A parallel multi-objective imperialist competitive algorithm to solve the load offloading problem in mobile cloud computing
Cloud computing is a modern architecture for performing complex and immense processes. It consists of configurable computational resource sets that communicate with each other through communication networks. With the advent of the cloud computing architecture and increasing its applications for mobi...
Uložené v:
| Vydané v: | Neural computing & applications Ročník 35; číslo 26; s. 18905 - 18932 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
01.09.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cloud computing is a modern architecture for performing complex and immense processes. It consists of configurable computational resource sets that communicate with each other through communication networks. With the advent of the cloud computing architecture and increasing its applications for mobile devices, the growth rate of mobile data has proliferated exponentially. Consequently, processing the tasks of mobile users has become difficult due to the limitations of these devices, such as low computing power and low capacity. Therefore, the idea of mobile cloud computing (MCC) for mobile devices using cloud-based storage and computing resources was introduced. In MCC, processing information is transferred from the user
'
s mobile devices to the cloud servers. This process is known as the tasks offloading and scheduling of mobile users. In this case, the task execution time, CPU power consumption, network bandwidth, and task allocation time must be specified. Due to many tasks and different resources, the process of task offloading and scheduling is considered a challenging subject in the field of MCC. Therefore, in this paper, a multi-objective parallel imperialist competitive algorithm (MPICA) is proposed. The main objective of this parallel algorithm is to reduce the algorithm
'
s execution time for searching the problem space, reducing processing time, reducing energy consumption, and improving load balance. The simulation results of the proposed algorithm represent that the parallelization of the imperialist competitive algorithm (ICA) has a significant effect on reducing the execution time of the algorithm. In general, the proposed algorithm performs better than the state-of-the-art algorithms based on the proposed criteria. |
|---|---|
| AbstractList | Cloud computing is a modern architecture for performing complex and immense processes. It consists of configurable computational resource sets that communicate with each other through communication networks. With the advent of the cloud computing architecture and increasing its applications for mobile devices, the growth rate of mobile data has proliferated exponentially. Consequently, processing the tasks of mobile users has become difficult due to the limitations of these devices, such as low computing power and low capacity. Therefore, the idea of mobile cloud computing (MCC) for mobile devices using cloud-based storage and computing resources was introduced. In MCC, processing information is transferred from the user's mobile devices to the cloud servers. This process is known as the tasks offloading and scheduling of mobile users. In this case, the task execution time, CPU power consumption, network bandwidth, and task allocation time must be specified. Due to many tasks and different resources, the process of task offloading and scheduling is considered a challenging subject in the field of MCC. Therefore, in this paper, a multi-objective parallel imperialist competitive algorithm (MPICA) is proposed. The main objective of this parallel algorithm is to reduce the algorithm's execution time for searching the problem space, reducing processing time, reducing energy consumption, and improving load balance. The simulation results of the proposed algorithm represent that the parallelization of the imperialist competitive algorithm (ICA) has a significant effect on reducing the execution time of the algorithm. In general, the proposed algorithm performs better than the state-of-the-art algorithms based on the proposed criteria. Cloud computing is a modern architecture for performing complex and immense processes. It consists of configurable computational resource sets that communicate with each other through communication networks. With the advent of the cloud computing architecture and increasing its applications for mobile devices, the growth rate of mobile data has proliferated exponentially. Consequently, processing the tasks of mobile users has become difficult due to the limitations of these devices, such as low computing power and low capacity. Therefore, the idea of mobile cloud computing (MCC) for mobile devices using cloud-based storage and computing resources was introduced. In MCC, processing information is transferred from the user ' s mobile devices to the cloud servers. This process is known as the tasks offloading and scheduling of mobile users. In this case, the task execution time, CPU power consumption, network bandwidth, and task allocation time must be specified. Due to many tasks and different resources, the process of task offloading and scheduling is considered a challenging subject in the field of MCC. Therefore, in this paper, a multi-objective parallel imperialist competitive algorithm (MPICA) is proposed. The main objective of this parallel algorithm is to reduce the algorithm ' s execution time for searching the problem space, reducing processing time, reducing energy consumption, and improving load balance. The simulation results of the proposed algorithm represent that the parallelization of the imperialist competitive algorithm (ICA) has a significant effect on reducing the execution time of the algorithm. In general, the proposed algorithm performs better than the state-of-the-art algorithms based on the proposed criteria. |
| Author | Poor, Mahdi Khazaie Saadatfar, Hamid Alipour, Sara |
| Author_xml | – sequence: 1 givenname: Sara surname: Alipour fullname: Alipour, Sara organization: Computer Engineering Department, Birjand Branch, Islamic Azad University – sequence: 2 givenname: Hamid orcidid: 0000-0002-6130-8450 surname: Saadatfar fullname: Saadatfar, Hamid email: saadatfar@birjand.ac.ir organization: Department of Computer Engineering, University of Birjand – sequence: 3 givenname: Mahdi Khazaie surname: Poor fullname: Poor, Mahdi Khazaie organization: Computer Engineering Department, Birjand Branch, Islamic Azad University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6uTj-1mj6X4BYIXPYdsNtumZDc1yQrinzdtBcFDT8PMvM87wztDk8EPBqFrArcEoLqLACUlBVBWgKgIL6ozNCWcsYJBKSZoCjXP6wVnF2gW4xYA-EKUU_S9xDsVlHPG4X50yRa-2Rqd7KfBtt-ZYJWzMWHtc5PsYa7c2gebNj1OHkfv8ihtDHZetdh33b7aYY13wTfO9NgOuPeNdQZr58f2YDWmrLhE551y0Vz91jl6f7h_Wz0VL6-Pz6vlS6EZqVNhSEeN4G1noBJ1A1WpStqwRVcqsiiFFq1mipC6Uw2vlWY1KKFE22hDOKWaszm6Ofrmjz5GE5Pc-jEM-aSkogSebeleJY4qHXyMwXRS26SS9UMKyjpJQO6jlseoZY5aHqKWVUbpP3QXbK_C12mIHaGYxcPahL-vTlA_hLmV-g |
| CitedBy_id | crossref_primary_10_1177_13272314251339725 |
| Cites_doi | 10.1007/s11227-022-04539-8 10.1007/s12083-017-0561-9 10.1007/978-3-662-43505-2_46 10.1109/MC.2008.209 10.1145/2307849.2307856 10.1109/CEC.2007.4425083 10.1109/SOSE.2010.20 10.1007/s12652-020-02122-8 10.1145/1814433.1814441 10.1109/GLOCOMW.2015.7414063 10.1109/PIC.2014.6972393 10.1016/j.sysarc.2020.101837 10.1109/EIDWT.2013.126 10.1016/j.simpat.2014.05.009 10.1016/j.asoc.2019.04.027 10.1109/BigComp.2018.00037 10.1142/S0218126620502552 10.1007/s00521-021-06002-w 10.1016/j.jnca.2015.10.005 10.1007/s12652-020-01903-5 10.1016/j.aci.2016.11.002 10.1049/iet-com.2018.5100 10.1016/j.comcom.2021.12.009 10.1109/MPRV.2009.82 10.1109/TWC.2018.2864559 10.1007/s12652-017-0578-1 10.36909/jer.v8i3.7643 10.1109/CEC45853.2021.9504780 10.1007/s12652-016-0390-3 10.1002/wcm.1203 10.1007/s10723-021-09548-0 10.5755/j01.eee.22.1.14113 10.1016/j.pmcj.2015.07.005 10.1007/s12652-023-04541-9 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00521-023-08714-7 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 18932 |
| ExternalDocumentID | 10_1007_s00521_023_08714_7 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-e1f2e84dfe0789b075a52b36f5a1658c8dc3a119fab49ac390a8a8dbce1422c43 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001007654100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 03:27:57 EST 2025 Sat Nov 29 04:30:39 EST 2025 Tue Nov 18 22:00:34 EST 2025 Fri Feb 21 02:43:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 26 |
| Keywords | Mobile cloud computing Task scheduling Cloud computing Parallel algorithm Imperialist competitive algorithm Load offloading |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-e1f2e84dfe0789b075a52b36f5a1658c8dc3a119fab49ac390a8a8dbce1422c43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6130-8450 |
| PQID | 2850407824 |
| PQPubID | 2043988 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_2850407824 crossref_citationtrail_10_1007_s00521_023_08714_7 crossref_primary_10_1007_s00521_023_08714_7 springer_journals_10_1007_s00521_023_08714_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20230900 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | AminzadehNSanaeiZAb HamidSHMobile storage augmentation in mobile cloud computing: Taxonomy, approaches, and open issuesSimul Model Pract Theory2015509610810.1016/j.simpat.2014.05.009 HungPPA new technique for optimizing resource allocation and data distribution in mobile cloud computingElektronika ir elektrotechnika20162217380436608810.5755/j01.eee.22.1.14113 Lourenco H, Martin O, Stutzle T (2002) Iterated local search. In: Glover F, Kochenberger G (eds) Handbook of Metaheuristics. ISORMS 57, p 321–353 (2002) Kluwer. PengHJoint optimization method for task scheduling time and energy consumption in mobile cloud computing environmentAppl Soft Comput20198053454510.1016/j.asoc.2019.04.027 Sudholt D (2015) Parallel evolutionary algorithms. Springer Handbook of Computational Intelligence, pp 929–959 PonmagalROptimized virtual network function provisioning technique for mobile edge cloud computingJ Ambient Intell Hum Comput2021125807581510.1007/s12652-020-02122-8 Bahl, P., et al. Advancing the state of mobile cloud computing. in Proceedings of the third ACM workshop on Mobile cloud computing and services. 2012. HillMDMartyMRAmdahl's law in the multicore eraComputer2008417333810.1109/MC.2008.209 AlizadehMAuthentication in mobile cloud computing: a surveyJ Netw Comput Appl201661598010.1016/j.jnca.2015.10.005 DinhHTA survey of mobile cloud computing: architecture, applications, and approachesWirel Commun Mob Comput201313181587161110.1002/wcm.1203 Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation. 2007. IEEE. Zhao T, et al (2015) A cooperative scheduling scheme of local cloud and internet cloud for delay-aware mobile cloud computing. In: 2015 IEEE globecom workshops (GC Wkshps). 2015. IEEE. Garg M, Nath R (2020) Autoregressive dragon fly optimization for multi-objective task scheduling (ADO-MTS) in mobile cloud computing. J Eng Res, 8(3). TarafdarAEnergy and makespan aware scheduling of deadline sensitive tasks in the cloud environmentJ Grid Comput20211912510.1007/s10723-021-09548-0 ShiTAn energy-efficient scheduling scheme for time-constrained tasks in local mobile cloudsPervasive Mob Comput2016279010510.1016/j.pmcj.2015.07.005 Chun B-G, Maniatis P (2009) Augmented smartphone applications through clone cloud execution. In: HotOS Pirozmand P, et al. (2023) An improved particle swarm optimization algorithm for task scheduling in cloud computing. J Ambient Intell Hum Comput 1–15 Wei X, et al (2013) Bio-inspired application scheduling algorithm for mobile cloud computing. In: 2013 fourth international conference on emerging intelligent data and web technologies. 2013. IEEE PirozmandPGSAGA: A hybrid algorithm for task scheduling in cloud infrastructureJ Supercomput20227815174231744910.1007/s11227-022-04539-8 AhmedULinJC-WSrivastavaGA resource allocation deep active learning based on load balancer for network intrusion detection in SDN sensorsComput Commun2022184566310.1016/j.comcom.2021.12.009 LinJC-WScalable mining of high-utility sequential patterns with three-tier MapReduce modelACM Trans Knowl Discov Data (TKDD)2021163126 HanPCost and makespan scheduling of workflows in clouds using list multiobjective optimization techniqueJ Syst Architect202111210.1016/j.sysarc.2020.101837 Erana Veerappa DineshSValarmathiKA novel energy estimation model for constraint based task offloading in mobile cloud computingJ Ambient Intell Hum Comput2020115477548610.1007/s12652-020-01903-5 MengSHierarchical evolutionary game based dynamic cloudlet selection and bandwidth allocation for mobile cloud computing environmentIET Commun2019131162510.1049/iet-com.2018.5100 Tang C, et al. (2018) Energy efficient and deadline satisfied task scheduling in mobile cloud computing. In: 2018 IEEE international conference on big data and smart computing (BigComp). 2018. IEEE WangTDynamic tasks scheduling based on weighted bi-graph in mobile cloud computingSustain Comput Inform Syst201819214222 You I, Li J (2016) Special issue on security and privacy techniques in mobile cloud computing. Springer, Berlin, pp 607–609 Huang D, et al. (2010) MobiCloud: building secure cloud framework for mobile computing and communication. In: 2010 fifth IEEE international symposium on service oriented system engineering. 2010 PirozmandPMulti-objective hybrid genetic algorithm for task scheduling problem in cloud computingNeural Comput Appl202133130751308810.1007/s00521-021-06002-w AkherfiKGerndtMHarroudHMobile cloud computing for computation offloading: Issues and challengesAppl Comput Inform201814111610.1016/j.aci.2016.11.002 Dezhong Y et al. (2013) Energy efficient task scheduling in mobile cloud computing. In: 10th IFIP international conference, NPC 2013 Alkhalaileh M, et al. Dynamic resource allocation in hybrid mobile cloud computing for data-intensive applications. In: Green, pervasive, and cloud computing: 14th international conference, GPC 2019, Uberlândia, Brazil, May 26–28, 2019, Proceedings 14. 2019. Springer. LiHEffective algorithms for scheduling workflow tasks on mobile cloudsJ Circ Syst Comput20202916205025510.1142/S0218126620502552 WangTEfficient multi-tasks scheduling algorithm in mobile cloud computing with time constraintsPeer-to-Peer Netw Appl20181179380710.1007/s12083-017-0561-9 SatyanarayananMThe case for vm-based cloudlets in mobile computingIEEE Pervasive Comput200984142310.1109/MPRV.2009.82 Cai Z, Chen C (2014) Demand-driven task scheduling using 2d chromosome genetic algorithm in mobile cloud. In: 2014 IEEE international conference on progress in informatics and computing Cuervo E, et al (2010) Maui: making smartphones last longer with code offload. In: Proceedings of the 8th international conference on Mobile systems, applications, and services. 2010 ChenM-HLiangBDongMMulti-user multi-task offloading and resource allocation in mobile cloud systemsIEEE Trans Wireless Commun201817106790680510.1109/TWC.2018.2864559 Shao Y, et al. (2021) Multi-objective neural evolutionary algorithm for combinatorial optimization problems. IEEE Trans Neural Netw Learn Syst YiGMRM: mobile resource management scheme on mobile cloud computingJ Ambient Intell Humaniz Comput201891245125710.1007/s12652-017-0578-1 Saemi B, et al. (2021) A new optimization approach for task scheduling problem using water cycle algorithm in mobile cloud computing. In: 2021 IEEE congress on evolutionary computation (CEC). IEEE R Ponmagal (8714_CR14) 2021; 12 M Alizadeh (8714_CR7) 2016; 61 MD Hill (8714_CR39) 2008; 41 T Wang (8714_CR40) 2018; 19 N Aminzadeh (8714_CR5) 2015; 50 8714_CR30 P Pirozmand (8714_CR4) 2022; 78 T Wang (8714_CR26) 2018; 11 8714_CR11 8714_CR12 8714_CR34 8714_CR15 8714_CR37 8714_CR38 8714_CR8 8714_CR17 8714_CR9 8714_CR18 M Satyanarayanan (8714_CR19) 2009; 8 M-H Chen (8714_CR24) 2018; 17 8714_CR3 8714_CR1 PP Hung (8714_CR23) 2016; 22 K Akherfi (8714_CR16) 2018; 14 S Erana Veerappa Dinesh (8714_CR10) 2020; 11 A Tarafdar (8714_CR32) 2021; 19 P Pirozmand (8714_CR2) 2021; 33 8714_CR41 H Peng (8714_CR29) 2019; 80 P Han (8714_CR36) 2021; 112 8714_CR21 S Meng (8714_CR28) 2019; 13 H Li (8714_CR31) 2020; 29 8714_CR22 T Shi (8714_CR13) 2016; 27 8714_CR25 8714_CR27 G Yi (8714_CR6) 2018; 9 JC-W Lin (8714_CR33) 2021; 16 HT Dinh (8714_CR20) 2013; 13 U Ahmed (8714_CR35) 2022; 184 |
| References_xml | – reference: YiGMRM: mobile resource management scheme on mobile cloud computingJ Ambient Intell Humaniz Comput201891245125710.1007/s12652-017-0578-1 – reference: Bahl, P., et al. Advancing the state of mobile cloud computing. in Proceedings of the third ACM workshop on Mobile cloud computing and services. 2012. – reference: PengHJoint optimization method for task scheduling time and energy consumption in mobile cloud computing environmentAppl Soft Comput20198053454510.1016/j.asoc.2019.04.027 – reference: Alkhalaileh M, et al. Dynamic resource allocation in hybrid mobile cloud computing for data-intensive applications. In: Green, pervasive, and cloud computing: 14th international conference, GPC 2019, Uberlândia, Brazil, May 26–28, 2019, Proceedings 14. 2019. Springer. – reference: AlizadehMAuthentication in mobile cloud computing: a surveyJ Netw Comput Appl201661598010.1016/j.jnca.2015.10.005 – reference: Huang D, et al. (2010) MobiCloud: building secure cloud framework for mobile computing and communication. In: 2010 fifth IEEE international symposium on service oriented system engineering. 2010 – reference: Erana Veerappa DineshSValarmathiKA novel energy estimation model for constraint based task offloading in mobile cloud computingJ Ambient Intell Hum Comput2020115477548610.1007/s12652-020-01903-5 – reference: PonmagalROptimized virtual network function provisioning technique for mobile edge cloud computingJ Ambient Intell Hum Comput2021125807581510.1007/s12652-020-02122-8 – reference: ChenM-HLiangBDongMMulti-user multi-task offloading and resource allocation in mobile cloud systemsIEEE Trans Wireless Commun201817106790680510.1109/TWC.2018.2864559 – reference: Wei X, et al (2013) Bio-inspired application scheduling algorithm for mobile cloud computing. In: 2013 fourth international conference on emerging intelligent data and web technologies. 2013. IEEE – reference: Saemi B, et al. (2021) A new optimization approach for task scheduling problem using water cycle algorithm in mobile cloud computing. In: 2021 IEEE congress on evolutionary computation (CEC). IEEE – reference: DinhHTA survey of mobile cloud computing: architecture, applications, and approachesWirel Commun Mob Comput201313181587161110.1002/wcm.1203 – reference: TarafdarAEnergy and makespan aware scheduling of deadline sensitive tasks in the cloud environmentJ Grid Comput20211912510.1007/s10723-021-09548-0 – reference: HanPCost and makespan scheduling of workflows in clouds using list multiobjective optimization techniqueJ Syst Architect202111210.1016/j.sysarc.2020.101837 – reference: ShiTAn energy-efficient scheduling scheme for time-constrained tasks in local mobile cloudsPervasive Mob Comput2016279010510.1016/j.pmcj.2015.07.005 – reference: AkherfiKGerndtMHarroudHMobile cloud computing for computation offloading: Issues and challengesAppl Comput Inform201814111610.1016/j.aci.2016.11.002 – reference: LinJC-WScalable mining of high-utility sequential patterns with three-tier MapReduce modelACM Trans Knowl Discov Data (TKDD)2021163126 – reference: Shao Y, et al. (2021) Multi-objective neural evolutionary algorithm for combinatorial optimization problems. IEEE Trans Neural Netw Learn Syst – reference: Cuervo E, et al (2010) Maui: making smartphones last longer with code offload. In: Proceedings of the 8th international conference on Mobile systems, applications, and services. 2010 – reference: Cai Z, Chen C (2014) Demand-driven task scheduling using 2d chromosome genetic algorithm in mobile cloud. In: 2014 IEEE international conference on progress in informatics and computing – reference: Sudholt D (2015) Parallel evolutionary algorithms. Springer Handbook of Computational Intelligence, pp 929–959 – reference: You I, Li J (2016) Special issue on security and privacy techniques in mobile cloud computing. Springer, Berlin, pp 607–609 – reference: MengSHierarchical evolutionary game based dynamic cloudlet selection and bandwidth allocation for mobile cloud computing environmentIET Commun2019131162510.1049/iet-com.2018.5100 – reference: AhmedULinJC-WSrivastavaGA resource allocation deep active learning based on load balancer for network intrusion detection in SDN sensorsComput Commun2022184566310.1016/j.comcom.2021.12.009 – reference: Pirozmand P, et al. (2023) An improved particle swarm optimization algorithm for task scheduling in cloud computing. J Ambient Intell Hum Comput 1–15 – reference: Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation. 2007. IEEE. – reference: Garg M, Nath R (2020) Autoregressive dragon fly optimization for multi-objective task scheduling (ADO-MTS) in mobile cloud computing. J Eng Res, 8(3). – reference: LiHEffective algorithms for scheduling workflow tasks on mobile cloudsJ Circ Syst Comput20202916205025510.1142/S0218126620502552 – reference: SatyanarayananMThe case for vm-based cloudlets in mobile computingIEEE Pervasive Comput200984142310.1109/MPRV.2009.82 – reference: Dezhong Y et al. (2013) Energy efficient task scheduling in mobile cloud computing. In: 10th IFIP international conference, NPC 2013 – reference: Chun B-G, Maniatis P (2009) Augmented smartphone applications through clone cloud execution. In: HotOS – reference: Lourenco H, Martin O, Stutzle T (2002) Iterated local search. In: Glover F, Kochenberger G (eds) Handbook of Metaheuristics. ISORMS 57, p 321–353 (2002) Kluwer. – reference: PirozmandPGSAGA: A hybrid algorithm for task scheduling in cloud infrastructureJ Supercomput20227815174231744910.1007/s11227-022-04539-8 – reference: AminzadehNSanaeiZAb HamidSHMobile storage augmentation in mobile cloud computing: Taxonomy, approaches, and open issuesSimul Model Pract Theory2015509610810.1016/j.simpat.2014.05.009 – reference: Zhao T, et al (2015) A cooperative scheduling scheme of local cloud and internet cloud for delay-aware mobile cloud computing. In: 2015 IEEE globecom workshops (GC Wkshps). 2015. IEEE. – reference: HillMDMartyMRAmdahl's law in the multicore eraComputer2008417333810.1109/MC.2008.209 – reference: PirozmandPMulti-objective hybrid genetic algorithm for task scheduling problem in cloud computingNeural Comput Appl202133130751308810.1007/s00521-021-06002-w – reference: Tang C, et al. (2018) Energy efficient and deadline satisfied task scheduling in mobile cloud computing. In: 2018 IEEE international conference on big data and smart computing (BigComp). 2018. IEEE – reference: HungPPA new technique for optimizing resource allocation and data distribution in mobile cloud computingElektronika ir elektrotechnika20162217380436608810.5755/j01.eee.22.1.14113 – reference: WangTEfficient multi-tasks scheduling algorithm in mobile cloud computing with time constraintsPeer-to-Peer Netw Appl20181179380710.1007/s12083-017-0561-9 – reference: WangTDynamic tasks scheduling based on weighted bi-graph in mobile cloud computingSustain Comput Inform Syst201819214222 – volume: 78 start-page: 17423 issue: 15 year: 2022 ident: 8714_CR4 publication-title: J Supercomput doi: 10.1007/s11227-022-04539-8 – volume: 11 start-page: 793 year: 2018 ident: 8714_CR26 publication-title: Peer-to-Peer Netw Appl doi: 10.1007/s12083-017-0561-9 – ident: 8714_CR38 doi: 10.1007/978-3-662-43505-2_46 – volume: 41 start-page: 33 issue: 7 year: 2008 ident: 8714_CR39 publication-title: Computer doi: 10.1109/MC.2008.209 – ident: 8714_CR1 – ident: 8714_CR15 doi: 10.1145/2307849.2307856 – ident: 8714_CR37 doi: 10.1109/CEC.2007.4425083 – ident: 8714_CR21 doi: 10.1109/SOSE.2010.20 – volume: 12 start-page: 5807 year: 2021 ident: 8714_CR14 publication-title: J Ambient Intell Hum Comput doi: 10.1007/s12652-020-02122-8 – ident: 8714_CR18 doi: 10.1145/1814433.1814441 – volume: 16 start-page: 1 issue: 3 year: 2021 ident: 8714_CR33 publication-title: ACM Trans Knowl Discov Data (TKDD) – ident: 8714_CR9 – ident: 8714_CR34 – ident: 8714_CR22 doi: 10.1109/GLOCOMW.2015.7414063 – volume: 19 start-page: 214 year: 2018 ident: 8714_CR40 publication-title: Sustain Comput Inform Syst – ident: 8714_CR25 doi: 10.1109/PIC.2014.6972393 – volume: 112 year: 2021 ident: 8714_CR36 publication-title: J Syst Architect doi: 10.1016/j.sysarc.2020.101837 – ident: 8714_CR17 – ident: 8714_CR41 doi: 10.1109/EIDWT.2013.126 – volume: 50 start-page: 96 year: 2015 ident: 8714_CR5 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2014.05.009 – volume: 80 start-page: 534 year: 2019 ident: 8714_CR29 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.04.027 – ident: 8714_CR27 doi: 10.1109/BigComp.2018.00037 – volume: 29 start-page: 2050255 issue: 16 year: 2020 ident: 8714_CR31 publication-title: J Circ Syst Comput doi: 10.1142/S0218126620502552 – volume: 33 start-page: 13075 year: 2021 ident: 8714_CR2 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06002-w – volume: 61 start-page: 59 year: 2016 ident: 8714_CR7 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2015.10.005 – volume: 11 start-page: 5477 year: 2020 ident: 8714_CR10 publication-title: J Ambient Intell Hum Comput doi: 10.1007/s12652-020-01903-5 – ident: 8714_CR11 – volume: 14 start-page: 1 issue: 1 year: 2018 ident: 8714_CR16 publication-title: Appl Comput Inform doi: 10.1016/j.aci.2016.11.002 – volume: 13 start-page: 16 issue: 1 year: 2019 ident: 8714_CR28 publication-title: IET Commun doi: 10.1049/iet-com.2018.5100 – volume: 184 start-page: 56 year: 2022 ident: 8714_CR35 publication-title: Comput Commun doi: 10.1016/j.comcom.2021.12.009 – volume: 8 start-page: 14 issue: 4 year: 2009 ident: 8714_CR19 publication-title: IEEE Pervasive Comput doi: 10.1109/MPRV.2009.82 – volume: 17 start-page: 6790 issue: 10 year: 2018 ident: 8714_CR24 publication-title: IEEE Trans Wireless Commun doi: 10.1109/TWC.2018.2864559 – volume: 9 start-page: 1245 year: 2018 ident: 8714_CR6 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-017-0578-1 – ident: 8714_CR30 doi: 10.36909/jer.v8i3.7643 – ident: 8714_CR8 doi: 10.1109/CEC45853.2021.9504780 – ident: 8714_CR12 doi: 10.1007/s12652-016-0390-3 – volume: 13 start-page: 1587 issue: 18 year: 2013 ident: 8714_CR20 publication-title: Wirel Commun Mob Comput doi: 10.1002/wcm.1203 – volume: 19 start-page: 1 year: 2021 ident: 8714_CR32 publication-title: J Grid Comput doi: 10.1007/s10723-021-09548-0 – volume: 22 start-page: 73 issue: 1 year: 2016 ident: 8714_CR23 publication-title: Elektronika ir elektrotechnika doi: 10.5755/j01.eee.22.1.14113 – volume: 27 start-page: 90 year: 2016 ident: 8714_CR13 publication-title: Pervasive Mob Comput doi: 10.1016/j.pmcj.2015.07.005 – ident: 8714_CR3 doi: 10.1007/s12652-023-04541-9 |
| SSID | ssj0004685 |
| Score | 2.3309438 |
| Snippet | Cloud computing is a modern architecture for performing complex and immense processes. It consists of configurable computational resource sets that communicate... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 18905 |
| SubjectTerms | Algorithms Artificial Intelligence Cloud computing Communication networks Computation offloading Computational Biology/Bioinformatics Computational Science and Engineering Computer architecture Computer Science Data Mining and Knowledge Discovery Electronic devices Energy consumption Evolutionary algorithms Image Processing and Computer Vision Mobile computing Multiple objective analysis Original Article Parallel processing Power consumption Power management Probability and Statistics in Computer Science Task scheduling |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6Cbodd1gGb6OiQD9zAWpo4iXOaCtrEAVUT2lBvkX9CpzQpbbrL_vk9u04Lk9iFUyQneXH0np8_Pz9_D-CDtgg7NEupiXROmclTyrXAVSsTkpsijaQnq_7xLZ9M-HRaXIeA2yqkVXY-0Ttq3SgXIz-PeRq5PaeYXSx-U1c1yu2uhhIaL2HPMZWxHux9vpxcf__jZKQvyolrGJffw5JwbMYfnnMRUWyNExrhqoHR_O-paYc3n2yR-pnnqv-_fT6Cw4A5yXhjJK_ghalfQ7-r50DC8H4DD2PimMCrylTEJxrSRt5tHCKZzRfeVtEqiPJY2ycdEVH9xC-2v-akbQjaMTYhpCRVIzRprHVX_CkS6taQWU3mjURPRFTVrLUXtXaZ18dwe3V58-UrDcUZqMJR21IzsrHhTFvjCOslIg-RxjLJbCpGiGoU1yoRqBMrJCuESopIcMG1VMZFnRRLTqBXN7V5C8TyWBcpk6l1fHE6koZFIskyhGMyQ6EDGHV6KVVgLncFNKpyy7nsdVmiLkuvyzIfwMftO4sNb8ezTw87BZZhDK_KnfYG8Kkzgd3tf0s7fV7aOziIvdW5RLUh9Nrl2pzBvrpvZ6vl-2DBj2Vs-Fk priority: 102 providerName: ProQuest |
| Title | A parallel multi-objective imperialist competitive algorithm to solve the load offloading problem in mobile cloud computing |
| URI | https://link.springer.com/article/10.1007/s00521-023-08714-7 https://www.proquest.com/docview/2850407824 |
| Volume | 35 |
| WOSCitedRecordID | wos001007654100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6Vx6EXUh4VoRD50FtraR921ntMEYhDFUW0RYjLyk8I2mRRsuHCn2fs7IaHSqVyWmnXO7I8M_Zne-YbgK_GIewwjFMbmYwym3EqjMRdK5NK2JxHKpBVX_zMhkNxeZmPmqSweRvt3l5Jhpl6lezmTzBRSJLSCFE-o9kabOByJ7w7nv-6eJYNGQpx4r7Fx_SwtEmV-buMl8vRE8Z8dS0aVpvTzvv6-Qm2GnRJBktz2IYPdroDnbZyA2kceRceBsRzfpelLUkIKaSVul1OfWQ8uQtWifonOqDqEF5EZHldzcb1zYTUFUGLxVcIHklZSUMq5_wTu0maCjVkPCWTSuGcQ3RZLUwQtfAx1nvw5_Tk9_EZbcowUI3-WVMbu8QKZpz11PQKMYbkiUr7jssY8YsWRqcyjnMnFculTvNICimM0tafL2mWfob1aTW1-0CcSEzOmeLOM8OZSFkWybTfR-Cl-ii0C3GrjUI3HOW-VEZZrNiVw-gWOLpFGN0i68K31T93S4aOf7Y-bJVcNN46LxLBI3-fmbAufG-V-vT5bWkH_9f8C3xMgl34ELVDWK9nC3sEm_q-Hs9nPdj4cTIcnfdgbcSvesGmHwFs0e-Z |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH7qglQulFUMtNQHOIFF4tgT54BQVahadRj1UFDFJXiFQZnJ0MmAEP-J38izJ-mUSvTWA6dITvKkON9b_RaAp9aj2WG5oC6xOeUuF1RahV4rV1q6QiQ6Nqv-MMiHQ3l6WhyvwO-uFiakVXYyMQpqW5sQI3_JpEjCmRPjr6ffaJgaFU5XuxEaC1gcuZ8_0GWbvTp8g__3GWP7b0_2Dmg7VYAahFtDXeqZk9x6Fzqta1SZSjCd9b1QKapjI63JVJoWXmleKJMViZJKWm1cCJcYniHdVVjnHJ0l5J9j8fFCHWYcAYoeU8gm4llbpBNL9UL8FVdZRhP0UTjN_1aES-v20oFs1HP7m__bDt2GW61FTXYXLHAHVtzkLmx20ypIK7zuwa9dEvqcV5WrSEyjpLX-uhD3ZDSeRk5EzBMTPYmYUkVU9Rm_sPkyJk1NkEtxCQ1mUtXKktr7cMVNJO1UHjKakHGtUc4SU9VzG0nNQ175fXh_LVvwANYm9cQ9BOIls4XgWvjQDc8m2vFEZf0-Gpu6j0R7kHY4KE3blz2MB6nK847SETslYqeM2CnzHjw_f2e66Epy5dNbHWDKVkLNyiVaevCig9zy9r-pPbqa2g5sHJy8G5SDw-HRY7jJIuJDSt4WrDVnc7cNN8z3ZjQ7exJ5h8Cn64biH-tZVWU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VilAvbHmpC7T40BtY5OFsnOMKumpVtEKCIm6Rn7Aom6yWbC_984y9yfJQQUKcIiXOyLJn7G_smW8AvmuLsEOzhJpAp5SZNKFcC_RamZDcZEkgPVn15Wk6HPKrq-zsURa_j3ZvryTnOQ2OpamsjybaHi0S39xpJgqMYhog4mc0XYKPzBUNcv76-eWjzEhflBN9GBffw-Imbeb_Mp5uTQ9489kVqd95Bp339_kzrDWok_TnarIOH0y5AZ22ogNpDHwT_vWJ4wIvClMQH2pIK3k7XxLJaDzx2op6QZRH2z7siIjiupqO6psxqSuCmoyvEFSSohKaVNa6J3aZNJVryKgk40riWkRUUc20FzVzsddb8Gfw4-L4J23KM1CFdltTE9rIcKatcZT1ErGHSCIZ92wiQsQ1imsVizDMrJAsEyrOAsEF11IZd-6kWLwNy2VVmi9ALI90ljCZWMcYpwNpWCDiXg8Bmeyh0C6E7czkquEudyU0inzBuuxHN8fRzf3o5mkXDhb_TObMHa-23msnPG-s-C6PeBK4e86IdeGwneCHzy9L23lb831YPTsZ5Ke_hr934VPkVcRFse3Bcj2dma-wov7Wo7vpN6_c93EJ-Mc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+multi-objective+imperialist+competitive+algorithm+to+solve+the+load+offloading+problem+in+mobile+cloud+computing&rft.jtitle=Neural+computing+%26+applications&rft.au=Alipour%2C+Sara&rft.au=Saadatfar%2C+Hamid&rft.au=Poor%2C+Mahdi+Khazaie&rft.date=2023-09-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=26&rft.spage=18905&rft.epage=18932&rft_id=info:doi/10.1007%2Fs00521-023-08714-7&rft.externalDocID=10_1007_s00521_023_08714_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |