A parallel multi-objective imperialist competitive algorithm to solve the load offloading problem in mobile cloud computing

Cloud computing is a modern architecture for performing complex and immense processes. It consists of configurable computational resource sets that communicate with each other through communication networks. With the advent of the cloud computing architecture and increasing its applications for mobi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computing & applications Ročník 35; číslo 26; s. 18905 - 18932
Hlavní autori: Alipour, Sara, Saadatfar, Hamid, Poor, Mahdi Khazaie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.09.2023
Springer Nature B.V
Predmet:
ISSN:0941-0643, 1433-3058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cloud computing is a modern architecture for performing complex and immense processes. It consists of configurable computational resource sets that communicate with each other through communication networks. With the advent of the cloud computing architecture and increasing its applications for mobile devices, the growth rate of mobile data has proliferated exponentially. Consequently, processing the tasks of mobile users has become difficult due to the limitations of these devices, such as low computing power and low capacity. Therefore, the idea of mobile cloud computing (MCC) for mobile devices using cloud-based storage and computing resources was introduced. In MCC, processing information is transferred from the user ' s mobile devices to the cloud servers. This process is known as the tasks offloading and scheduling of mobile users. In this case, the task execution time, CPU power consumption, network bandwidth, and task allocation time must be specified. Due to many tasks and different resources, the process of task offloading and scheduling is considered a challenging subject in the field of MCC. Therefore, in this paper, a multi-objective parallel imperialist competitive algorithm (MPICA) is proposed. The main objective of this parallel algorithm is to reduce the algorithm ' s execution time for searching the problem space, reducing processing time, reducing energy consumption, and improving load balance. The simulation results of the proposed algorithm represent that the parallelization of the imperialist competitive algorithm (ICA) has a significant effect on reducing the execution time of the algorithm. In general, the proposed algorithm performs better than the state-of-the-art algorithms based on the proposed criteria.
AbstractList Cloud computing is a modern architecture for performing complex and immense processes. It consists of configurable computational resource sets that communicate with each other through communication networks. With the advent of the cloud computing architecture and increasing its applications for mobile devices, the growth rate of mobile data has proliferated exponentially. Consequently, processing the tasks of mobile users has become difficult due to the limitations of these devices, such as low computing power and low capacity. Therefore, the idea of mobile cloud computing (MCC) for mobile devices using cloud-based storage and computing resources was introduced. In MCC, processing information is transferred from the user's mobile devices to the cloud servers. This process is known as the tasks offloading and scheduling of mobile users. In this case, the task execution time, CPU power consumption, network bandwidth, and task allocation time must be specified. Due to many tasks and different resources, the process of task offloading and scheduling is considered a challenging subject in the field of MCC. Therefore, in this paper, a multi-objective parallel imperialist competitive algorithm (MPICA) is proposed. The main objective of this parallel algorithm is to reduce the algorithm's execution time for searching the problem space, reducing processing time, reducing energy consumption, and improving load balance. The simulation results of the proposed algorithm represent that the parallelization of the imperialist competitive algorithm (ICA) has a significant effect on reducing the execution time of the algorithm. In general, the proposed algorithm performs better than the state-of-the-art algorithms based on the proposed criteria.
Cloud computing is a modern architecture for performing complex and immense processes. It consists of configurable computational resource sets that communicate with each other through communication networks. With the advent of the cloud computing architecture and increasing its applications for mobile devices, the growth rate of mobile data has proliferated exponentially. Consequently, processing the tasks of mobile users has become difficult due to the limitations of these devices, such as low computing power and low capacity. Therefore, the idea of mobile cloud computing (MCC) for mobile devices using cloud-based storage and computing resources was introduced. In MCC, processing information is transferred from the user ' s mobile devices to the cloud servers. This process is known as the tasks offloading and scheduling of mobile users. In this case, the task execution time, CPU power consumption, network bandwidth, and task allocation time must be specified. Due to many tasks and different resources, the process of task offloading and scheduling is considered a challenging subject in the field of MCC. Therefore, in this paper, a multi-objective parallel imperialist competitive algorithm (MPICA) is proposed. The main objective of this parallel algorithm is to reduce the algorithm ' s execution time for searching the problem space, reducing processing time, reducing energy consumption, and improving load balance. The simulation results of the proposed algorithm represent that the parallelization of the imperialist competitive algorithm (ICA) has a significant effect on reducing the execution time of the algorithm. In general, the proposed algorithm performs better than the state-of-the-art algorithms based on the proposed criteria.
Author Poor, Mahdi Khazaie
Saadatfar, Hamid
Alipour, Sara
Author_xml – sequence: 1
  givenname: Sara
  surname: Alipour
  fullname: Alipour, Sara
  organization: Computer Engineering Department, Birjand Branch, Islamic Azad University
– sequence: 2
  givenname: Hamid
  orcidid: 0000-0002-6130-8450
  surname: Saadatfar
  fullname: Saadatfar, Hamid
  email: saadatfar@birjand.ac.ir
  organization: Department of Computer Engineering, University of Birjand
– sequence: 3
  givenname: Mahdi Khazaie
  surname: Poor
  fullname: Poor, Mahdi Khazaie
  organization: Computer Engineering Department, Birjand Branch, Islamic Azad University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTj-1mj6X4BYIXPYdsNtumZDc1yQrinzdtBcFDT8PMvM87wztDk8EPBqFrArcEoLqLACUlBVBWgKgIL6ozNCWcsYJBKSZoCjXP6wVnF2gW4xYA-EKUU_S9xDsVlHPG4X50yRa-2Rqd7KfBtt-ZYJWzMWHtc5PsYa7c2gebNj1OHkfv8ihtDHZetdh33b7aYY13wTfO9NgOuPeNdQZr58f2YDWmrLhE551y0Vz91jl6f7h_Wz0VL6-Pz6vlS6EZqVNhSEeN4G1noBJ1A1WpStqwRVcqsiiFFq1mipC6Uw2vlWY1KKFE22hDOKWaszm6Ofrmjz5GE5Pc-jEM-aSkogSebeleJY4qHXyMwXRS26SS9UMKyjpJQO6jlseoZY5aHqKWVUbpP3QXbK_C12mIHaGYxcPahL-vTlA_hLmV-g
CitedBy_id crossref_primary_10_1177_13272314251339725
Cites_doi 10.1007/s11227-022-04539-8
10.1007/s12083-017-0561-9
10.1007/978-3-662-43505-2_46
10.1109/MC.2008.209
10.1145/2307849.2307856
10.1109/CEC.2007.4425083
10.1109/SOSE.2010.20
10.1007/s12652-020-02122-8
10.1145/1814433.1814441
10.1109/GLOCOMW.2015.7414063
10.1109/PIC.2014.6972393
10.1016/j.sysarc.2020.101837
10.1109/EIDWT.2013.126
10.1016/j.simpat.2014.05.009
10.1016/j.asoc.2019.04.027
10.1109/BigComp.2018.00037
10.1142/S0218126620502552
10.1007/s00521-021-06002-w
10.1016/j.jnca.2015.10.005
10.1007/s12652-020-01903-5
10.1016/j.aci.2016.11.002
10.1049/iet-com.2018.5100
10.1016/j.comcom.2021.12.009
10.1109/MPRV.2009.82
10.1109/TWC.2018.2864559
10.1007/s12652-017-0578-1
10.36909/jer.v8i3.7643
10.1109/CEC45853.2021.9504780
10.1007/s12652-016-0390-3
10.1002/wcm.1203
10.1007/s10723-021-09548-0
10.5755/j01.eee.22.1.14113
10.1016/j.pmcj.2015.07.005
10.1007/s12652-023-04541-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-023-08714-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 18932
ExternalDocumentID 10_1007_s00521_023_08714_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-e1f2e84dfe0789b075a52b36f5a1658c8dc3a119fab49ac390a8a8dbce1422c43
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001007654100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 03:27:57 EST 2025
Sat Nov 29 04:30:39 EST 2025
Tue Nov 18 22:00:34 EST 2025
Fri Feb 21 02:43:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords Mobile cloud computing
Task scheduling
Cloud computing
Parallel algorithm
Imperialist competitive algorithm
Load offloading
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e1f2e84dfe0789b075a52b36f5a1658c8dc3a119fab49ac390a8a8dbce1422c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6130-8450
PQID 2850407824
PQPubID 2043988
PageCount 28
ParticipantIDs proquest_journals_2850407824
crossref_citationtrail_10_1007_s00521_023_08714_7
crossref_primary_10_1007_s00521_023_08714_7
springer_journals_10_1007_s00521_023_08714_7
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References AminzadehNSanaeiZAb HamidSHMobile storage augmentation in mobile cloud computing: Taxonomy, approaches, and open issuesSimul Model Pract Theory2015509610810.1016/j.simpat.2014.05.009
HungPPA new technique for optimizing resource allocation and data distribution in mobile cloud computingElektronika ir elektrotechnika20162217380436608810.5755/j01.eee.22.1.14113
Lourenco H, Martin O, Stutzle T (2002) Iterated local search. In: Glover F, Kochenberger G (eds) Handbook of Metaheuristics. ISORMS 57, p 321–353 (2002) Kluwer.
PengHJoint optimization method for task scheduling time and energy consumption in mobile cloud computing environmentAppl Soft Comput20198053454510.1016/j.asoc.2019.04.027
Sudholt D (2015) Parallel evolutionary algorithms. Springer Handbook of Computational Intelligence, pp 929–959
PonmagalROptimized virtual network function provisioning technique for mobile edge cloud computingJ Ambient Intell Hum Comput2021125807581510.1007/s12652-020-02122-8
Bahl, P., et al. Advancing the state of mobile cloud computing. in Proceedings of the third ACM workshop on Mobile cloud computing and services. 2012.
HillMDMartyMRAmdahl's law in the multicore eraComputer2008417333810.1109/MC.2008.209
AlizadehMAuthentication in mobile cloud computing: a surveyJ Netw Comput Appl201661598010.1016/j.jnca.2015.10.005
DinhHTA survey of mobile cloud computing: architecture, applications, and approachesWirel Commun Mob Comput201313181587161110.1002/wcm.1203
Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation. 2007. IEEE.
Zhao T, et al (2015) A cooperative scheduling scheme of local cloud and internet cloud for delay-aware mobile cloud computing. In: 2015 IEEE globecom workshops (GC Wkshps). 2015. IEEE.
Garg M, Nath R (2020) Autoregressive dragon fly optimization for multi-objective task scheduling (ADO-MTS) in mobile cloud computing. J Eng Res, 8(3).
TarafdarAEnergy and makespan aware scheduling of deadline sensitive tasks in the cloud environmentJ Grid Comput20211912510.1007/s10723-021-09548-0
ShiTAn energy-efficient scheduling scheme for time-constrained tasks in local mobile cloudsPervasive Mob Comput2016279010510.1016/j.pmcj.2015.07.005
Chun B-G, Maniatis P (2009) Augmented smartphone applications through clone cloud execution. In: HotOS
Pirozmand P, et al. (2023) An improved particle swarm optimization algorithm for task scheduling in cloud computing. J Ambient Intell Hum Comput 1–15
Wei X, et al (2013) Bio-inspired application scheduling algorithm for mobile cloud computing. In: 2013 fourth international conference on emerging intelligent data and web technologies. 2013. IEEE
PirozmandPGSAGA: A hybrid algorithm for task scheduling in cloud infrastructureJ Supercomput20227815174231744910.1007/s11227-022-04539-8
AhmedULinJC-WSrivastavaGA resource allocation deep active learning based on load balancer for network intrusion detection in SDN sensorsComput Commun2022184566310.1016/j.comcom.2021.12.009
LinJC-WScalable mining of high-utility sequential patterns with three-tier MapReduce modelACM Trans Knowl Discov Data (TKDD)2021163126
HanPCost and makespan scheduling of workflows in clouds using list multiobjective optimization techniqueJ Syst Architect202111210.1016/j.sysarc.2020.101837
Erana Veerappa DineshSValarmathiKA novel energy estimation model for constraint based task offloading in mobile cloud computingJ Ambient Intell Hum Comput2020115477548610.1007/s12652-020-01903-5
MengSHierarchical evolutionary game based dynamic cloudlet selection and bandwidth allocation for mobile cloud computing environmentIET Commun2019131162510.1049/iet-com.2018.5100
Tang C, et al. (2018) Energy efficient and deadline satisfied task scheduling in mobile cloud computing. In: 2018 IEEE international conference on big data and smart computing (BigComp). 2018. IEEE
WangTDynamic tasks scheduling based on weighted bi-graph in mobile cloud computingSustain Comput Inform Syst201819214222
You I, Li J (2016) Special issue on security and privacy techniques in mobile cloud computing. Springer, Berlin, pp 607–609
Huang D, et al. (2010) MobiCloud: building secure cloud framework for mobile computing and communication. In: 2010 fifth IEEE international symposium on service oriented system engineering. 2010
PirozmandPMulti-objective hybrid genetic algorithm for task scheduling problem in cloud computingNeural Comput Appl202133130751308810.1007/s00521-021-06002-w
AkherfiKGerndtMHarroudHMobile cloud computing for computation offloading: Issues and challengesAppl Comput Inform201814111610.1016/j.aci.2016.11.002
Dezhong Y et al. (2013) Energy efficient task scheduling in mobile cloud computing. In: 10th IFIP international conference, NPC 2013
Alkhalaileh M, et al. Dynamic resource allocation in hybrid mobile cloud computing for data-intensive applications. In: Green, pervasive, and cloud computing: 14th international conference, GPC 2019, Uberlândia, Brazil, May 26–28, 2019, Proceedings 14. 2019. Springer.
LiHEffective algorithms for scheduling workflow tasks on mobile cloudsJ Circ Syst Comput20202916205025510.1142/S0218126620502552
WangTEfficient multi-tasks scheduling algorithm in mobile cloud computing with time constraintsPeer-to-Peer Netw Appl20181179380710.1007/s12083-017-0561-9
SatyanarayananMThe case for vm-based cloudlets in mobile computingIEEE Pervasive Comput200984142310.1109/MPRV.2009.82
Cai Z, Chen C (2014) Demand-driven task scheduling using 2d chromosome genetic algorithm in mobile cloud. In: 2014 IEEE international conference on progress in informatics and computing
Cuervo E, et al (2010) Maui: making smartphones last longer with code offload. In: Proceedings of the 8th international conference on Mobile systems, applications, and services. 2010
ChenM-HLiangBDongMMulti-user multi-task offloading and resource allocation in mobile cloud systemsIEEE Trans Wireless Commun201817106790680510.1109/TWC.2018.2864559
Shao Y, et al. (2021) Multi-objective neural evolutionary algorithm for combinatorial optimization problems. IEEE Trans Neural Netw Learn Syst
YiGMRM: mobile resource management scheme on mobile cloud computingJ Ambient Intell Humaniz Comput201891245125710.1007/s12652-017-0578-1
Saemi B, et al. (2021) A new optimization approach for task scheduling problem using water cycle algorithm in mobile cloud computing. In: 2021 IEEE congress on evolutionary computation (CEC). IEEE
R Ponmagal (8714_CR14) 2021; 12
M Alizadeh (8714_CR7) 2016; 61
MD Hill (8714_CR39) 2008; 41
T Wang (8714_CR40) 2018; 19
N Aminzadeh (8714_CR5) 2015; 50
8714_CR30
P Pirozmand (8714_CR4) 2022; 78
T Wang (8714_CR26) 2018; 11
8714_CR11
8714_CR12
8714_CR34
8714_CR15
8714_CR37
8714_CR38
8714_CR8
8714_CR17
8714_CR9
8714_CR18
M Satyanarayanan (8714_CR19) 2009; 8
M-H Chen (8714_CR24) 2018; 17
8714_CR3
8714_CR1
PP Hung (8714_CR23) 2016; 22
K Akherfi (8714_CR16) 2018; 14
S Erana Veerappa Dinesh (8714_CR10) 2020; 11
A Tarafdar (8714_CR32) 2021; 19
P Pirozmand (8714_CR2) 2021; 33
8714_CR41
H Peng (8714_CR29) 2019; 80
P Han (8714_CR36) 2021; 112
8714_CR21
S Meng (8714_CR28) 2019; 13
H Li (8714_CR31) 2020; 29
8714_CR22
T Shi (8714_CR13) 2016; 27
8714_CR25
8714_CR27
G Yi (8714_CR6) 2018; 9
JC-W Lin (8714_CR33) 2021; 16
HT Dinh (8714_CR20) 2013; 13
U Ahmed (8714_CR35) 2022; 184
References_xml – reference: YiGMRM: mobile resource management scheme on mobile cloud computingJ Ambient Intell Humaniz Comput201891245125710.1007/s12652-017-0578-1
– reference: Bahl, P., et al. Advancing the state of mobile cloud computing. in Proceedings of the third ACM workshop on Mobile cloud computing and services. 2012.
– reference: PengHJoint optimization method for task scheduling time and energy consumption in mobile cloud computing environmentAppl Soft Comput20198053454510.1016/j.asoc.2019.04.027
– reference: Alkhalaileh M, et al. Dynamic resource allocation in hybrid mobile cloud computing for data-intensive applications. In: Green, pervasive, and cloud computing: 14th international conference, GPC 2019, Uberlândia, Brazil, May 26–28, 2019, Proceedings 14. 2019. Springer.
– reference: AlizadehMAuthentication in mobile cloud computing: a surveyJ Netw Comput Appl201661598010.1016/j.jnca.2015.10.005
– reference: Huang D, et al. (2010) MobiCloud: building secure cloud framework for mobile computing and communication. In: 2010 fifth IEEE international symposium on service oriented system engineering. 2010
– reference: Erana Veerappa DineshSValarmathiKA novel energy estimation model for constraint based task offloading in mobile cloud computingJ Ambient Intell Hum Comput2020115477548610.1007/s12652-020-01903-5
– reference: PonmagalROptimized virtual network function provisioning technique for mobile edge cloud computingJ Ambient Intell Hum Comput2021125807581510.1007/s12652-020-02122-8
– reference: ChenM-HLiangBDongMMulti-user multi-task offloading and resource allocation in mobile cloud systemsIEEE Trans Wireless Commun201817106790680510.1109/TWC.2018.2864559
– reference: Wei X, et al (2013) Bio-inspired application scheduling algorithm for mobile cloud computing. In: 2013 fourth international conference on emerging intelligent data and web technologies. 2013. IEEE
– reference: Saemi B, et al. (2021) A new optimization approach for task scheduling problem using water cycle algorithm in mobile cloud computing. In: 2021 IEEE congress on evolutionary computation (CEC). IEEE
– reference: DinhHTA survey of mobile cloud computing: architecture, applications, and approachesWirel Commun Mob Comput201313181587161110.1002/wcm.1203
– reference: TarafdarAEnergy and makespan aware scheduling of deadline sensitive tasks in the cloud environmentJ Grid Comput20211912510.1007/s10723-021-09548-0
– reference: HanPCost and makespan scheduling of workflows in clouds using list multiobjective optimization techniqueJ Syst Architect202111210.1016/j.sysarc.2020.101837
– reference: ShiTAn energy-efficient scheduling scheme for time-constrained tasks in local mobile cloudsPervasive Mob Comput2016279010510.1016/j.pmcj.2015.07.005
– reference: AkherfiKGerndtMHarroudHMobile cloud computing for computation offloading: Issues and challengesAppl Comput Inform201814111610.1016/j.aci.2016.11.002
– reference: LinJC-WScalable mining of high-utility sequential patterns with three-tier MapReduce modelACM Trans Knowl Discov Data (TKDD)2021163126
– reference: Shao Y, et al. (2021) Multi-objective neural evolutionary algorithm for combinatorial optimization problems. IEEE Trans Neural Netw Learn Syst
– reference: Cuervo E, et al (2010) Maui: making smartphones last longer with code offload. In: Proceedings of the 8th international conference on Mobile systems, applications, and services. 2010
– reference: Cai Z, Chen C (2014) Demand-driven task scheduling using 2d chromosome genetic algorithm in mobile cloud. In: 2014 IEEE international conference on progress in informatics and computing
– reference: Sudholt D (2015) Parallel evolutionary algorithms. Springer Handbook of Computational Intelligence, pp 929–959
– reference: You I, Li J (2016) Special issue on security and privacy techniques in mobile cloud computing. Springer, Berlin, pp 607–609
– reference: MengSHierarchical evolutionary game based dynamic cloudlet selection and bandwidth allocation for mobile cloud computing environmentIET Commun2019131162510.1049/iet-com.2018.5100
– reference: AhmedULinJC-WSrivastavaGA resource allocation deep active learning based on load balancer for network intrusion detection in SDN sensorsComput Commun2022184566310.1016/j.comcom.2021.12.009
– reference: Pirozmand P, et al. (2023) An improved particle swarm optimization algorithm for task scheduling in cloud computing. J Ambient Intell Hum Comput 1–15
– reference: Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation. 2007. IEEE.
– reference: Garg M, Nath R (2020) Autoregressive dragon fly optimization for multi-objective task scheduling (ADO-MTS) in mobile cloud computing. J Eng Res, 8(3).
– reference: LiHEffective algorithms for scheduling workflow tasks on mobile cloudsJ Circ Syst Comput20202916205025510.1142/S0218126620502552
– reference: SatyanarayananMThe case for vm-based cloudlets in mobile computingIEEE Pervasive Comput200984142310.1109/MPRV.2009.82
– reference: Dezhong Y et al. (2013) Energy efficient task scheduling in mobile cloud computing. In: 10th IFIP international conference, NPC 2013
– reference: Chun B-G, Maniatis P (2009) Augmented smartphone applications through clone cloud execution. In: HotOS
– reference: Lourenco H, Martin O, Stutzle T (2002) Iterated local search. In: Glover F, Kochenberger G (eds) Handbook of Metaheuristics. ISORMS 57, p 321–353 (2002) Kluwer.
– reference: PirozmandPGSAGA: A hybrid algorithm for task scheduling in cloud infrastructureJ Supercomput20227815174231744910.1007/s11227-022-04539-8
– reference: AminzadehNSanaeiZAb HamidSHMobile storage augmentation in mobile cloud computing: Taxonomy, approaches, and open issuesSimul Model Pract Theory2015509610810.1016/j.simpat.2014.05.009
– reference: Zhao T, et al (2015) A cooperative scheduling scheme of local cloud and internet cloud for delay-aware mobile cloud computing. In: 2015 IEEE globecom workshops (GC Wkshps). 2015. IEEE.
– reference: HillMDMartyMRAmdahl's law in the multicore eraComputer2008417333810.1109/MC.2008.209
– reference: PirozmandPMulti-objective hybrid genetic algorithm for task scheduling problem in cloud computingNeural Comput Appl202133130751308810.1007/s00521-021-06002-w
– reference: Tang C, et al. (2018) Energy efficient and deadline satisfied task scheduling in mobile cloud computing. In: 2018 IEEE international conference on big data and smart computing (BigComp). 2018. IEEE
– reference: HungPPA new technique for optimizing resource allocation and data distribution in mobile cloud computingElektronika ir elektrotechnika20162217380436608810.5755/j01.eee.22.1.14113
– reference: WangTEfficient multi-tasks scheduling algorithm in mobile cloud computing with time constraintsPeer-to-Peer Netw Appl20181179380710.1007/s12083-017-0561-9
– reference: WangTDynamic tasks scheduling based on weighted bi-graph in mobile cloud computingSustain Comput Inform Syst201819214222
– volume: 78
  start-page: 17423
  issue: 15
  year: 2022
  ident: 8714_CR4
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04539-8
– volume: 11
  start-page: 793
  year: 2018
  ident: 8714_CR26
  publication-title: Peer-to-Peer Netw Appl
  doi: 10.1007/s12083-017-0561-9
– ident: 8714_CR38
  doi: 10.1007/978-3-662-43505-2_46
– volume: 41
  start-page: 33
  issue: 7
  year: 2008
  ident: 8714_CR39
  publication-title: Computer
  doi: 10.1109/MC.2008.209
– ident: 8714_CR1
– ident: 8714_CR15
  doi: 10.1145/2307849.2307856
– ident: 8714_CR37
  doi: 10.1109/CEC.2007.4425083
– ident: 8714_CR21
  doi: 10.1109/SOSE.2010.20
– volume: 12
  start-page: 5807
  year: 2021
  ident: 8714_CR14
  publication-title: J Ambient Intell Hum Comput
  doi: 10.1007/s12652-020-02122-8
– ident: 8714_CR18
  doi: 10.1145/1814433.1814441
– volume: 16
  start-page: 1
  issue: 3
  year: 2021
  ident: 8714_CR33
  publication-title: ACM Trans Knowl Discov Data (TKDD)
– ident: 8714_CR9
– ident: 8714_CR34
– ident: 8714_CR22
  doi: 10.1109/GLOCOMW.2015.7414063
– volume: 19
  start-page: 214
  year: 2018
  ident: 8714_CR40
  publication-title: Sustain Comput Inform Syst
– ident: 8714_CR25
  doi: 10.1109/PIC.2014.6972393
– volume: 112
  year: 2021
  ident: 8714_CR36
  publication-title: J Syst Architect
  doi: 10.1016/j.sysarc.2020.101837
– ident: 8714_CR17
– ident: 8714_CR41
  doi: 10.1109/EIDWT.2013.126
– volume: 50
  start-page: 96
  year: 2015
  ident: 8714_CR5
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2014.05.009
– volume: 80
  start-page: 534
  year: 2019
  ident: 8714_CR29
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.04.027
– ident: 8714_CR27
  doi: 10.1109/BigComp.2018.00037
– volume: 29
  start-page: 2050255
  issue: 16
  year: 2020
  ident: 8714_CR31
  publication-title: J Circ Syst Comput
  doi: 10.1142/S0218126620502552
– volume: 33
  start-page: 13075
  year: 2021
  ident: 8714_CR2
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06002-w
– volume: 61
  start-page: 59
  year: 2016
  ident: 8714_CR7
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2015.10.005
– volume: 11
  start-page: 5477
  year: 2020
  ident: 8714_CR10
  publication-title: J Ambient Intell Hum Comput
  doi: 10.1007/s12652-020-01903-5
– ident: 8714_CR11
– volume: 14
  start-page: 1
  issue: 1
  year: 2018
  ident: 8714_CR16
  publication-title: Appl Comput Inform
  doi: 10.1016/j.aci.2016.11.002
– volume: 13
  start-page: 16
  issue: 1
  year: 2019
  ident: 8714_CR28
  publication-title: IET Commun
  doi: 10.1049/iet-com.2018.5100
– volume: 184
  start-page: 56
  year: 2022
  ident: 8714_CR35
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2021.12.009
– volume: 8
  start-page: 14
  issue: 4
  year: 2009
  ident: 8714_CR19
  publication-title: IEEE Pervasive Comput
  doi: 10.1109/MPRV.2009.82
– volume: 17
  start-page: 6790
  issue: 10
  year: 2018
  ident: 8714_CR24
  publication-title: IEEE Trans Wireless Commun
  doi: 10.1109/TWC.2018.2864559
– volume: 9
  start-page: 1245
  year: 2018
  ident: 8714_CR6
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-017-0578-1
– ident: 8714_CR30
  doi: 10.36909/jer.v8i3.7643
– ident: 8714_CR8
  doi: 10.1109/CEC45853.2021.9504780
– ident: 8714_CR12
  doi: 10.1007/s12652-016-0390-3
– volume: 13
  start-page: 1587
  issue: 18
  year: 2013
  ident: 8714_CR20
  publication-title: Wirel Commun Mob Comput
  doi: 10.1002/wcm.1203
– volume: 19
  start-page: 1
  year: 2021
  ident: 8714_CR32
  publication-title: J Grid Comput
  doi: 10.1007/s10723-021-09548-0
– volume: 22
  start-page: 73
  issue: 1
  year: 2016
  ident: 8714_CR23
  publication-title: Elektronika ir elektrotechnika
  doi: 10.5755/j01.eee.22.1.14113
– volume: 27
  start-page: 90
  year: 2016
  ident: 8714_CR13
  publication-title: Pervasive Mob Comput
  doi: 10.1016/j.pmcj.2015.07.005
– ident: 8714_CR3
  doi: 10.1007/s12652-023-04541-9
SSID ssj0004685
Score 2.3309438
Snippet Cloud computing is a modern architecture for performing complex and immense processes. It consists of configurable computational resource sets that communicate...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18905
SubjectTerms Algorithms
Artificial Intelligence
Cloud computing
Communication networks
Computation offloading
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer architecture
Computer Science
Data Mining and Knowledge Discovery
Electronic devices
Energy consumption
Evolutionary algorithms
Image Processing and Computer Vision
Mobile computing
Multiple objective analysis
Original Article
Parallel processing
Power consumption
Power management
Probability and Statistics in Computer Science
Task scheduling
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6Cbodd1gGb6OiQD9zAWpo4iXOaCtrEAVUT2lBvkX9CpzQpbbrL_vk9u04Lk9iFUyQneXH0np8_Pz9_D-CDtgg7NEupiXROmclTyrXAVSsTkpsijaQnq_7xLZ9M-HRaXIeA2yqkVXY-0Ttq3SgXIz-PeRq5PaeYXSx-U1c1yu2uhhIaL2HPMZWxHux9vpxcf__jZKQvyolrGJffw5JwbMYfnnMRUWyNExrhqoHR_O-paYc3n2yR-pnnqv-_fT6Cw4A5yXhjJK_ghalfQ7-r50DC8H4DD2PimMCrylTEJxrSRt5tHCKZzRfeVtEqiPJY2ycdEVH9xC-2v-akbQjaMTYhpCRVIzRprHVX_CkS6taQWU3mjURPRFTVrLUXtXaZ18dwe3V58-UrDcUZqMJR21IzsrHhTFvjCOslIg-RxjLJbCpGiGoU1yoRqBMrJCuESopIcMG1VMZFnRRLTqBXN7V5C8TyWBcpk6l1fHE6koZFIskyhGMyQ6EDGHV6KVVgLncFNKpyy7nsdVmiLkuvyzIfwMftO4sNb8ezTw87BZZhDK_KnfYG8Kkzgd3tf0s7fV7aOziIvdW5RLUh9Nrl2pzBvrpvZ6vl-2DBj2Vs-Fk
  priority: 102
  providerName: ProQuest
Title A parallel multi-objective imperialist competitive algorithm to solve the load offloading problem in mobile cloud computing
URI https://link.springer.com/article/10.1007/s00521-023-08714-7
https://www.proquest.com/docview/2850407824
Volume 35
WOSCitedRecordID wos001007654100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6Vx6EXUh4VoRD50FtraR921ntMEYhDFUW0RYjLyk8I2mRRsuHCn2fs7IaHSqVyWmnXO7I8M_Zne-YbgK_GIewwjFMbmYwym3EqjMRdK5NK2JxHKpBVX_zMhkNxeZmPmqSweRvt3l5Jhpl6lezmTzBRSJLSCFE-o9kabOByJ7w7nv-6eJYNGQpx4r7Fx_SwtEmV-buMl8vRE8Z8dS0aVpvTzvv6-Qm2GnRJBktz2IYPdroDnbZyA2kceRceBsRzfpelLUkIKaSVul1OfWQ8uQtWifonOqDqEF5EZHldzcb1zYTUFUGLxVcIHklZSUMq5_wTu0maCjVkPCWTSuGcQ3RZLUwQtfAx1nvw5_Tk9_EZbcowUI3-WVMbu8QKZpz11PQKMYbkiUr7jssY8YsWRqcyjnMnFculTvNICimM0tafL2mWfob1aTW1-0CcSEzOmeLOM8OZSFkWybTfR-Cl-ii0C3GrjUI3HOW-VEZZrNiVw-gWOLpFGN0i68K31T93S4aOf7Y-bJVcNN46LxLBI3-fmbAufG-V-vT5bWkH_9f8C3xMgl34ELVDWK9nC3sEm_q-Hs9nPdj4cTIcnfdgbcSvesGmHwFs0e-Z
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH7qglQulFUMtNQHOIFF4tgT54BQVahadRj1UFDFJXiFQZnJ0MmAEP-J38izJ-mUSvTWA6dITvKkON9b_RaAp9aj2WG5oC6xOeUuF1RahV4rV1q6QiQ6Nqv-MMiHQ3l6WhyvwO-uFiakVXYyMQpqW5sQI3_JpEjCmRPjr6ffaJgaFU5XuxEaC1gcuZ8_0GWbvTp8g__3GWP7b0_2Dmg7VYAahFtDXeqZk9x6Fzqta1SZSjCd9b1QKapjI63JVJoWXmleKJMViZJKWm1cCJcYniHdVVjnHJ0l5J9j8fFCHWYcAYoeU8gm4llbpBNL9UL8FVdZRhP0UTjN_1aES-v20oFs1HP7m__bDt2GW61FTXYXLHAHVtzkLmx20ypIK7zuwa9dEvqcV5WrSEyjpLX-uhD3ZDSeRk5EzBMTPYmYUkVU9Rm_sPkyJk1NkEtxCQ1mUtXKktr7cMVNJO1UHjKakHGtUc4SU9VzG0nNQ175fXh_LVvwANYm9cQ9BOIls4XgWvjQDc8m2vFEZf0-Gpu6j0R7kHY4KE3blz2MB6nK847SETslYqeM2CnzHjw_f2e66Epy5dNbHWDKVkLNyiVaevCig9zy9r-pPbqa2g5sHJy8G5SDw-HRY7jJIuJDSt4WrDVnc7cNN8z3ZjQ7exJ5h8Cn64biH-tZVWU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VilAvbHmpC7T40BtY5OFsnOMKumpVtEKCIm6Rn7Aom6yWbC_984y9yfJQQUKcIiXOyLJn7G_smW8AvmuLsEOzhJpAp5SZNKFcC_RamZDcZEkgPVn15Wk6HPKrq-zsURa_j3ZvryTnOQ2OpamsjybaHi0S39xpJgqMYhog4mc0XYKPzBUNcv76-eWjzEhflBN9GBffw-Imbeb_Mp5uTQ9489kVqd95Bp339_kzrDWok_TnarIOH0y5AZ22ogNpDHwT_vWJ4wIvClMQH2pIK3k7XxLJaDzx2op6QZRH2z7siIjiupqO6psxqSuCmoyvEFSSohKaVNa6J3aZNJVryKgk40riWkRUUc20FzVzsddb8Gfw4-L4J23KM1CFdltTE9rIcKatcZT1ErGHSCIZ92wiQsQ1imsVizDMrJAsEyrOAsEF11IZd-6kWLwNy2VVmi9ALI90ljCZWMcYpwNpWCDiXg8Bmeyh0C6E7czkquEudyU0inzBuuxHN8fRzf3o5mkXDhb_TObMHa-23msnPG-s-C6PeBK4e86IdeGwneCHzy9L23lb831YPTsZ5Ke_hr934VPkVcRFse3Bcj2dma-wov7Wo7vpN6_c93EJ-Mc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+multi-objective+imperialist+competitive+algorithm+to+solve+the+load+offloading+problem+in+mobile+cloud+computing&rft.jtitle=Neural+computing+%26+applications&rft.au=Alipour%2C+Sara&rft.au=Saadatfar%2C+Hamid&rft.au=Poor%2C+Mahdi+Khazaie&rft.date=2023-09-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=26&rft.spage=18905&rft.epage=18932&rft_id=info:doi/10.1007%2Fs00521-023-08714-7&rft.externalDocID=10_1007_s00521_023_08714_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon