertainties associated with block grades is proposed to generate new sequences that reduce variation in processing capacities across the life of mine (LoM). The case study in this paper involves the treatment of a realistically large mining dataset. The results showed that clustering methods outperform cutoff grade-based method when divergence from target grades is penalized and that reclassification of blocks based on data from geostatistical simulations could achieve smoother capacities for processing streams across the LoM.
Traditional ore-waste discrimination schemes often do not take into consideration the impact of fluctuations of the head grade, which have on the performance of mineral processing facilities. This research introduces the use of target grades for processing destinations as an alternative to cut off grade-based methods and models, in each processing destination, the losses due to deviation from targets via the Taguchi loss function. Three unsupervised learning algorithms, k -means clustering, CLARA and k -mean-based approximate spectral clustering, are presented to group mine planning blocks into clusters of similar grades with different processing destinations. In addition, a technique considering uncertainties associated with block grades is proposed to generate new sequences that reduce variation in processing capacities across the life of mine (LoM). The case study in this paper involves the treatment of a realistically large mining dataset. The results showed that clustering methods outperform cutoff grade-based method when divergence from target grades is penalized and that reclassification of blocks based on data from geostatistical simulations could achieve smoother capacities for processing streams across the LoM.
Author Li, Siyi
Sari, Yuksel Asli
Kumral, Mustafa
Author_xml – sequence: 1
  givenname: Siyi
  surname: Li
  fullname: Li, Siyi
  organization: Department of Mining and Materials Engineering, McGill University
– sequence: 2
  givenname: Yuksel Asli
  surname: Sari
  fullname: Sari, Yuksel Asli
  organization: Department of Mining and Materials Engineering, McGill University
– sequence: 3
  givenname: Mustafa
  orcidid: 0000-0003-1370-7446
  surname: Kumral
  fullname: Kumral, Mustafa
  email: mustafa.kumral@mcgill.ca
  organization: Department of Mining and Materials Engineering, McGill University
BookMark eNp9kM1OAjEQxxuDiYC-gKdNPK92Wna3eyTEDxIIHuTcdMsUSqCL7WKiJ9_BN_RJLKyJiQdOM5n5_-bj3yMdVzsk5BroLVBa3AUAmvGUMprSMmcipWekC1nBU1EK6Bzy2CoGvLwgvRDWNEJcZF1iZrvGbu2HamztktokU-usW35_fsUEvdokz77WGEIsJmPX4NK30vmxMndhv0P_ZgMukqnSqwglE1T-MCQZbpa1t81qGy7JuVGbgFe_sU_mD_cvo6d0Mnscj4aTVHMomxTZAAUOcuBKQcEyg5RpTnWusTTKZNWigAxUxXLkguc5VlAZUzENoPMFY7xPbtq5O1-_7jE0cl3vvYsrJStBcAaiEFElWpX2dQgejdS2Ob7VeGU3Eqg8uCpbV2V0VR5dlTSi7B-683ar_PtpiLdQiGK3RP931QnqB9ZLjxc
CitedBy_id crossref_primary_10_1080_10106049_2022_2025917
crossref_primary_10_1016_j_resourpol_2022_102727
crossref_primary_10_1007_s11053_021_09864_y
crossref_primary_10_1007_s11053_022_10029_8
crossref_primary_10_1080_17480930_2023_2281201
crossref_primary_10_1007_s11053_021_09911_8
Cites_doi 10.1111/j.1365-3121.1989.tb00344.x
10.1007/s11053-016-9296-1
10.1016/j.asoc.2015.11.038
10.1016/j.ecoinf.2012.06.005
10.1007/978-1-4614-7138-7
10.1007/s004770050037
10.1007/s11053-019-09498-1
10.1108/IJQRM-08-2013-0134
10.1002/9781118136188
10.1007/s11053-018-9388-1
10.1007/s11053-018-9395-2
10.1057/s41274-017-0201-z
10.1007/s12613-019-1849-y
10.1007/s11004-005-6660-9
10.1007/s11004-018-9751-0
10.1007/s11053-016-9301-8
10.1016/j.catena.2009.08.001
10.1007/s11053-018-9411-6
10.1016/j.enggeo.2010.04.012
10.1007/s11222-007-9033-z
10.1007/s11053-019-09470-z
10.1007/s12613-011-0451-8
10.1145/1557019.1557118
10.1002/9780470316801.ch3
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2020
International Association for Mathematical Geosciences 2020.
Copyright_xml – notice: International Association for Mathematical Geosciences 2020
– notice: International Association for Mathematical Geosciences 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOI 10.1007/s11053-020-09628-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Geology
Physics
Computer Science
EISSN 1573-8981
EndPage 3046
ExternalDocumentID 10_1007_s11053_020_09628_0
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: 531469 - 18
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PDBOC
PF0
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-e24e8e4613aa1725fe02c30c6ce9faf5bd7151ab26e38366eb1bffb2c11c6d223
IEDL.DBID BENPR
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513046300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-7439
IngestDate Wed Nov 05 04:11:32 EST 2025
Sat Nov 29 06:27:44 EST 2025
Tue Nov 18 21:51:52 EST 2025
Fri Feb 21 02:32:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Robust clustering
Taguchi loss function
Spectral clustering
Target grades
CLARA
Mining and mineral processing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e24e8e4613aa1725fe02c30c6ce9faf5bd7151ab26e38366eb1bffb2c11c6d223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1370-7446
PQID 2918321878
PQPubID 2043663
PageCount 12
ParticipantIDs proquest_journals_2918321878
crossref_citationtrail_10_1007_s11053_020_09628_0
crossref_primary_10_1007_s11053_020_09628_0
springer_journals_10_1007_s11053_020_09628_0
PublicationCentury 2000
PublicationDate 20201000
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Official Journal of the International Association for Mathematical Geosciences
PublicationTitle Natural resources research (New York, N.Y.)
PublicationTitleAbbrev Nat Resour Res
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Verly (CR26) 2005; 37
Srivastava (CR24) 1987; 80
Nguyen, Drebenstedt, Bui, Bui (CR16) 2019
Rajabinasab, Asghari (CR19) 2019; 28
von Luxburg (CR28) 2007; 17
James, Witten, Hastie, Tibshirani (CR9) 2013
CR12
Sepúlveda, Dowd, Xu (CR23) 2018
Journel, Alabert (CR10) 1989; 1
CR11
Kumral (CR13) 2015; 32
CR30
Qu, Li, Zhang (CR18) 2013; 13
Ruiseco, Williams, Kumral (CR21) 2016; 25
Zhang, Liu, Zhu (CR31) 2011; 18
Ruiseco, Kumral (CR20) 2017; 26
Li, de Werk, St-Pierre, Kumral (CR14) 2019; 26
CR4
CR8
CR29
Goodfellow, Dimitrakopoulos (CR6) 2016; 40
Chilès, Delfiner (CR2) 2012
Sari, Kumral (CR22) 2018; 69
Taguchi (CR25) 1986
Goovaerts (CR7) 1999; 13
Glacken, Baafi, Schofield (CR5) 1997
Liu, Cheng, Carranza, Zhou (CR15) 2018; 28
Basarir, Kumral, Karpuz, Tutluoglu (CR1) 2010; 114
Delbari, Afrasiab, Loiskandl (CR3) 2009; 79
Villalba Matamoros, Kumral (CR27) 2019; 28
Nwaila, Zhang, Frimmel, Manzi, Dohm, Durrheim, Tolmay (CR17) 2019
JR Ruiseco (9628_CR21) 2016; 25
U von Luxburg (9628_CR28) 2007; 17
M Qu (9628_CR18) 2013; 13
J Ruiseco (9628_CR20) 2017; 26
H Basarir (9628_CR1) 2010; 114
9628_CR8
YA Sari (9628_CR22) 2018; 69
G Verly (9628_CR26) 2005; 37
G-Y Zhang (9628_CR31) 2011; 18
9628_CR4
ME Villalba Matamoros (9628_CR27) 2019; 28
9628_CR29
G James (9628_CR9) 2013
J-P Chilès (9628_CR2) 2012
M Kumral (9628_CR13) 2015; 32
Y Liu (9628_CR15) 2018; 28
G Taguchi (9628_CR25) 1986
E Sepúlveda (9628_CR23) 2018
RC Goodfellow (9628_CR6) 2016; 40
B Rajabinasab (9628_CR19) 2019; 28
9628_CR12
P Goovaerts (9628_CR7) 1999; 13
RM Srivastava (9628_CR24) 1987; 80
M Delbari (9628_CR3) 2009; 79
IM Glacken (9628_CR5) 1997
9628_CR30
9628_CR11
S Li (9628_CR14) 2019; 26
GT Nwaila (9628_CR17) 2019
H Nguyen (9628_CR16) 2019
AG Journel (9628_CR10) 1989; 1
References_xml – volume: 1
  start-page: 123
  issue: 2
  year: 1989
  end-page: 134
  ident: CR10
  article-title: Non-Gaussian data expansion in the earth sciences
  publication-title: Terra Nova
  doi: 10.1111/j.1365-3121.1989.tb00344.x
– volume: 25
  start-page: 473
  issue: 4
  year: 2016
  end-page: 485
  ident: CR21
  article-title: Optimizing ore–waste dig-limits as part of operational mine planning through genetic algorithms
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-016-9296-1
– volume: 40
  start-page: 292
  year: 2016
  end-page: 304
  ident: CR6
  article-title: Global optimization of open pit mining complexes with uncertainty
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.11.038
– year: 1986
  ident: CR25
  publication-title: Introduction to quality engineering: Designing quality into products and processes
– ident: CR4
– volume: 13
  start-page: 99
  year: 2013
  end-page: 105
  ident: CR18
  article-title: Assessing the risk costs in delineating soil nickel contamination using sequential Gaussian simulation and transfer functions
  publication-title: Ecological Informatics
  doi: 10.1016/j.ecoinf.2012.06.005
– year: 2013
  ident: CR9
  publication-title: An introduction to statistical learning: With applications in R
  doi: 10.1007/978-1-4614-7138-7
– ident: CR12
– ident: CR30
– volume: 80
  start-page: 63
  issue: 901
  year: 1987
  end-page: 98
  ident: CR24
  article-title: Minimum variance or maximum profitability
  publication-title: CIM Bulletin
– volume: 13
  start-page: 161
  issue: 3
  year: 1999
  end-page: 182
  ident: CR7
  article-title: Impact of the simulation algorithm, magnitude of ergodic fluctuations and number of realizations on the spaces of uncertainty of flow properties
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/s004770050037
– ident: CR29
– ident: CR8
– year: 2019
  ident: CR17
  publication-title: Local and target exploration of conglomerate-hosted gold deposits using machine learning algorithms: A case study of the Witwatersrand gold ores
  doi: 10.1007/s11053-019-09498-1
– volume: 32
  start-page: 334
  issue: 4
  year: 2015
  end-page: 345
  ident: CR13
  article-title: Grade control in multi-variable ore deposits as a quality management problem under uncertainty
  publication-title: International Journal of Quality & Reliability Management
  doi: 10.1108/IJQRM-08-2013-0134
– year: 2012
  ident: CR2
  publication-title: Geostatistics: Modeling spatial uncertainty
  doi: 10.1002/9781118136188
– volume: 28
  start-page: 199
  issue: 1
  year: 2018
  end-page: 212
  ident: CR15
  article-title: Assessment of geochemical anomaly uncertainty through geostatistical simulation and singularity analysis
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-018-9388-1
– volume: 28
  start-page: 443
  issue: 2
  year: 2019
  end-page: 456
  ident: CR27
  article-title: Calibration of genetic algorithm parameters for mining-related optimization problems
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-018-9395-2
– volume: 69
  start-page: 171
  issue: 2
  year: 2018
  end-page: 182
  ident: CR22
  article-title: Dig-limits optimization through mixed-integer linear programming in open-pit mines
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/s41274-017-0201-z
– volume: 26
  start-page: 1485
  issue: 12
  year: 2019
  end-page: 1494
  ident: CR14
  article-title: Dimensioning a stockpile operation using principal component analysis
  publication-title: International Journal of Minerals, Metallurgy and Materials
  doi: 10.1007/s12613-019-1849-y
– volume: 37
  start-page: 451
  issue: 5
  year: 2005
  end-page: 475
  ident: CR26
  article-title: Grade control classification of ore and waste: A critical review of estimation and simulation based procedures
  publication-title: Mathematical Geology
  doi: 10.1007/s11004-005-6660-9
– ident: CR11
– year: 2018
  ident: CR23
  article-title: Fuzzy clustering with spatial correction and its application to geometallurgical domaining
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-018-9751-0
– volume: 26
  start-page: 23
  issue: 1
  year: 2017
  end-page: 35
  ident: CR20
  article-title: A practical approach to mine equipment sizing in relation to dig-limit optimization in complex orebodies: Multi-Rock Type, Multi-Process, and Multi-Metal Case
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-016-9301-8
– volume: 79
  start-page: 163
  issue: 2
  year: 2009
  end-page: 169
  ident: CR3
  article-title: Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content
  publication-title: CATENA
  doi: 10.1016/j.catena.2009.08.001
– year: 1997
  ident: CR5
  article-title: Change of support and use of economic parameters for block selection
  publication-title: Geostatistics Wollongong ‘96
– volume: 28
  start-page: 665
  issue: 3
  year: 2019
  end-page: 684
  ident: CR19
  article-title: Geometallurgical domaining by cluster analysis: Iron ore deposit case study
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-018-9411-6
– volume: 114
  start-page: 154
  issue: 3
  year: 2010
  end-page: 163
  ident: CR1
  article-title: Geostatistical modeling of spatial variability of SPT data for a borax stockpile site
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2010.04.012
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  end-page: 416
  ident: CR28
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-007-9033-z
– year: 2019
  ident: CR16
  article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09470-z
– volume: 18
  start-page: 385
  issue: 4
  year: 2011
  end-page: 389
  ident: CR31
  article-title: Segmentation algorithm of complex ore images based on templates transformation and reconstruction
  publication-title: International Journal of Minerals, Metallurgy, and Materials
  doi: 10.1007/s12613-011-0451-8
– volume: 28
  start-page: 199
  issue: 1
  year: 2018
  ident: 9628_CR15
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-018-9388-1
– ident: 9628_CR11
– volume: 28
  start-page: 665
  issue: 3
  year: 2019
  ident: 9628_CR19
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-018-9411-6
– ident: 9628_CR29
  doi: 10.1145/1557019.1557118
– year: 2018
  ident: 9628_CR23
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-018-9751-0
– ident: 9628_CR30
– volume-title: Geostatistics: Modeling spatial uncertainty
  year: 2012
  ident: 9628_CR2
  doi: 10.1002/9781118136188
– volume-title: An introduction to statistical learning: With applications in R
  year: 2013
  ident: 9628_CR9
  doi: 10.1007/978-1-4614-7138-7
– volume: 69
  start-page: 171
  issue: 2
  year: 2018
  ident: 9628_CR22
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/s41274-017-0201-z
– ident: 9628_CR12
  doi: 10.1002/9780470316801.ch3
– volume: 25
  start-page: 473
  issue: 4
  year: 2016
  ident: 9628_CR21
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-016-9296-1
– year: 2019
  ident: 9628_CR16
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09470-z
– volume: 80
  start-page: 63
  issue: 901
  year: 1987
  ident: 9628_CR24
  publication-title: CIM Bulletin
– volume: 13
  start-page: 99
  year: 2013
  ident: 9628_CR18
  publication-title: Ecological Informatics
  doi: 10.1016/j.ecoinf.2012.06.005
– volume: 40
  start-page: 292
  year: 2016
  ident: 9628_CR6
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.11.038
– volume: 26
  start-page: 23
  issue: 1
  year: 2017
  ident: 9628_CR20
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-016-9301-8
– volume: 26
  start-page: 1485
  issue: 12
  year: 2019
  ident: 9628_CR14
  publication-title: International Journal of Minerals, Metallurgy and Materials
  doi: 10.1007/s12613-019-1849-y
– volume: 13
  start-page: 161
  issue: 3
  year: 1999
  ident: 9628_CR7
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/s004770050037
– volume-title: Introduction to quality engineering: Designing quality into products and processes
  year: 1986
  ident: 9628_CR25
– volume: 114
  start-page: 154
  issue: 3
  year: 2010
  ident: 9628_CR1
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2010.04.012
– volume: 18
  start-page: 385
  issue: 4
  year: 2011
  ident: 9628_CR31
  publication-title: International Journal of Minerals, Metallurgy, and Materials
  doi: 10.1007/s12613-011-0451-8
– ident: 9628_CR4
– volume-title: Geostatistics Wollongong ‘96
  year: 1997
  ident: 9628_CR5
– volume: 37
  start-page: 451
  issue: 5
  year: 2005
  ident: 9628_CR26
  publication-title: Mathematical Geology
  doi: 10.1007/s11004-005-6660-9
– volume: 28
  start-page: 443
  issue: 2
  year: 2019
  ident: 9628_CR27
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-018-9395-2
– ident: 9628_CR8
– volume: 1
  start-page: 123
  issue: 2
  year: 1989
  ident: 9628_CR10
  publication-title: Terra Nova
  doi: 10.1111/j.1365-3121.1989.tb00344.x
– volume: 79
  start-page: 163
  issue: 2
  year: 2009
  ident: 9628_CR3
  publication-title: CATENA
  doi: 10.1016/j.catena.2009.08.001
– volume: 32
  start-page: 334
  issue: 4
  year: 2015
  ident: 9628_CR13
  publication-title: International Journal of Quality & Reliability Management
  doi: 10.1108/IJQRM-08-2013-0134
– volume-title: Local and target exploration of conglomerate-hosted gold deposits using machine learning algorithms: A case study of the Witwatersrand gold ores
  year: 2019
  ident: 9628_CR17
  doi: 10.1007/s11053-019-09498-1
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 9628_CR28
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-007-9033-z
SSID ssj0007385
Score 2.2740166
Snippet Traditional ore-waste discrimination schemes often do not take into consideration the impact of fluctuations of the head grade, which have on the performance...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3035
SubjectTerms Algorithms
Chemistry and Earth Sciences
Cluster analysis
Clustering
Computer Science
Cut off grades
Divergence
Earth and Environmental Science
Earth Sciences
Fossil Fuels (incl. Carbon Capture)
Geography
Learning algorithms
Machine learning
Mathematical Modeling and Industrial Mathematics
Mineral processing
Mineral Resources
Original Paper
Physics
Reclassification
Statistics for Engineering
Sustainable Development
Unsupervised learning
Vector quantization
SummonAdditionalLinks – databaseName: Springer Journals New Starts & Take-Overs Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oVNQHL1Nx3siDb1poszZLH4c4FdwUb_hWmjTRwW6sneCb_8F_6C8xydJVRQV9K-1pKCfJOV_JOd8HsE8oDQlOpCMC6WpSbeHQJEkcGgaMVwPfw6aq8u681mrR-_vw0jaFpXm1e34kaSJ10eymoIA-c3QdBbs1r_I0zKh0R7Vgw9X13ST-an4Ww5KqLDXctq0y34_xOR0VGPPLsajJNo3l_33nCixZdInq4-WwClOiV4blXLkB2Y1chsUPNIRlmLdK6I_PZZg7MVK_-soUh_J0DeSFiitd27CJ-hI1jarE28trs21Iq5FtN1A30Znln9Cmph4B3fbS0UCHpFQkqGmKNwWyvK4PqN556A_b2WM3XYfbxvHN0alj9RkcrjZu5gjsCyp8BQjiWOGgQAoX86rLCRehjGXAkprCEzHDRKj_YEJUWmBSMsw9j5NE4ZINKPX6PbEJKPAIi31GWCCrPuVVRmsslJra38Mqe8YV8PJpirglL9caGp2ooF3Wbo-U2yPj9sitwMHkncGYuuNX65189iO7jdMIhzriebRGK3CYz3bx-OfRtv5mvg0LWC8YUyS4A6VsOBK7MMufsnY63DPL-x37zPP2
  priority: 102
  providerName: Springer Nature
Title Optimization of Mining–Mineral Processing Integration Using Unsupervised Machine Learning Algorithms
URI https://link.springer.com/article/10.1007/s11053-020-09628-0
https://www.proquest.com/docview/2918321878
Volume 29
WOSCitedRecordID wos000513046300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: PCBAR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: PATMY
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: KB.
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: RSV
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLaAgQQH3ojxUg7coNBmbZaeECAGCDam8RC3qkmTgQTboAOJG_-Bf8gvwckyBkhw4dJDm0aR7NhfYvszwDrjPGY0056KtG9ItZXHsyzzeBwJWYrCgNqsyqvTcq3Gr6_jurtwy11aZd8mWkOdtaW5I9-msVG-gJf5TufBM12jTHTVtdAYhoJhKkM9L-wd1OqNT1tsuFosYyoekgz0dmUzveI5hBYmhul7COMNT_N31zTAmz9CpNbzVKb-u-ZpmHSYk-z2lGQGhlRrFia-MBHOwtih7fD7Mgf6DI3IvavOJG1NqraFxPvrW_XWMlQTV1uAL8mxI5swQ23yAbls5U8dY39ylZGqzdRUxJG4NsnuXRPX1725z-fhsnJwsX_kuWYMnsRd2vUUDRVXIXr_NEXQE2nlU1nyJZMq1qmORFZG8JAKyhQeehlDHyC0FlQGgWQZgpAFGGm1W2oRSBQwkYaCiUiXQi5LgpdFrA2Pf0DRVaZFCPpySKRjKjcNM-6SAceykV2Cskus7BK_CBuf_3R6PB1_jl7pCyxxezZPBtIqwmZf5IPPv8-29PdsyzBOjZbZDMAVGOk-PqlVGJXP3dv8cc1p7BoMn-xt4bNxfvUB7T_0YQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThRBEK4Q1KAHlR_jImIf4AQDMz0zvT0HY1BENuwuHIDsbZju6UYS2F2YRcPNd_A9fCifxKreHlZN5MbB6_x0Mt1ff1U9VfUVwIqQMhO8tIFJbUii2iaQZVkGMkuVjtMk4i6r8rjd7HZlr5cdTMGPuhaG0iprTnREXQ40_SPf5BmBL5JN-W54GVDXKIqu1i00xrDYMzdf8chWvW1t4_qucr7z8fDDbuC7CgQa4TYKDE-MNAmasaJA651aE3Idh1pok9nCpqpsohUsFBcGT29CIJkpaxXXUaRFyUnoACn_QRKjb0pB4Pcbt8xPyjBOnxWPZOTo-yKdcakeOjIUMQ0DPDSQKvSfhnDi3f4VkHV2bufZ_zZDz-Gp96jZ1ngLzMKU6c_Bk990Fufg0SfXv_hmHuw-UuSFrz1lA8s6rkHGz2_fO2dOf5v5ygm8yFpeSoMedakV7KhfXQ-JXStTso7LQzXMS9Sesq3zU5yP0eeLagGO7uWTX8B0f9A3L4GlkVBFooRKbZxIHSvZVJmlLgURR0egaEBUr3uuvQ47tQM5zycK0oSVHLGSO6zkYQPWbt8ZjlVI7nx6qQZI7hmpyifoaMB6DbHJ7X-Ptnj3aG9gZvew087bre7eK3jMCeEu13EJpkdX1-Y1PNRfRmfV1bLbKwxO7ht6vwCYVE-N
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1B2Q8sBURZfeAGEYmbuM4RAQUELUgs4hbFjg2VaFo1AYkb_8Af8iXYrkMBARLiFiUTK7LHMy_ymzcAm4TSkOBEOiKQrhbVFg5NksShYcB4NfA9bFiV16e1ZpPe3ITnH6r4Ddu9OJLs1zRolaY03-kmcmdQ-KZggT5_dB0FwbXG8jCM-JpIr__XL67fY7HWajGKqcpSQ29bNvP9GJ9T0wBvfjkiNZmnPvP_b56FaYs60W7fTeZgSKRlmCk6OiC7wcsw9UGesAwTtkP63VMZxg5NC2B9ZUijPJsHeabiTdsWcqKORA3TbeL1-aXRMmLWyJYhqJvo2OpSaFPDU0BXafbQ1aEqEwlqGFKnQFbv9Rbt3t92eq38rp0twFX94HLvyLF9GxyuNnTuCOwLKnwFFOJY4aNAChfzqssJF6GMZcCSmsIZMcNEqP9jQlS6YFIyzD2Pk0ThlUUopZ1ULAEKPMJinxEWyKpPeZXRGgullvz3sMqqcQW8YskibkXNdW-N-2ggx6ynPVLTHplpj9wKbL2_0-1LevxqvVp4QmS3dxbhUEdCj9ZoBbaLlR88_nm05b-Zb8D4-X49Oj1unqzAJNa-Y3iEq1DKew9iDUb5Y97KeuvG698ANNf_vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Mining%E2%80%93Mineral+Processing+Integration+Using+Unsupervised+Machine+Learning+Algorithms&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Li%2C+Siyi&rft.au=Sari%2C+Yuksel+Asli&rft.au=Kumral%2C+Mustafa&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=29&rft.issue=5&rft.spage=3035&rft.epage=3046&rft_id=info:doi/10.1007%2Fs11053-020-09628-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon