A survey of machine learning techniques in structural and multidisciplinary optimization
Machine Learning (ML) techniques have been used in an extensive range of applications in the field of structural and multidisciplinary optimization over the last few years. This paper presents a survey of this wide but disjointed literature on ML techniques in the structural and multidisciplinary op...
Uloženo v:
| Vydáno v: | Structural and multidisciplinary optimization Ročník 65; číslo 9 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1615-147X, 1615-1488 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Machine Learning (ML) techniques have been used in an extensive range of applications in the field of structural and multidisciplinary optimization over the last few years. This paper presents a survey of this wide but disjointed literature on ML techniques in the structural and multidisciplinary optimization field. First, we discuss the challenges associated with conventional optimization and how Machine learning can address them. Then, we review the literature in the context of how ML can accelerate design synthesis and optimization. Some real-life engineering applications in structural design, material design, fluid mechanics, aerodynamics, heat transfer, and multidisciplinary design are summarized, and a brief list of widely used open-source codes as well as commercial packages are provided. Finally, the survey culminates with some concluding remarks and future research suggestions. For the sake of completeness, categories of ML problems, algorithms, and paradigms are presented in the Appendix. |
|---|---|
| AbstractList | Machine Learning (ML) techniques have been used in an extensive range of applications in the field of structural and multidisciplinary optimization over the last few years. This paper presents a survey of this wide but disjointed literature on ML techniques in the structural and multidisciplinary optimization field. First, we discuss the challenges associated with conventional optimization and how Machine learning can address them. Then, we review the literature in the context of how ML can accelerate design synthesis and optimization. Some real-life engineering applications in structural design, material design, fluid mechanics, aerodynamics, heat transfer, and multidisciplinary design are summarized, and a brief list of widely used open-source codes as well as commercial packages are provided. Finally, the survey culminates with some concluding remarks and future research suggestions. For the sake of completeness, categories of ML problems, algorithms, and paradigms are presented in the Appendix. |
| ArticleNumber | 266 |
| Author | Ramu, Palaniappan Acar, Erdem Bayrak, Gamze Park, Jeong Woo Lee, Ikjin Thananjayan, Pugazhenthi |
| Author_xml | – sequence: 1 givenname: Palaniappan surname: Ramu fullname: Ramu, Palaniappan organization: Advanced Design, Optimization and Probabilistic Techniques Laboratory, Department of Engineering Design, Indian Institute of Technology Madras – sequence: 2 givenname: Pugazhenthi surname: Thananjayan fullname: Thananjayan, Pugazhenthi organization: Advanced Design, Optimization and Probabilistic Techniques Laboratory, Department of Engineering Design, Indian Institute of Technology Madras – sequence: 3 givenname: Erdem surname: Acar fullname: Acar, Erdem organization: Department of Mechanical Engineering, TOBB University of Economics and Technology – sequence: 4 givenname: Gamze surname: Bayrak fullname: Bayrak, Gamze organization: Department of Mechanical Engineering, TOBB University of Economics and Technology – sequence: 5 givenname: Jeong Woo surname: Park fullname: Park, Jeong Woo organization: Mechanical Engineering Department, Korea Advanced Institute of Science and Technology – sequence: 6 givenname: Ikjin orcidid: 0000-0002-3470-7341 surname: Lee fullname: Lee, Ikjin email: ikjin.lee@kaist.ac.kr organization: Mechanical Engineering Department, Korea Advanced Institute of Science and Technology |
| BookMark | eNp9kEtLAzEUhYNUsK3-AVcB16PJZB7JshRfUHCj0F24zWTalJnMmGQE_fWmHVFw0dW9i_Ode-6ZoYntrEbompJbSkh55wmhOU9ImiaEsUIk4gxNaUHzhGacT373cn2BZt7vCSGcZGKK1gvsB_ehP3FX4xbUzliNGw3OGrvFQaudNe-D9thY7IMbVBgcNBhshduhCaYyXpm-MRZctOiDac0XBNPZS3ReQ-P11c-co7eH-9flU7J6eXxeLlaJYlSERJOUlTrLoVAcSiHihHxTF5pVqk4h26TZhhOoi1LzomBllueCVoRACVpBVrM5uhl9e9cdgga57wZn40mZljRlmaC0iCo-qpTrvHe6lsqEY87gwDSSEnnoUY49ytijPPYoRUTTf2jvTBvfPQ2xEfJRbLfa_aU6QX0D-9yJgQ |
| CitedBy_id | crossref_primary_10_1016_j_engstruct_2025_120300 crossref_primary_10_1177_09544070231226349 crossref_primary_10_1016_j_cma_2024_117665 crossref_primary_10_1093_jcde_qwaf064 crossref_primary_10_1121_10_0034429 crossref_primary_10_1016_j_resconrec_2025_108567 crossref_primary_10_1016_j_cma_2024_117521 crossref_primary_10_1016_j_mtcomm_2025_113057 crossref_primary_10_1016_j_engappai_2025_110906 crossref_primary_10_1016_j_cma_2023_116052 crossref_primary_10_1016_j_jclepro_2024_141410 crossref_primary_10_1016_j_aei_2023_102238 crossref_primary_10_1080_0305215X_2024_2308555 crossref_primary_10_1177_09544070241233776 crossref_primary_10_1007_s00158_023_03574_0 crossref_primary_10_1016_j_matdes_2025_113699 crossref_primary_10_3390_app14177781 crossref_primary_10_1016_j_cma_2025_117837 crossref_primary_10_1016_j_engstruct_2025_120810 crossref_primary_10_1007_s00158_024_03836_5 crossref_primary_10_1007_s00158_024_03957_x crossref_primary_10_1016_j_amf_2025_200198 crossref_primary_10_1016_j_eswa_2024_125029 crossref_primary_10_1016_j_cma_2023_116146 crossref_primary_10_1016_j_autcon_2025_106283 crossref_primary_10_1007_s00158_025_04130_8 crossref_primary_10_1080_13632469_2024_2424176 crossref_primary_10_1002_msd2_70038 crossref_primary_10_3390_smartcities6040089 crossref_primary_10_1007_s42405_024_00811_8 crossref_primary_10_1039_D3MH00039G crossref_primary_10_1016_j_enganabound_2024_105855 crossref_primary_10_1007_s00158_024_03888_7 crossref_primary_10_32604_cmes_2024_048118 crossref_primary_10_1007_s00158_025_04030_x crossref_primary_10_1016_j_cej_2025_162698 crossref_primary_10_1007_s00158_023_03611_y crossref_primary_10_1007_s00466_024_02565_2 crossref_primary_10_1080_09544828_2024_2366686 crossref_primary_10_3390_ai5040085 crossref_primary_10_1016_j_jobe_2024_111083 |
| Cites_doi | 10.1177/0954410019864485 10.3390/pr8091170 10.1007/s00158-021-03028-5 10.1111/j.2517-6161.1958.tb00292.x 10.1007/s10898-020-00912-0 10.1016/j.cma.2020.113485 10.1007/s00158-021-02926-y 10.1115/1.4044401 10.1115/1.4044228 10.1007/s00158-012-0857-6 10.1080/0305215X.2021.1902998 10.1016/j.compchemeng.2017.12.015 10.1115/1.4045044 10.1137/16M1082469 10.7763/IJMO.2019.V9.714 10.1007/s00158-011-0666-3 10.1016/j.eswa.2013.05.053 10.1016/j.jss.2020.110617 10.1007/s00158-020-02659-4 10.1002/qre.2579 10.1109/BigData.2017.8258307 10.1115/DETC2016-60091 10.1115/1.4044400 10.1115/1.4049533 10.1088/1361-6463/ab8036 10.1007/s00158-020-02748-4 10.1098/rspa.2021.0495 10.1115/1.4048626 10.1615/Int.J.UncertaintyQuantification.2020031957 10.1016/j.cma.2020.113575 10.1111/j.1469-1809.1936.tb02137.x 10.3390/electronics8030292 10.1007/s00158-017-1653-0 10.1007/978-3-662-39778-7_10 10.1007/s00158-007-0110-x 10.1115/1.4043678 10.1115/1.4044077 10.1007/s00158-019-02276-w 10.1007/s13042-019-01044-y 10.1007/s00158-020-02545-z 10.1016/j.cad.2021.103014 10.2514/1.J055595 10.1115/1.4044332 10.1007/s00158-020-02522-6 10.1007/s00158-008-0230-y 10.1002/advs.201902607 10.2514/1.J051573 10.1016/j.ast.2019.07.002 10.1007/BF01650949 10.1109/ICDS47004.2019.8942318 10.1007/s11590-019-01428-7 10.1016/j.engstruct.2020.111327 10.1007/BF02478259 10.1109/IJCNN.2018.8489043 10.1109/TMAG.2019.2899934 10.1007/978-3-540-28650-9_4 10.1016/j.knosys.2020.105887 10.2514/1.J058853 10.1007/s00466-020-01859-5 10.1023/A:1007618119488 10.1016/j.jcp.2019.109020 10.1115/1.4044257 10.1007/s00158-020-02788-w 10.1016/j.oceaneng.2019.106462 10.1007/s00158-006-0051-9 10.1007/s00158-018-2145-6 10.1515/rnam-2019-0018 10.1145/2939672.2939785 10.1109/SSCI47803.2020.9308255 10.1063/1.5113494 10.1093/oso/9780198538493.001.0001 10.1186/s40323-020-00176-z 10.1007/s00158-021-02851-0 10.1515/nanoph-2019-0330 10.1115/1.4044229 10.2307/2371268 10.1016/j.jcp.2018.10.045 10.1016/j.cma.2019.112739 10.2514/6.2019-2351 10.1016/j.camwa.2011.09.028 10.1016/j.advengsoft.2020.102841 10.1007/s00466-019-01739-7 10.2514/6.2019-2990 10.1016/j.compstruc.2020.106457 10.1115/1.4045419 10.1080/0305215X.2019.1646258 10.1115/1.4044199 10.1115/1.4044256 10.1016/j.jfranklin.2012.11.003 10.1016/j.asoc.2021.107909 10.1016/j.icheatmasstransfer.2019.104368 10.1038/323533a0 10.1007/s00158-019-02222-w 10.1007/978-3-642-21551-3_33 10.1016/j.cma.2018.10.046 10.1007/BF00994018 10.1115/DETC2018-86333 10.1080/0305215X.2020.1846031 10.1007/s00158-008-0327-3 10.1007/s00158-019-02211-z 10.21203/rs.3.rs-146826/v1 10.1016/j.icheatmasstransfer.2018.07.001 10.2514/1.35374 10.1115/1.4044690 10.1016/j.cma.2020.112892 10.1016/j.engstruct.2017.11.005 10.1016/j.ast.2018.11.014 10.1007/978-94-011-2787-5_35 10.1007/s11042-020-09142-8 10.1016/j.jcp.2017.11.039 10.1016/j.pnucene.2014.08.006 10.1016/j.jcp.2017.10.034 10.1115/1.4033427 10.1007/s00158-020-02559-7 10.2514/6.2018-3882 10.3390/e22091022 10.1007/s11220-018-0222-y 10.3389/fenvs.2019.00105 10.1115/1.4041319 10.1115/1.4053469 10.1016/j.compstruc.2020.106283 10.1016/0893-6080(88)90014-7 10.1080/0305215X.2018.1519559 10.3390/designs4020010 10.1073/pnas.2101784118 10.1115/1.4044397 10.1017/dsd.2020.42 10.1115/1.4047636 10.1109/TMAG.2019.2901906 10.3233/JAE-171164 10.1115/1.4042084 10.1016/0045-7949(95)00048-L 10.1115/1.0003772V 10.1016/j.jcp.2020.109942 10.1002/nme.6809 10.1111/mice.12263 10.1016/j.strusafe.2017.06.003 10.7551/mitpress/3206.001.0001 10.1109/ACCESS.2018.2888903 10.1007/s00158-018-2101-5 10.1007/s00521-019-04146-4 10.1115/1.4048625 10.1016/j.cma.2021.114197 10.3389/frai.2020.00004 10.4271/2015-01-1369 10.1002/nme.5583 10.1016/j.jcp.2018.08.036 10.1021/acs.nanolett.9b01857 10.1016/j.matdes.2020.109098 10.1016/j.cad.2020.102947 10.1016/j.cma.2021.114083 10.1088/1873-7005/abb91d 10.1016/j.promfg.2020.02.251 10.1007/s00158-020-02797-9 10.1016/j.cad.2018.12.008 10.1007/s00158-020-02770-6 10.1002/nme.6828 10.1073/pnas.1911815116 10.1007/s00158-011-0711-2 10.1007/s42979-021-00702-9 10.1016/j.ress.2017.09.029 10.1016/j.ergon.2015.11.005 10.1002/9780470770801 10.1137/20M1349965 10.1023/B:MACH.0000015881.36452.6e 10.1007/s00466-019-01718-y 10.1177/09544100211022244 10.1016/j.cad.2019.05.038 10.2514/1.J059877 10.1007/s00158-019-02424-2 10.1109/ACCESS.2020.3032280 10.1115/DETC2020-22729 10.1007/s00158-020-02665-6 10.1016/j.cma.2020.113401 10.1016/j.compstruct.2021.114949 10.21105/joss.02809 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00158-022-03369-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1615-1488 |
| ExternalDocumentID | 10_1007_s00158_022_03369_9 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-e0237e45a6c8a799a6ca5bf6e3dcf2a4b24b80af67e8663745591d00a7aeca4f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852375400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-147X |
| IngestDate | Wed Nov 05 03:14:52 EST 2025 Sat Nov 29 02:50:19 EST 2025 Tue Nov 18 21:18:11 EST 2025 Fri Feb 21 02:45:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Uncertainty Reinforcement learning Regression Variational autoencoder Neural network Clustering Supervised/unsupervised learning Optimization Deep learning Design diversity Dimension reduction Classification Machine learning Generative design |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-e0237e45a6c8a799a6ca5bf6e3dcf2a4b24b80af67e8663745591d00a7aeca4f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3470-7341 |
| PQID | 2712349116 |
| PQPubID | 2043658 |
| ParticipantIDs | proquest_journals_2712349116 crossref_citationtrail_10_1007_s00158_022_03369_9 crossref_primary_10_1007_s00158_022_03369_9 springer_journals_10_1007_s00158_022_03369_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20220900 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 9 year: 2022 text: 20220900 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Structural and multidisciplinary optimization |
| PublicationTitleAbbrev | Struct Multidisc Optim |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Wang, van Beek, Da, Chan, Zhu, Chen (CR191) 2022; 280 CR163 CR160 Yonekura, Hattori (CR206) 2019; 60 Garriga, Mainini, Ponnusamy (CR68) 2019; 141 Amsallem, Farhat (CR7) 2008; 46 CR159 CR157 Chen, Ahmed (CR33) 2021; 113 Kochkov, Smith, Alieva, Wang, Brenner, Hoyer (CR103) 2021; 118 Sun, Wang (CR179) 2019; 233 Lin, Liu, Hong (CR120) 2019; 109 Zhang, Ye (CR209) 2019; 60 Khan, Gunpinar, Sener (CR99) 2019; 191 Fukushima (CR64) 1988; 1 Trinchero, Larbi, Torun, Canavero, Swaminathan (CR186) 2018; 7 Khatouri, Benamara, Breitkopf, Demange, Feliot (CR100) 2020; 7 Baraldi, Mangili, Zio (CR12) 2015; 78 Hou, Lam, Zhang, Zhang (CR81) 2019; 64 Cox (CR43) 1958; 20 Yuan, Moghaddam (CR208) 2020; 8 Rumelhart, Hinton, Williams (CR165) 1986; 323 Diego-Mas, Alcaide-Marzal (CR49) 2016; 53 Wu, Kozlowski, Meidani (CR197) 2018; 169 García-Segura, Yepes, Frangopol (CR65) 2017; 56 Pereira, Piteri, Souza, Papa, Adeli (CR152) 2020; 32 Li, Huang, Li, Zheng, Hong (CR116) 2019; 115 CR141 Zhang, Li, Zhou, Chen, Yao, Zhao (CR212) 2021; 386 CR136 CR132 Jung, Yoon, Lee (CR89) 2020; 372 Lynch, Sarkar, Maute (CR124) 2019; 141 Acar, Rais-Rohani (CR3) 2009; 37 Caldeira, Nord (CR25) 2020; 2 Sosnovik, Oseledets (CR175) 2019; 34 Forrester, Sobester, Keane (CR61) 2008 CR148 Janda, Zemanová, Hála, Konrád, Schmidt (CR83) 2020; 8 CR146 Raissi, Karniadakis (CR161) 2018; 357 CR147 CR144 McFall (CR127) 2013; 350 CR145 Cha, Choi, Büyüköztürk (CR29) 2017; 32 CR143 Chen, Ahmed (CR34) 2021; 143 Solanki, Acar, Rais-Rohani, Horstemeyer, Steele (CR173) 2009; 2 Thole, Ramu (CR184) 2020; 62 Perron, Rajaram, Mavris (CR154) 2021; 477 Kallioras, Lagaros (CR90) 2020; 44 Chhabra, Warn (CR40) 2019; 59 Harman (CR76) 1976 Raissi, Perdikaris, Karniadakis (CR162) 2019; 378 Tao, Sun (CR182) 2019; 92 Abueidda, Koric, Sobh (CR1) 2020; 237 Lee, Kim, Lieu, Lee (CR110) 2020; 198 Song, Choi, Lee, Zhao, Lamb (CR174) 2013; 47 CR111 CR112 Qian, Ye (CR158) 2021; 63 CR117 Wang, Xie, Wang (CR190) 2021; 63 McCulloch, Pitts (CR126) 1943; 5 Gomes, Ludermir (CR73) 2013; 40 CR130 Kumar, Yadav (CR106) 2011; 62 Nagarajan, Mokhtarian, Jafarian, Dimassi, Bakrani-Balani, Hamedi, Haapala (CR135) 2019; 141 Chan, Elsheikh (CR31) 2018; 354 Kollmann, Abueidda, Koric, Guleryuz, Sobh (CR104) 2020; 196 CR121 Su, Peng, Hu (CR177) 2017; 68 Zhang, Zhao (CR210) 2021; 59 Yao, Gao, Liu (CR204) 2020; 363 Ates, Gorguluarslan (CR10) 2021; 63 Gray, Hwang, Martins, Moore, Naylor (CR75) 2019; 59 Ferreiro-Cabello, Fraile-Garcia, de Pison Ascacibar, Martinez-de-Pison (CR58) 2018; 155 Napier, Sriraman, Tran, James (CR137) 2020; 142 CR17 CR14 CR13 CR11 He, Qian, Zhao, Wang (CR79) 2020; 22 CR28 Friedman (CR63) 2001; 25 Lee, Jeong, Kang (CR108) 2008; 35 Chen, Gu (CR35) 2020; 7 Keshavarzzadeh, Alirezaei, Tasdizen, Kirby (CR97) 2021; 130 CR24 CR23 CR21 CR102 Ke, Meng, Finley, Wang, Chen, Ma, Liu (CR96) 2017; 30 CR107 Popov, Mou, Sandu, Iliescu (CR156) 2021; 43 Bostanabad, Chan, Wang, Zhu, Chen (CR20) 2019; 141 Sun, Ma (CR178) 2020; 4 CR39 Nie, Lin, Jiang, Kara (CR139) 2021; 143 CR38 CR37 Li, Mei (CR114) 2021; 80 Kim, Boukouvala (CR101) 2020; 14 Yu, Hur, Jung, Jang (CR207) 2019; 59 Lee, Balu, Stoecklein, Ganapathysubramanian, Sarkar (CR109) 2019; 141 Tripathy, Bilionis (CR187) 2018; 375 Burnap, Pan, Liu, Ren, Lee, Gonzalez, Papalambros (CR22) 2016; 138 Liu, Wang (CR122) 2019; 141 Chi, Zhang, Tang, Mirabella, Dalloro, Song, Paulino (CR41) 2021; 375 An, Liu, Zhang, Chen, Chen, Sun (CR8) 2020; 167 CR48 CR46 Naranjo-Pérez, Infantes, Jiménez-Alonso, Sáez (CR138) 2020; 225 Peherstorfer, Willcox, Gunzburger (CR151) 2018; 60 CR44 CR201 Du, Xu, Zhu (CR52) 2021; 244 CR202 CR200 Chen, Chen, Zhou, Zhang, Yao (CR36) 2020; 62 Fisher (CR59) 1936; 7 CR205 Chandrasekhar, Suresh (CR32) 2021; 63 Fix, Hodges (CR60) 1989; 57 Capuano, Rimoli (CR27) 2019; 345 Rätsch, Onoda, Müller (CR164) 2001; 42 Jiang, Wang, Li, Mo (CR87) 2020; 149 Shi, Lv, Sun, Song (CR168) 2020; 61 CR57 Lei, Liu, Du, Zhang, Guo (CR113) 2019; 86 CR51 Goel, Haftka, Shyy, Queipo (CR70) 2007; 33 Perez, Jansen, Martins (CR153) 2012; 45 Tan, Zhang, Ye (CR181) 2020; 61 Lin, Hong, Liu, Li, Wang (CR119) 2018; 97 Deng, To (CR47) 2020; 66 Falck, Gray, Ponnapalli, Wright (CR56) 2021; 6 Zhang, Xie, Ji, Zhu, Zheng (CR211) 2021; 373 Wang, Yao, Wang, Hu (CR189) 2021; 53 Jiang, Fan (CR85) 2019; 19 Bishop (CR19) 1995 Gomes (CR72) 2020; 6 Cortes, Vapnik (CR42) 1995; 20 Chakraborty (CR30) 2021; 426 Trehan, Carlberg, Durlofsky (CR185) 2017; 112 Acar, Solanki (CR4) 2009; 39 Adeli, Park (CR5) 1995; 57 CR69 CR67 CR66 Li, Wang (CR115) 2021; 143 Sasaki, Igarashi (CR167) 2019; 59 Liao, Zhang, Dong, Poczos, Shimada, Burak Kara (CR118) 2020; 142 Abueidda, Lu, Koric (CR2) 2021; 122 Ma, Kim, Kim (CR125) 2020; 8 Kou, Zhang (CR105) 2019; 84 Pillai, Thies, Johanning (CR155) 2019; 51 Bielecki, Patel, Rai, Dargush (CR18) 2021; 64 Cang, Yao, Ren (CR26) 2019; 109 Patel, Choi (CR149) 2012; 45 Singh, Medida, Duraisamy (CR171) 2017; 55 Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (CR95) 2021; 3 Minisci, Vasile (CR129) 2013; 51 Singla, Ghosh, Shukla (CR172) 2020; 11 Strömberg (CR176) 2020; 52 CR77 Wiener (CR194) 1938; 60 CR74 CR199 CR71 CR198 Elingaard, Aage, Bærentzen, Sigmund (CR54) 2022; 388 Hasegawa, Fukami, Murata, Fukagata (CR78) 2020; 52 Yang, Perdikaris (CR203) 2019; 64 Mozaffar, Bostanabad, Chen, Ehmann, Cao, Bessa (CR133) 2019; 116 Alom, Taha, Yakopcic, Westberg, Sidike, Nasrin, Asari (CR6) 2019; 8 CR84 Doi, Sasaki, Igarashi (CR50) 2019; 55 Asperti, Evangelista, Piccolomini (CR9) 2021; 2 Freiesleben, Keim, Grutsch (CR62) 2020; 36 Pawar, Rahman, Vaddireddy, San, Rasheed, Vedula (CR150) 2019; 31 Khan, Gunpinar, Moriguchi, Suzuki (CR98) 2019; 141 Jin (CR88) 2020; 62 Karlik, Olgac (CR94) 2011; 1 Kallioras, Kazakis, Lagaros (CR91) 2020; 62 Lye, Mishra, Ray, Chandrashekar (CR123) 2021; 374 Behzadi, Ilieş (CR15) 2021; 135 Jiang, Fan (CR86) 2020; 9 Shu, Cunningham, Stump, Miller, Yukish, Simpson, Tucker (CR170) 2020; 142 CR183 Ning, You (CR140) 2018; 111 CR180 Sasaki, Igarashi (CR166) 2019; 55 Dai, Li, Liu (CR45) 2019; 20 Bendsøe (CR16) 1989; 1 Müller, Park, Sahu, Varadharajan, Arora, Faybishenko, Agarwal (CR134) 2021; 81 CR93 Odonkor, Lewis (CR142) 2019; 141 CR92 Montgomery, Peck, Vining (CR131) 2021 Jabarullah Khan, Elsheikh (CR82) 2019; 7 He, Mader, Martins, Maki (CR80) 2020; 58 Shi, Qiu, Wang, Zhao, Qu (CR169) 2020; 53 Meng, Karniadakis (CR128) 2020; 401 Džeroski, Ženko (CR53) 2004; 54 CR195 CR196 CR193 CR192 CR188 Emmert-Streib, Yang, Feng, Tripathi, Dehmer (CR55) 2020; 3 S Khan (3369_CR99) 2019; 191 3369_CR37 C Yuan (3369_CR208) 2020; 8 X Lei (3369_CR113) 2019; 86 T García-Segura (3369_CR65) 2017; 56 SS Jin (3369_CR88) 2020; 62 G Sun (3369_CR179) 2019; 233 3369_CR39 H Deng (3369_CR47) 2020; 66 3369_CR38 MO Elingaard (3369_CR54) 2022; 388 G Capuano (3369_CR27) 2019; 345 3369_CR24 3369_CR23 X Wu (3369_CR197) 2018; 169 3369_CR21 3369_CR201 3369_CR202 3369_CR205 DR Pereira (3369_CR152) 2020; 32 JS Gray (3369_CR75) 2019; 59 Y Yu (3369_CR207) 2019; 59 JA Diego-Mas (3369_CR49) 2016; 53 3369_CR28 Z Nie (3369_CR139) 2021; 143 3369_CR200 3369_CR57 JP Chhabra (3369_CR40) 2019; 59 3369_CR51 GE Karniadakis (3369_CR95) 2021; 3 MZ Alom (3369_CR6) 2019; 8 A Chandrasekhar (3369_CR32) 2021; 63 J Jiang (3369_CR85) 2019; 19 HH Harman (3369_CR76) 1976 Y Yang (3369_CR203) 2019; 64 I Sosnovik (3369_CR175) 2019; 34 HT Kollmann (3369_CR104) 2020; 196 3369_CR46 M Raissi (3369_CR162) 2019; 378 3369_CR48 KS McFall (3369_CR127) 2013; 350 A Asperti (3369_CR9) 2021; 2 3369_CR44 J Lee (3369_CR108) 2008; 35 NK Jabarullah Khan (3369_CR82) 2019; 7 L He (3369_CR79) 2020; 22 B Li (3369_CR116) 2019; 115 Q Lin (3369_CR120) 2019; 109 JH Friedman (3369_CR63) 2001; 25 M Shi (3369_CR168) 2020; 61 D An (3369_CR8) 2020; 167 A Burnap (3369_CR22) 2016; 138 KO Lye (3369_CR123) 2021; 374 V Keshavarzzadeh (3369_CR97) 2021; 130 XY Lee (3369_CR109) 2019; 141 J Müller (3369_CR134) 2021; 81 J Kou (3369_CR105) 2019; 84 S Pawar (3369_CR150) 2019; 31 M Singla (3369_CR172) 2020; 11 J Naranjo-Pérez (3369_CR138) 2020; 225 CM Bishop (3369_CR19) 1995 C Qian (3369_CR158) 2021; 63 G Ke (3369_CR96) 2017; 30 Q Lin (3369_CR119) 2018; 97 R Cang (3369_CR26) 2019; 109 F Emmert-Streib (3369_CR55) 2020; 3 J Jung (3369_CR89) 2020; 372 D Liu (3369_CR122) 2019; 141 MM Behzadi (3369_CR15) 2021; 135 J Patel (3369_CR149) 2012; 45 X Shi (3369_CR169) 2020; 53 H Chi (3369_CR41) 2021; 375 X Meng (3369_CR128) 2020; 401 3369_CR13 H Khatouri (3369_CR100) 2020; 7 H Sun (3369_CR178) 2020; 4 3369_CR14 CT Chen (3369_CR35) 2020; 7 Y Li (3369_CR114) 2021; 80 3369_CR11 M Raissi (3369_CR161) 2018; 357 GC Ates (3369_CR10) 2021; 63 B Peherstorfer (3369_CR151) 2018; 60 3369_CR193 J Caldeira (3369_CR25) 2020; 2 E Fix (3369_CR60) 1989; 57 3369_CR195 3369_CR196 3369_CR17 3369_CR198 3369_CR199 K Fukushima (3369_CR64) 1988; 1 ME Lynch (3369_CR124) 2019; 141 P Baraldi (3369_CR12) 2015; 78 M Li (3369_CR115) 2021; 143 E Acar (3369_CR4) 2009; 39 X Zhang (3369_CR211) 2021; 373 3369_CR192 NA Kallioras (3369_CR90) 2020; 44 RA Fisher (3369_CR59) 1936; 7 D Kochkov (3369_CR103) 2021; 118 H Sasaki (3369_CR166) 2019; 55 AA Popov (3369_CR156) 2021; 43 3369_CR183 G Su (3369_CR177) 2017; 68 3369_CR188 P He (3369_CR80) 2020; 58 3369_CR180 NA Kallioras (3369_CR91) 2020; 62 N Strömberg (3369_CR176) 2020; 52 RE Perez (3369_CR153) 2012; 45 S Džeroski (3369_CR53) 2004; 54 R Bostanabad (3369_CR20) 2019; 141 K Hasegawa (3369_CR78) 2020; 52 S Lee (3369_CR110) 2020; 198 N Napier (3369_CR137) 2020; 142 KN Solanki (3369_CR173) 2009; 2 SP Thole (3369_CR184) 2020; 62 A Forrester (3369_CR61) 2008 Z Zhang (3369_CR212) 2021; 386 AG Garriga (3369_CR68) 2019; 141 3369_CR160 3369_CR163 E Acar (3369_CR3) 2009; 37 H Liao (3369_CR118) 2020; 142 T Goel (3369_CR70) 2007; 33 3369_CR157 3369_CR159 H Sasaki (3369_CR167) 2019; 59 DW Abueidda (3369_CR1) 2020; 237 H Song (3369_CR174) 2013; 47 J Zhang (3369_CR210) 2021; 59 HP Nagarajan (3369_CR135) 2019; 141 SB Ma (3369_CR125) 2020; 8 WS McCulloch (3369_CR126) 1943; 5 C Perron (3369_CR154) 2021; 477 D Shu (3369_CR170) 2020; 142 RK Tan (3369_CR181) 2020; 61 N Wiener (3369_CR194) 1938; 60 R Falck (3369_CR56) 2021; 6 Y Dai (3369_CR45) 2019; 20 3369_CR146 3369_CR147 J Jiang (3369_CR86) 2020; 9 3369_CR148 G Rätsch (3369_CR164) 2001; 42 R Trinchero (3369_CR186) 2018; 7 C Wang (3369_CR189) 2021; 53 S Trehan (3369_CR185) 2017; 112 3369_CR141 3369_CR143 X Du (3369_CR52) 2021; 244 3369_CR144 D Amsallem (3369_CR7) 2008; 46 C Cortes (3369_CR42) 1995; 20 3369_CR145 WJDS Gomes (3369_CR72) 2020; 6 3369_CR74 DW Abueidda (3369_CR2) 2021; 122 3369_CR77 3369_CR71 3369_CR136 M Mozaffar (3369_CR133) 2019; 116 X Jiang (3369_CR87) 2020; 149 TY Hou (3369_CR81) 2019; 64 P Odonkor (3369_CR142) 2019; 141 C Ning (3369_CR140) 2018; 111 3369_CR130 3369_CR132 3369_CR67 3369_CR69 J Ferreiro-Cabello (3369_CR58) 2018; 155 T Janda (3369_CR83) 2020; 8 W Chen (3369_CR34) 2021; 143 S Doi (3369_CR50) 2019; 55 3369_CR66 J Freiesleben (3369_CR62) 2020; 36 DR Cox (3369_CR43) 1958; 20 B Karlik (3369_CR94) 2011; 1 X Chen (3369_CR36) 2020; 62 S Chakraborty (3369_CR30) 2021; 426 H Yao (3369_CR204) 2020; 363 W Chen (3369_CR33) 2021; 113 D Bielecki (3369_CR18) 2021; 64 E Minisci (3369_CR129) 2013; 51 J Tao (3369_CR182) 2019; 92 SH Kim (3369_CR101) 2020; 14 RK Tripathy (3369_CR187) 2018; 375 GSDS Gomes (3369_CR73) 2013; 40 3369_CR121 K Yonekura (3369_CR206) 2019; 60 3369_CR93 3369_CR92 S Khan (3369_CR98) 2019; 141 3369_CR117 AC Pillai (3369_CR155) 2019; 51 Y Zhang (3369_CR209) 2019; 60 YJ Cha (3369_CR29) 2017; 32 3369_CR111 3369_CR112 L Wang (3369_CR191) 2022; 280 DE Rumelhart (3369_CR165) 1986; 323 DC Montgomery (3369_CR131) 2021 3369_CR84 AP Singh (3369_CR171) 2017; 55 3369_CR102 M Kumar (3369_CR106) 2011; 62 D Wang (3369_CR190) 2021; 63 S Chan (3369_CR31) 2018; 354 MP Bendsøe (3369_CR16) 1989; 1 3369_CR107 H Adeli (3369_CR5) 1995; 57 |
| References_xml | – volume: 60 start-page: 527 issue: 2 year: 2019 end-page: 536 ident: CR209 article-title: Deep learning-based inverse method for layout design publication-title: Struct Multidisc Optim – volume: 56 start-page: 139 issue: 1 year: 2017 end-page: 150 ident: CR65 article-title: Multi-objective design of post-tensioned concrete road bridges using artificial neural networks publication-title: Struct Multidisc Optim – volume: 143 start-page: 031715 issue: 3 year: 2021 ident: CR139 article-title: Topologygan: Topology optimization using generative adversarial networks based on physical fields over the initial domain publication-title: J Mech Des – ident: CR196 – ident: CR74 – ident: CR39 – volume: 6 start-page: 2809 issue: 59 year: 2021 ident: CR56 article-title: dymos: A Python package for optimal control of multidisciplinary systems publication-title: J Open Source Soft – ident: CR51 – volume: 59 start-page: 787 issue: 3 year: 2019 end-page: 799 ident: CR207 article-title: Deep learning for determining a near-optimal topological design without any iteration publication-title: Struct Multidisc Optim – volume: 61 start-page: 1417 issue: 4 year: 2020 end-page: 1438 ident: CR181 article-title: A deep learning-based method for the design of microstructural materials publication-title: Struct Multidisc Optim – volume: 97 start-page: 103 year: 2018 end-page: 109 ident: CR119 article-title: Investigation into the topology optimization for conductive heat transfer based on deep learning approach publication-title: Int Commun Heat Mass Transfer – volume: 61 start-page: 2363 issue: 6 year: 2020 end-page: 2375 ident: CR168 article-title: A multi-fidelity surrogate model based on support vector regression publication-title: Struct Multidisc Optim – volume: 109 start-page: 12 year: 2019 end-page: 21 ident: CR26 article-title: One-shot generation of near-optimal topology through theory-driven machine learning publication-title: Comput-Aided Des – ident: CR201 – ident: CR121 – volume: 57 start-page: 383 issue: 3 year: 1995 end-page: 390 ident: CR5 article-title: A neural dynamics model for structural optimization—theory publication-title: Comput Struct – ident: CR144 – volume: 363 start-page: 112892 year: 2020 ident: CR204 article-title: FEA-Net: A physics-guided data-driven model for efficient mechanical response prediction publication-title: Comput Methods Appl Mech Eng – volume: 66 start-page: 449 year: 2020 end-page: 469 ident: CR47 article-title: Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design publication-title: Comput Mech – year: 1976 ident: CR76 publication-title: Modern factor analysis – volume: 7 start-page: 1 issue: 1 year: 2020 end-page: 20 ident: CR100 article-title: Constrained multi-fidelity surrogate framework using Bayesian optimization with non-intrusive reduced-order basis publication-title: Adv Model Simul Eng Sci – volume: 141 start-page: 111401 issue: 11 year: 2019 ident: CR109 article-title: A case study of deep reinforcement learning for engineering design: Application to microfluidic devices for flow sculpting publication-title: J Mech Des – volume: 33 start-page: 199 issue: 3 year: 2007 end-page: 216 ident: CR70 article-title: Ensemble of Surrogates publication-title: Struct Multidisc Optim – volume: 401 start-page: 109020 year: 2020 ident: CR128 article-title: A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems publication-title: J Comput Phys – ident: CR92 – ident: CR132 – volume: 45 start-page: 529 issue: 4 year: 2012 end-page: 543 ident: CR149 article-title: Classification approach for reliability-based topology optimization using probabilistic neural networks publication-title: Struct Multidisc Optim – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR42 article-title: Support-Vector Networks publication-title: Mach Learn – year: 2008 ident: CR61 publication-title: Engineering design via surrogate modelling: a practical guide – ident: CR11 – volume: 3 start-page: 4 year: 2020 ident: CR55 article-title: An introductory review of deep learning for prediction models with big data publication-title: Front Artif Intel – ident: CR57 – volume: 233 start-page: 5863 issue: 16 year: 2019 end-page: 5872 ident: CR179 article-title: A review of the artificial neural network surrogate modeling in aerodynamic design publication-title: Proc Inst Mech Eng, Part G: J Aeros Eng – volume: 68 start-page: 97 year: 2017 end-page: 109 ident: CR177 article-title: A Gaussian process-based dynamic surrogate model for complex engineering structural reliability analysis publication-title: Struct Saf – volume: 2 start-page: 1 issue: 4 year: 2021 end-page: 23 ident: CR9 article-title: A survey on variational autoencoders from a green AI perspective publication-title: SN Computer Science – volume: 8 start-page: 36 issue: 1 year: 2020 end-page: 46 ident: CR83 article-title: Reduced order model of glass plate loaded by low-velocity impact publication-title: Int J Comput Methods Exp Meas – volume: 149 start-page: 102841 year: 2020 ident: CR87 article-title: Machine learning based parameter tuning strategy for MMC based topology optimization publication-title: Adv Eng Softw – volume: 46 start-page: 1803 issue: 7 year: 2008 end-page: 1813 ident: CR7 article-title: Interpolation method for adapting reduced-order models and application to aeroelasticity publication-title: AIAA J – volume: 32 start-page: 6393 issue: 10 year: 2020 end-page: 6404 ident: CR152 article-title: FEMa: A finite element machine for fast learning publication-title: Neural Comput Appl – volume: 138 start-page: 071404 issue: 7 year: 2016 ident: CR22 article-title: Improving design preference prediction accuracy using feature learning publication-title: J Mech Des – volume: 53 start-page: 2108 issue: 12 year: 2021 end-page: 2121 ident: CR189 article-title: Deep super-resolution neural network for structural topology optimization publication-title: Eng Optim – volume: 1 start-page: 111 issue: 4 year: 2011 end-page: 122 ident: CR94 article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks publication-title: Int J Artif Intel Exp Sys – volume: 477 start-page: 20210495 issue: 2253 year: 2021 ident: CR154 article-title: Multi-fidelity non-intrusive reduced-order modelling based on manifold alignment publication-title: Proce Royal Soc A – volume: 47 start-page: 479 issue: 4 year: 2013 end-page: 491 ident: CR174 article-title: Adaptive virtual support vector machine for reliability analysis of high-dimensional problems publication-title: Struct Multidisc Optim – volume: 8 start-page: 292 issue: 3 year: 2019 ident: CR6 article-title: A state-of-the-art survey on deep learning theory and architectures publication-title: Electronics – volume: 59 start-page: 87 issue: 1 year: 2019 end-page: 96 ident: CR167 article-title: Topology optimization of IPM motor with aid of deep learning publication-title: Int J Appl Electromagnet Mech – volume: 280 start-page: 114949 year: 2022 ident: CR191 article-title: Data-driven multiscale design of cellular composites with multiclass microstructures for natural frequency maximization publication-title: Compos Struct – volume: 64 start-page: 3473 issue: 6 year: 2021 end-page: 3487 ident: CR18 article-title: Multi-stage deep neural network accelerated topology optimization publication-title: Struct Multidisc Optim – volume: 141 start-page: 111101 issue: 11 year: 2019 ident: CR98 article-title: Evolving a psycho-physical distance metric for generative design exploration of diverse shapes publication-title: J Mech Des – volume: 196 start-page: 109098 year: 2020 ident: CR104 article-title: Deep learning for topology optimization of 2D metamaterials publication-title: Mater Des – volume: 80 start-page: 17391 issue: 11 year: 2021 end-page: 17413 ident: CR114 article-title: Deep learning-based method coupled with small sample learning for solving partial differential equations publication-title: Mult Tools Appl – ident: CR69 – volume: 111 start-page: 115 year: 2018 end-page: 133 ident: CR140 article-title: Data-driven stochastic robust optimization: General computational framework and algorithm leveraging machine learning for optimization under uncertainty in the big data era publication-title: Comput Chem Eng – ident: CR44 – volume: 8 start-page: 1170 issue: 9 year: 2020 ident: CR125 article-title: Optimization design of a two-vane pump for wastewater treatment using machine-learning-based surrogate modeling publication-title: Processes – volume: 63 start-page: 1927 issue: 4 year: 2021 end-page: 1950 ident: CR10 article-title: Two-stage convolutional encoder-decoder network to improve the performance and reliability of deep learning models for topology optimization publication-title: Struct Multidisc Optim – volume: 115 start-page: 172 year: 2019 end-page: 180 ident: CR116 article-title: Non-iterative structural topology optimization using deep learning publication-title: Comput Aided Des – ident: CR38 – year: 1995 ident: CR19 publication-title: Neural networks for pattern recognition – volume: 7 start-page: 179 issue: 2 year: 1936 end-page: 188 ident: CR59 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann Eugen – volume: 198 start-page: 105887 year: 2020 ident: CR110 article-title: CNN-based image recognition for topology optimization publication-title: Knowl-Based Syst – volume: 36 start-page: 1837 issue: 6 year: 2020 end-page: 1848 ident: CR62 article-title: Machine learning and design of experiments: Alternative approaches or complementary methodologies for quality improvement? publication-title: Qual Reliab Eng Int – volume: 113 start-page: 107909 year: 2021 ident: CR33 article-title: MO-PaDGAN: Reparameterizing Engineering Designs for augmented multi-objective optimization publication-title: Appl Soft Comput – volume: 60 start-page: 1709 issue: 4 year: 2019 end-page: 1713 ident: CR206 article-title: Framework for design optimization using deep reinforcement learning publication-title: Struct Multidisc Optim – volume: 40 start-page: 6438 issue: 16 year: 2013 end-page: 6446 ident: CR73 article-title: Optimization of the weights and asymmetric activation function family of neural network for time series forecasting publication-title: Expert Syst Appl – ident: CR202 – volume: 109 year: 2019 ident: CR120 article-title: Method for directly and instantaneously predicting conductive heat transfer topologies by using supervised deep learning publication-title: Int Commun Heat Mass Transfer – volume: 53 start-page: 275105 issue: 27 year: 2020 ident: CR169 article-title: Metasurface inverse design using machine learning approaches publication-title: J Phys D Appl Phys – volume: 143 start-page: 031703 issue: 3 year: 2021 ident: CR34 article-title: Padgan: Learning to generate high-quality novel designs publication-title: J Mech Des – ident: CR145 – volume: 374 start-page: 113575 year: 2021 ident: CR123 article-title: Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks publication-title: Comput Methods Appl Mech Eng – ident: CR148 – ident: CR93 – volume: 62 start-page: 1185 issue: 3 year: 2020 end-page: 1212 ident: CR91 article-title: Accelerated topology optimization by means of deep learning publication-title: Struct Multidisc Optim – ident: CR111 – year: 2021 ident: CR131 publication-title: Introduction to linear regression analysis – volume: 52 start-page: 1136 issue: 7 year: 2020 end-page: 1148 ident: CR176 article-title: Efficient detailed design optimization of topology optimization concepts by using support vector machines and metamodels publication-title: Eng Optim – volume: 142 start-page: 011402 issue: 1 year: 2020 ident: CR137 article-title: An artificial neural network approach for generating high-resolution designs from low-resolution input in topology optimization publication-title: J Mech Des – volume: 8 start-page: 190710 year: 2020 end-page: 190721 ident: CR208 article-title: Attribute-aware generative design with generative adversarial networks publication-title: IEEE Access – volume: 122 start-page: 7182 issue: 23 year: 2021 end-page: 7201 ident: CR2 article-title: Meshless physics-informed deep learning method for three-dimensional solid mechanics publication-title: Int J Numer Meth Eng – ident: CR21 – volume: 57 start-page: 238 issue: 3 year: 1989 end-page: 247 ident: CR60 article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties publication-title: Inter Stat Rev/revue Internationale De Statistique – volume: 54 start-page: 255 issue: 3 year: 2004 end-page: 273 ident: CR53 article-title: Is combining classifiers with stacking better than selecting the best one? publication-title: Mach Learn – volume: 169 start-page: 422 year: 2018 end-page: 436 ident: CR197 article-title: Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data publication-title: Reliab Eng Syst Saf – volume: 191 start-page: 106462 year: 2019 ident: CR99 article-title: GenYacht: An interactive generative design system for computer-aided yacht hull design publication-title: Ocean Eng – volume: 14 start-page: 989 issue: 4 year: 2020 end-page: 1010 ident: CR101 article-title: Machine learning-based surrogate modeling for data-driven optimization: A comparison of subset selection for regression techniques publication-title: Optim Lett – ident: CR195 – volume: 6 start-page: 041006 issue: 4 year: 2020 ident: CR72 article-title: Shallow and deep artificial neural networks for structural reliability analysis publication-title: ASME J Risk Uncertainty Part B – volume: 2 start-page: 47 issue: 1 year: 2009 end-page: 79 ident: CR173 article-title: Product design optimisation with microstructure-property modelling and associated uncertainties publication-title: Int J Des Eng – volume: 388 start-page: 114197 year: 2022 ident: CR54 article-title: De-homogenization using convolutional neural networks publication-title: Comput Methods Appl Mech Eng – volume: 39 start-page: 311 issue: 3 year: 2009 end-page: 325 ident: CR4 article-title: System reliability based vehicle design for crashworthiness and effects of various uncertainty reduction measures publication-title: Struct Multidisc Optim – volume: 86 start-page: 011004 issue: 1 year: 2019 ident: CR113 article-title: Machine learning-driven real-time topology optimization under moving morphable component-based framework publication-title: J Appl Mech – volume: 59 start-page: 868 issue: 3 year: 2021 end-page: 879 ident: CR210 article-title: Machine-learning-based surrogate modeling of aerodynamic flow around distributed structures publication-title: AIAA J – volume: 375 start-page: 565 year: 2018 end-page: 588 ident: CR187 article-title: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification publication-title: J Comput Phys – volume: 19 start-page: 5366 issue: 8 year: 2019 end-page: 5372 ident: CR85 article-title: Global optimization of dielectric metasurfaces using a physics-driven neural network publication-title: Nano Lett – volume: 63 start-page: 915 issue: 2 year: 2021 end-page: 928 ident: CR190 article-title: An adaptive RBF neural network–based multi-objective optimization method for lightweight and crashworthiness design of cab floor rails using fuzzy subtractive clustering algorithm publication-title: Struct Multidisc Optim – volume: 167 year: 2020 ident: CR8 article-title: Uncertainty modeling and runtime verification for autonomous vehicles driving control: A machine learning-based approach publication-title: J Syst Softw – volume: 20 start-page: 1 issue: 1 year: 2019 end-page: 16 ident: CR45 article-title: New product design with automatic scheme generation publication-title: Sens Imag – volume: 135 year: 2021 ident: CR15 article-title: Real-time topology optimization in 3D via deep transfer learning publication-title: Comput Aided Des – volume: 63 start-page: 1135 issue: 3 year: 2021 end-page: 1149 ident: CR32 article-title: TOuNN: Topology optimization using neural networks publication-title: Struct Multidisc Optim – volume: 35 start-page: 29 issue: 1 year: 2008 end-page: 40 ident: CR108 article-title: Derivative and GA-based methods in metamodeling of back-propagation neural networks for constrained approximate optimization publication-title: Struct Multidisc Optim – volume: 357 start-page: 125 year: 2018 end-page: 141 ident: CR161 article-title: Hidden physics models: Machine learning of nonlinear partial differential equations publication-title: J Comput Phys – ident: CR143 – ident: CR160 – volume: 1 start-page: 119 issue: 2 year: 1988 end-page: 130 ident: CR64 article-title: Neocognitron: A hierarchical neural network capable of visual pattern recognition publication-title: Neural Netw – volume: 141 start-page: 121403 issue: 12 year: 2019 ident: CR122 article-title: Multi-fidelity physics-constrained neural network and its application in materials modeling publication-title: J Mech Des – volume: 9 start-page: 1059 issue: 5 year: 2020 end-page: 1069 ident: CR86 article-title: Simulator-based training of generative neural networks for the inverse design of metasurfaces publication-title: Nanophotonics – ident: CR14 – volume: 92 start-page: 722 year: 2019 end-page: 737 ident: CR182 article-title: Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization publication-title: Aerosp Sci Technol – volume: 426 start-page: 109942 year: 2021 ident: CR30 article-title: Transfer learning based multi-fidelity physics informed deep neural network publication-title: J Comput Phys – ident: CR37 – volume: 25 start-page: 1189 year: 2001 end-page: 1232 ident: CR63 article-title: Greedy function approximation: a gradient boosting machine publication-title: Annal Stat – volume: 323 start-page: 533 issue: 6088 year: 1986 end-page: 536 ident: CR165 article-title: Learning representations by back-propagating errors publication-title: Nature – ident: CR188 – volume: 20 start-page: 215 issue: 2 year: 1958 end-page: 232 ident: CR43 article-title: The regression analysis of binary sequences publication-title: J Roy Stat Soc: Ser B (methodol) – ident: CR48 – volume: 84 start-page: 880 year: 2019 end-page: 894 ident: CR105 article-title: A hybrid reduced-order framework for complex aeroelastic simulations publication-title: Aerosp Sci Technol – volume: 116 start-page: 26414 issue: 52 year: 2019 end-page: 26420 ident: CR133 article-title: Deep learning predicts path-dependent plasticity publication-title: Proc Natl Acad Sci – volume: 143 start-page: 031702 issue: 3 year: 2021 ident: CR115 article-title: An LSTM-based ensemble learning approach for time-dependent reliability analysis publication-title: J Mech Des – ident: CR183 – volume: 142 start-page: 071701 issue: 7 year: 2020 ident: CR170 article-title: 3d design using generative adversarial networks and physics-based validation publication-title: J Mech Des – volume: 81 start-page: 203 issue: 1 year: 2021 end-page: 231 ident: CR134 article-title: Surrogate optimization of deep neural networks for groundwater predictions publication-title: J Global Optim – volume: 112 start-page: 1801 issue: 12 year: 2017 end-page: 1827 ident: CR185 article-title: Error modeling for surrogates of dynamical systems using machine learning publication-title: Int J Numer Meth Eng – ident: CR77 – volume: 11 start-page: 1359 issue: 7 year: 2020 end-page: 1385 ident: CR172 article-title: A survey of robust optimization based machine learning with special reference to support vector machines publication-title: Int J Mach Learn Cybern – volume: 5 start-page: 115 issue: 4 year: 1943 end-page: 133 ident: CR126 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Math Biophys – volume: 45 start-page: 101 issue: 1 year: 2012 end-page: 118 ident: CR153 article-title: pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization publication-title: Struct Multidisc Optim – volume: 141 start-page: 111404 issue: 11 year: 2019 ident: CR142 article-title: Data-driven design of control strategies for distributed energy systems publication-title: J Mech Des – ident: CR71 – volume: 62 start-page: 1313 year: 2020 end-page: 1351 ident: CR88 article-title: Compositional kernel learning using tree-based genetic programming for Gaussian process regression publication-title: Struct Multidisc Optim – ident: CR199 – volume: 59 start-page: 1521 issue: 5 year: 2019 end-page: 1542 ident: CR40 article-title: A method for model selection using reinforcement learning when viewing design as a sequential decision process publication-title: Struct Multidisc Optim – volume: 354 start-page: 493 year: 2018 end-page: 511 ident: CR31 article-title: A machine learning approach for efficient uncertainty quantification using multiscale methods publication-title: J Comput Phys – volume: 62 start-page: 3127 issue: 6 year: 2020 end-page: 3148 ident: CR36 article-title: The heat source layout optimization using deep learning surrogate modeling publication-title: Struct Multidisc Optim – ident: CR112 – volume: 51 start-page: 1284 issue: 6 year: 2013 end-page: 1295 ident: CR129 article-title: Robust design of a reentry unmanned space vehicle by multifidelity evolution control publication-title: AIAA J – volume: 64 start-page: 417 issue: 2 year: 2019 end-page: 434 ident: CR203 article-title: Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems publication-title: Comput Mech – volume: 7 start-page: 1902607 issue: 5 year: 2020 ident: CR35 article-title: Generative deep neural networks for inverse materials design using backpropagation and active learning publication-title: Adv Sci – ident: CR147 – volume: 78 start-page: 141 year: 2015 end-page: 154 ident: CR12 article-title: A prognostics approach to nuclear component degradation modeling based on Gaussian process regression publication-title: Prog Nucl Energy – ident: CR198 – ident: CR66 – volume: 43 start-page: A1134 issue: 2 year: 2021 end-page: A1162 ident: CR156 article-title: A multifidelity ensemble Kalman filter with reduced order control variates publication-title: SIAM J Sci Comput – volume: 34 start-page: 215 issue: 4 year: 2019 end-page: 223 ident: CR175 article-title: Neural networks for topology optimization publication-title: Russ J Numer Anal Math Model – volume: 225 start-page: 111327 year: 2020 ident: CR138 article-title: A collaborative machine learning-optimization algorithm to improve the finite element model updating of civil engineering structures publication-title: Eng Struct – ident: CR117 – volume: 60 start-page: 550 issue: 3 year: 2018 end-page: 591 ident: CR151 article-title: Survey of multifidelity methods in uncertainty propagation, inference, and optimization publication-title: SIAM Rev – volume: 22 start-page: 1022 issue: 9 year: 2020 ident: CR79 article-title: Multi-fidelity aerodynamic data fusion with a deep neural network modeling method publication-title: Entropy – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: CR162 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J Comput Phys – volume: 53 start-page: 102 year: 2016 end-page: 114 ident: CR49 article-title: Single users' affective responses models for product form design publication-title: Int J Ind Ergon – volume: 118 start-page: e2101784118 issue: 21 year: 2021 ident: CR103 article-title: Machine learning–accelerated computational fluid dynamics publication-title: Proc Nat Acad Sci – volume: 30 start-page: 3146 year: 2017 end-page: 3154 ident: CR96 article-title: Lightgbm: A highly efficient gradient boosting decision tree publication-title: Adv Neural Inf Process Syst – ident: CR193 – volume: 55 start-page: 2215 issue: 7 year: 2017 end-page: 2227 ident: CR171 article-title: Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils publication-title: AIAA J – ident: CR13 – volume: 7 start-page: 105 year: 2019 ident: CR82 article-title: A machine learning based hybrid multi-fidelity multi-level Monte Carlo method for uncertainty quantification publication-title: Front Environ Sci – ident: CR159 – volume: 64 start-page: 395 issue: 2 year: 2019 end-page: 408 ident: CR81 article-title: Solving Bayesian inverse problems from the perspective of deep generative networks publication-title: Comput Mech – volume: 4 start-page: 10 issue: 2 year: 2020 ident: CR178 article-title: Generative design by using exploration approaches of reinforcement learning in density-based structural topology optimization publication-title: Designs – ident: CR24 – volume: 44 start-page: 591 year: 2020 end-page: 598 ident: CR90 article-title: DzAIℕ: Deep learning based generative design publication-title: Procedia Manufacturing – volume: 62 start-page: 1071 issue: 3 year: 2020 end-page: 1088 ident: CR184 article-title: Design space exploration and optimization using self-organizing maps publication-title: Struct Multidisc Optim – volume: 32 start-page: 361 issue: 5 year: 2017 end-page: 378 ident: CR29 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput-Aided Civ Inf Eng – volume: 345 start-page: 363 year: 2019 end-page: 381 ident: CR27 article-title: Smart finite elements: a novel machine learning application publication-title: Comput Methods Appl Mech Eng – ident: CR102 – ident: CR205 – volume: 55 start-page: 1 issue: 6 year: 2019 end-page: 5 ident: CR166 article-title: Topology optimization accelerated by deep learning publication-title: IEEE Trans Magn – volume: 244 start-page: 106457 year: 2021 ident: CR52 article-title: A data mining method for structure design with uncertainty in design variables publication-title: Comput Struct – ident: CR192 – volume: 51 start-page: 1370 issue: 8 year: 2019 end-page: 1392 ident: CR155 article-title: Mooring system design optimization using a surrogate assisted multi-objective genetic algorithm publication-title: Eng Optim – volume: 31 start-page: 085101 issue: 8 year: 2019 ident: CR150 article-title: A deep learning enabler for nonintrusive reduced order modeling of fluid flows publication-title: Phys Fluids – volume: 237 start-page: 106283 year: 2020 ident: CR1 article-title: Topology optimization of 2D structures with nonlinearities using deep learning publication-title: Comput Struct – ident: CR84 – volume: 2 start-page: 015002 issue: 1 year: 2020 ident: CR25 article-title: Deeply uncertain: Comparing methods of uncertainty quantification in deep learning algorithms publication-title: Mach Learn: Sci Technol – ident: CR163 – volume: 60 start-page: 897 issue: 4 year: 1938 end-page: 936 ident: CR194 article-title: The homogeneous chaos publication-title: Am J Math – ident: CR46 – volume: 55 start-page: 1 issue: 6 year: 2019 end-page: 5 ident: CR50 article-title: Multi-objective topology optimization of rotating machines using deep learning publication-title: IEEE Trans Magn – volume: 42 start-page: 287 issue: 3 year: 2001 end-page: 320 ident: CR164 article-title: Soft Margins for AdaBoost publication-title: Mach Learn – volume: 386 year: 2021 ident: CR212 article-title: TONR: An exploration for a novel way combining neural network with topology optimization publication-title: Comput Method Appl Mech Eng – ident: CR67 – volume: 58 start-page: 1304 issue: 3 year: 2020 end-page: 1319 ident: CR80 article-title: Dafoam: an open-source adjoint framework for multidisciplinary design optimization with openfoam publication-title: AIAA J – ident: CR157 – volume: 141 start-page: 114502 issue: 11 year: 2019 ident: CR124 article-title: Machine learning to aid tuning of numerical parameters in topology optimization publication-title: J Mech Des – volume: 373 start-page: 113485 year: 2021 ident: CR211 article-title: Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization publication-title: Comput Methods Appl Mech Eng – ident: CR136 – volume: 375 start-page: 112739 year: 2021 ident: CR41 article-title: Universal machine learning for topology optimization publication-title: Comput Methods Appl Mech Eng – volume: 59 start-page: 1075 issue: 4 year: 2019 end-page: 1104 ident: CR75 article-title: OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization publication-title: Struct Multidisc Optim – volume: 3 start-page: 422 issue: 6 year: 2021 end-page: 440 ident: CR95 article-title: Physics-informed machine learning. Nature Reviews publication-title: Physics – ident: CR200 – volume: 130 start-page: 102947 year: 2021 ident: CR97 article-title: Image-based multiresolution topology optimization using deep disjunctive normal shape model publication-title: Comput Aided Des – volume: 1 start-page: 193 issue: 4 year: 1989 end-page: 202 ident: CR16 article-title: Optimal shape design as a material distribution problem publication-title: Struct Optim – volume: 372 start-page: 113401 year: 2020 ident: CR89 article-title: Deep learned finite elements publication-title: Comput Methods Appl Mech Eng – volume: 350 start-page: 300 issue: 2 year: 2013 end-page: 317 ident: CR127 article-title: Automated design parameter selection for neural networks solving coupled partial differential equations with discontinuities publication-title: J Franklin Inst – volume: 7 start-page: 4056 year: 2018 end-page: 4066 ident: CR186 article-title: Machine learning and uncertainty quantification for surrogate models of integrated devices with a large number of parameters publication-title: IEEE Access – volume: 37 start-page: 279 issue: 3 year: 2009 end-page: 294 ident: CR3 article-title: Ensemble of metamodels with optimized weight factors publication-title: Struct Multidisc Optim – volume: 63 start-page: 1687 issue: 4 year: 2021 end-page: 1707 ident: CR158 article-title: Accelerating gradient-based topology optimization design with dual-model artificial neural networks publication-title: Struct Multidisc Optim – volume: 155 start-page: 91 year: 2018 end-page: 101 ident: CR58 article-title: Metamodel-based design optimization of structural one-way slabs based on deep learning neural networks to reduce environmental impact publication-title: Eng Struct – volume: 62 start-page: 3796 issue: 10 year: 2011 end-page: 3811 ident: CR106 article-title: Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: A survey publication-title: Comput Math Appl – ident: CR180 – volume: 52 start-page: 065501 issue: 6 year: 2020 ident: CR78 article-title: CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers publication-title: Fluid Dyn Res – ident: CR146 – ident: CR23 – volume: 141 start-page: 021705 issue: 2 year: 2019 ident: CR135 article-title: Knowledge-based design of artificial neural network topology for additive manufacturing process modeling: A new approach and case study for fused deposition modeling publication-title: J Mech Des – volume: 141 start-page: 111402 issue: 11 year: 2019 ident: CR20 article-title: Globally approximate gaussian processes for big data with application to data-driven metamaterials design publication-title: J Mech Des – ident: CR130 – ident: CR17 – volume: 142 start-page: 061701 issue: 6 year: 2020 ident: CR118 article-title: A deep reinforcement learning approach for global routing publication-title: J Mech Des – ident: CR107 – ident: CR28 – ident: CR141 – volume: 141 start-page: 121405 issue: 12 year: 2019 ident: CR68 article-title: A machine learning enabled multi-fidelity platform for the integrated design of aircraft systems publication-title: J Mech Des – volume: 233 start-page: 5863 issue: 16 year: 2019 ident: 3369_CR179 publication-title: Proc Inst Mech Eng, Part G: J Aeros Eng doi: 10.1177/0954410019864485 – volume: 8 start-page: 1170 issue: 9 year: 2020 ident: 3369_CR125 publication-title: Processes doi: 10.3390/pr8091170 – volume: 64 start-page: 3473 issue: 6 year: 2021 ident: 3369_CR18 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-021-03028-5 – volume: 20 start-page: 215 issue: 2 year: 1958 ident: 3369_CR43 publication-title: J Roy Stat Soc: Ser B (methodol) doi: 10.1111/j.2517-6161.1958.tb00292.x – volume: 81 start-page: 203 issue: 1 year: 2021 ident: 3369_CR134 publication-title: J Global Optim doi: 10.1007/s10898-020-00912-0 – volume: 373 start-page: 113485 year: 2021 ident: 3369_CR211 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113485 – ident: 3369_CR201 doi: 10.1007/s00158-021-02926-y – volume: 141 start-page: 121405 issue: 12 year: 2019 ident: 3369_CR68 publication-title: J Mech Des doi: 10.1115/1.4044401 – volume: 141 start-page: 114502 issue: 11 year: 2019 ident: 3369_CR124 publication-title: J Mech Des doi: 10.1115/1.4044228 – volume: 47 start-page: 479 issue: 4 year: 2013 ident: 3369_CR174 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-012-0857-6 – ident: 3369_CR193 doi: 10.1080/0305215X.2021.1902998 – volume-title: Modern factor analysis year: 1976 ident: 3369_CR76 – volume: 111 start-page: 115 year: 2018 ident: 3369_CR140 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2017.12.015 – volume: 142 start-page: 061701 issue: 6 year: 2020 ident: 3369_CR118 publication-title: J Mech Des doi: 10.1115/1.4045044 – volume: 60 start-page: 550 issue: 3 year: 2018 ident: 3369_CR151 publication-title: SIAM Rev doi: 10.1137/16M1082469 – ident: 3369_CR183 doi: 10.7763/IJMO.2019.V9.714 – volume: 45 start-page: 101 issue: 1 year: 2012 ident: 3369_CR153 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-011-0666-3 – volume: 40 start-page: 6438 issue: 16 year: 2013 ident: 3369_CR73 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.05.053 – volume: 167 year: 2020 ident: 3369_CR8 publication-title: J Syst Softw doi: 10.1016/j.jss.2020.110617 – volume: 62 start-page: 3127 issue: 6 year: 2020 ident: 3369_CR36 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02659-4 – ident: 3369_CR44 – volume: 36 start-page: 1837 issue: 6 year: 2020 ident: 3369_CR62 publication-title: Qual Reliab Eng Int doi: 10.1002/qre.2579 – ident: 3369_CR111 doi: 10.1109/BigData.2017.8258307 – ident: 3369_CR23 doi: 10.1115/DETC2016-60091 – volume: 141 start-page: 121403 issue: 12 year: 2019 ident: 3369_CR122 publication-title: J Mech Des doi: 10.1115/1.4044400 – volume: 143 start-page: 031715 issue: 3 year: 2021 ident: 3369_CR139 publication-title: J Mech Des doi: 10.1115/1.4049533 – volume: 53 start-page: 275105 issue: 27 year: 2020 ident: 3369_CR169 publication-title: J Phys D Appl Phys doi: 10.1088/1361-6463/ab8036 – volume: 63 start-page: 1135 issue: 3 year: 2021 ident: 3369_CR32 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02748-4 – volume: 477 start-page: 20210495 issue: 2253 year: 2021 ident: 3369_CR154 publication-title: Proce Royal Soc A doi: 10.1098/rspa.2021.0495 – volume: 143 start-page: 031703 issue: 3 year: 2021 ident: 3369_CR34 publication-title: J Mech Des doi: 10.1115/1.4048626 – ident: 3369_CR143 – ident: 3369_CR132 doi: 10.1615/Int.J.UncertaintyQuantification.2020031957 – volume: 374 start-page: 113575 year: 2021 ident: 3369_CR123 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113575 – volume: 7 start-page: 179 issue: 2 year: 1936 ident: 3369_CR59 publication-title: Ann Eugen doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 8 start-page: 292 issue: 3 year: 2019 ident: 3369_CR6 publication-title: Electronics doi: 10.3390/electronics8030292 – ident: 3369_CR74 – volume: 56 start-page: 139 issue: 1 year: 2017 ident: 3369_CR65 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-017-1653-0 – ident: 3369_CR71 doi: 10.1007/978-3-662-39778-7_10 – volume: 35 start-page: 29 issue: 1 year: 2008 ident: 3369_CR108 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-007-0110-x – ident: 3369_CR180 – volume: 141 start-page: 111101 issue: 11 year: 2019 ident: 3369_CR98 publication-title: J Mech Des doi: 10.1115/1.4043678 – volume: 141 start-page: 111404 issue: 11 year: 2019 ident: 3369_CR142 publication-title: J Mech Des doi: 10.1115/1.4044077 – volume: 2 start-page: 47 issue: 1 year: 2009 ident: 3369_CR173 publication-title: Int J Des Eng – volume: 60 start-page: 1709 issue: 4 year: 2019 ident: 3369_CR206 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-019-02276-w – volume: 11 start-page: 1359 issue: 7 year: 2020 ident: 3369_CR172 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-019-01044-y – volume: 62 start-page: 1185 issue: 3 year: 2020 ident: 3369_CR91 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02545-z – volume: 135 year: 2021 ident: 3369_CR15 publication-title: Comput Aided Des doi: 10.1016/j.cad.2021.103014 – volume: 55 start-page: 2215 issue: 7 year: 2017 ident: 3369_CR171 publication-title: AIAA J doi: 10.2514/1.J055595 – volume: 142 start-page: 011402 issue: 1 year: 2020 ident: 3369_CR137 publication-title: J Mech Des doi: 10.1115/1.4044332 – volume: 61 start-page: 2363 issue: 6 year: 2020 ident: 3369_CR168 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02522-6 – volume: 37 start-page: 279 issue: 3 year: 2009 ident: 3369_CR3 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-008-0230-y – volume: 7 start-page: 1902607 issue: 5 year: 2020 ident: 3369_CR35 publication-title: Adv Sci doi: 10.1002/advs.201902607 – volume: 51 start-page: 1284 issue: 6 year: 2013 ident: 3369_CR129 publication-title: AIAA J doi: 10.2514/1.J051573 – volume: 92 start-page: 722 year: 2019 ident: 3369_CR182 publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2019.07.002 – volume: 1 start-page: 193 issue: 4 year: 1989 ident: 3369_CR16 publication-title: Struct Optim doi: 10.1007/BF01650949 – ident: 3369_CR147 doi: 10.1109/ICDS47004.2019.8942318 – volume: 14 start-page: 989 issue: 4 year: 2020 ident: 3369_CR101 publication-title: Optim Lett doi: 10.1007/s11590-019-01428-7 – volume: 225 start-page: 111327 year: 2020 ident: 3369_CR138 publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111327 – volume: 5 start-page: 115 issue: 4 year: 1943 ident: 3369_CR126 publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – ident: 3369_CR202 – ident: 3369_CR199 doi: 10.1109/IJCNN.2018.8489043 – volume: 55 start-page: 1 issue: 6 year: 2019 ident: 3369_CR50 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2019.2899934 – ident: 3369_CR69 – ident: 3369_CR163 doi: 10.1007/978-3-540-28650-9_4 – volume: 198 start-page: 105887 year: 2020 ident: 3369_CR110 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.105887 – volume: 58 start-page: 1304 issue: 3 year: 2020 ident: 3369_CR80 publication-title: AIAA J doi: 10.2514/1.J058853 – volume: 66 start-page: 449 year: 2020 ident: 3369_CR47 publication-title: Comput Mech doi: 10.1007/s00466-020-01859-5 – ident: 3369_CR159 – ident: 3369_CR192 – volume: 42 start-page: 287 issue: 3 year: 2001 ident: 3369_CR164 publication-title: Mach Learn doi: 10.1023/A:1007618119488 – volume: 401 start-page: 109020 year: 2020 ident: 3369_CR128 publication-title: J Comput Phys doi: 10.1016/j.jcp.2019.109020 – volume: 141 start-page: 111402 issue: 11 year: 2019 ident: 3369_CR20 publication-title: J Mech Des doi: 10.1115/1.4044257 – volume: 63 start-page: 1927 issue: 4 year: 2021 ident: 3369_CR10 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02788-w – volume: 191 start-page: 106462 year: 2019 ident: 3369_CR99 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2019.106462 – ident: 3369_CR102 – volume: 33 start-page: 199 issue: 3 year: 2007 ident: 3369_CR70 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-006-0051-9 – volume: 59 start-page: 1521 issue: 5 year: 2019 ident: 3369_CR40 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-018-2145-6 – volume: 34 start-page: 215 issue: 4 year: 2019 ident: 3369_CR175 publication-title: Russ J Numer Anal Math Model doi: 10.1515/rnam-2019-0018 – ident: 3369_CR198 – ident: 3369_CR38 doi: 10.1145/2939672.2939785 – ident: 3369_CR148 doi: 10.1109/SSCI47803.2020.9308255 – volume: 31 start-page: 085101 issue: 8 year: 2019 ident: 3369_CR150 publication-title: Phys Fluids doi: 10.1063/1.5113494 – volume-title: Neural networks for pattern recognition year: 1995 ident: 3369_CR19 doi: 10.1093/oso/9780198538493.001.0001 – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 3369_CR100 publication-title: Adv Model Simul Eng Sci doi: 10.1186/s40323-020-00176-z – ident: 3369_CR205 doi: 10.1007/s00158-021-02851-0 – volume: 9 start-page: 1059 issue: 5 year: 2020 ident: 3369_CR86 publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0330 – ident: 3369_CR144 doi: 10.1115/1.4044229 – volume: 60 start-page: 897 issue: 4 year: 1938 ident: 3369_CR194 publication-title: Am J Math doi: 10.2307/2371268 – volume: 378 start-page: 686 year: 2019 ident: 3369_CR162 publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.10.045 – volume: 375 start-page: 112739 year: 2021 ident: 3369_CR41 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2019.112739 – ident: 3369_CR39 doi: 10.2514/6.2019-2351 – volume: 62 start-page: 3796 issue: 10 year: 2011 ident: 3369_CR106 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2011.09.028 – ident: 3369_CR136 – volume: 149 start-page: 102841 year: 2020 ident: 3369_CR87 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2020.102841 – volume: 64 start-page: 395 issue: 2 year: 2019 ident: 3369_CR81 publication-title: Comput Mech doi: 10.1007/s00466-019-01739-7 – ident: 3369_CR107 doi: 10.2514/6.2019-2990 – volume: 244 start-page: 106457 year: 2021 ident: 3369_CR52 publication-title: Comput Struct doi: 10.1016/j.compstruc.2020.106457 – ident: 3369_CR14 – volume: 142 start-page: 071701 issue: 7 year: 2020 ident: 3369_CR170 publication-title: J Mech Des doi: 10.1115/1.4045419 – volume: 57 start-page: 238 issue: 3 year: 1989 ident: 3369_CR60 publication-title: Inter Stat Rev/revue Internationale De Statistique – volume: 52 start-page: 1136 issue: 7 year: 2020 ident: 3369_CR176 publication-title: Eng Optim doi: 10.1080/0305215X.2019.1646258 – ident: 3369_CR196 doi: 10.1115/1.4044199 – ident: 3369_CR24 – ident: 3369_CR160 doi: 10.1115/1.4044256 – volume: 350 start-page: 300 issue: 2 year: 2013 ident: 3369_CR127 publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2012.11.003 – volume: 113 start-page: 107909 year: 2021 ident: 3369_CR33 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107909 – volume: 109 year: 2019 ident: 3369_CR120 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2019.104368 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 3369_CR165 publication-title: Nature doi: 10.1038/323533a0 – volume: 60 start-page: 527 issue: 2 year: 2019 ident: 3369_CR209 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-019-02222-w – ident: 3369_CR21 doi: 10.1007/978-3-642-21551-3_33 – ident: 3369_CR141 – volume: 345 start-page: 363 year: 2019 ident: 3369_CR27 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.10.046 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 3369_CR42 publication-title: Mach Learn doi: 10.1007/BF00994018 – ident: 3369_CR48 doi: 10.1115/DETC2018-86333 – ident: 3369_CR130 – volume: 53 start-page: 2108 issue: 12 year: 2021 ident: 3369_CR189 publication-title: Eng Optim doi: 10.1080/0305215X.2020.1846031 – volume: 39 start-page: 311 issue: 3 year: 2009 ident: 3369_CR4 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-008-0327-3 – volume: 59 start-page: 1075 issue: 4 year: 2019 ident: 3369_CR75 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-019-02211-z – ident: 3369_CR46 doi: 10.21203/rs.3.rs-146826/v1 – volume: 97 start-page: 103 year: 2018 ident: 3369_CR119 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2018.07.001 – ident: 3369_CR117 – volume: 46 start-page: 1803 issue: 7 year: 2008 ident: 3369_CR7 publication-title: AIAA J doi: 10.2514/1.35374 – ident: 3369_CR146 doi: 10.1115/1.4044690 – volume: 363 start-page: 112892 year: 2020 ident: 3369_CR204 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.112892 – volume: 155 start-page: 91 year: 2018 ident: 3369_CR58 publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.11.005 – volume: 84 start-page: 880 year: 2019 ident: 3369_CR105 publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2018.11.014 – ident: 3369_CR28 doi: 10.1007/978-94-011-2787-5_35 – volume: 80 start-page: 17391 issue: 11 year: 2021 ident: 3369_CR114 publication-title: Mult Tools Appl doi: 10.1007/s11042-020-09142-8 – volume: 357 start-page: 125 year: 2018 ident: 3369_CR161 publication-title: J Comput Phys doi: 10.1016/j.jcp.2017.11.039 – volume: 78 start-page: 141 year: 2015 ident: 3369_CR12 publication-title: Prog Nucl Energy doi: 10.1016/j.pnucene.2014.08.006 – volume: 25 start-page: 1189 year: 2001 ident: 3369_CR63 publication-title: Annal Stat – volume: 354 start-page: 493 year: 2018 ident: 3369_CR31 publication-title: J Comput Phys doi: 10.1016/j.jcp.2017.10.034 – volume: 138 start-page: 071404 issue: 7 year: 2016 ident: 3369_CR22 publication-title: J Mech Des doi: 10.1115/1.4033427 – volume: 62 start-page: 1313 year: 2020 ident: 3369_CR88 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02559-7 – ident: 3369_CR92 doi: 10.2514/6.2018-3882 – volume: 30 start-page: 3146 year: 2017 ident: 3369_CR96 publication-title: Adv Neural Inf Process Syst – volume: 22 start-page: 1022 issue: 9 year: 2020 ident: 3369_CR79 publication-title: Entropy doi: 10.3390/e22091022 – volume: 20 start-page: 1 issue: 1 year: 2019 ident: 3369_CR45 publication-title: Sens Imag doi: 10.1007/s11220-018-0222-y – ident: 3369_CR13 – volume: 2 start-page: 015002 issue: 1 year: 2020 ident: 3369_CR25 publication-title: Mach Learn: Sci Technol – volume: 7 start-page: 105 year: 2019 ident: 3369_CR82 publication-title: Front Environ Sci doi: 10.3389/fenvs.2019.00105 – volume: 86 start-page: 011004 issue: 1 year: 2019 ident: 3369_CR113 publication-title: J Appl Mech doi: 10.1115/1.4041319 – ident: 3369_CR112 doi: 10.1115/1.4053469 – volume: 237 start-page: 106283 year: 2020 ident: 3369_CR1 publication-title: Comput Struct doi: 10.1016/j.compstruc.2020.106283 – volume: 1 start-page: 119 issue: 2 year: 1988 ident: 3369_CR64 publication-title: Neural Netw doi: 10.1016/0893-6080(88)90014-7 – volume: 1 start-page: 111 issue: 4 year: 2011 ident: 3369_CR94 publication-title: Int J Artif Intel Exp Sys – volume: 51 start-page: 1370 issue: 8 year: 2019 ident: 3369_CR155 publication-title: Eng Optim doi: 10.1080/0305215X.2018.1519559 – volume: 4 start-page: 10 issue: 2 year: 2020 ident: 3369_CR178 publication-title: Designs doi: 10.3390/designs4020010 – volume: 118 start-page: e2101784118 issue: 21 year: 2021 ident: 3369_CR103 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.2101784118 – volume: 141 start-page: 111401 issue: 11 year: 2019 ident: 3369_CR109 publication-title: J Mech Des doi: 10.1115/1.4044397 – ident: 3369_CR157 doi: 10.1017/dsd.2020.42 – volume: 6 start-page: 041006 issue: 4 year: 2020 ident: 3369_CR72 publication-title: ASME J Risk Uncertainty Part B doi: 10.1115/1.4047636 – volume: 55 start-page: 1 issue: 6 year: 2019 ident: 3369_CR166 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2019.2901906 – volume: 59 start-page: 87 issue: 1 year: 2019 ident: 3369_CR167 publication-title: Int J Appl Electromagnet Mech doi: 10.3233/JAE-171164 – volume: 141 start-page: 021705 issue: 2 year: 2019 ident: 3369_CR135 publication-title: J Mech Des doi: 10.1115/1.4042084 – ident: 3369_CR188 – volume: 57 start-page: 383 issue: 3 year: 1995 ident: 3369_CR5 publication-title: Comput Struct doi: 10.1016/0045-7949(95)00048-L – ident: 3369_CR77 – volume: 3 start-page: 422 issue: 6 year: 2021 ident: 3369_CR95 publication-title: Physics – ident: 3369_CR66 – ident: 3369_CR11 – ident: 3369_CR145 doi: 10.1115/1.0003772V – volume: 426 start-page: 109942 year: 2021 ident: 3369_CR30 publication-title: J Comput Phys doi: 10.1016/j.jcp.2020.109942 – ident: 3369_CR200 doi: 10.1002/nme.6809 – volume: 32 start-page: 361 issue: 5 year: 2017 ident: 3369_CR29 publication-title: Comput-Aided Civ Inf Eng doi: 10.1111/mice.12263 – volume: 68 start-page: 97 year: 2017 ident: 3369_CR177 publication-title: Struct Saf doi: 10.1016/j.strusafe.2017.06.003 – ident: 3369_CR195 doi: 10.7551/mitpress/3206.001.0001 – volume: 7 start-page: 4056 year: 2018 ident: 3369_CR186 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2888903 – volume: 59 start-page: 787 issue: 3 year: 2019 ident: 3369_CR207 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-018-2101-5 – ident: 3369_CR57 – volume: 32 start-page: 6393 issue: 10 year: 2020 ident: 3369_CR152 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04146-4 – volume: 143 start-page: 031702 issue: 3 year: 2021 ident: 3369_CR115 publication-title: J Mech Des doi: 10.1115/1.4048625 – volume: 388 start-page: 114197 year: 2022 ident: 3369_CR54 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.114197 – volume: 3 start-page: 4 year: 2020 ident: 3369_CR55 publication-title: Front Artif Intel doi: 10.3389/frai.2020.00004 – ident: 3369_CR121 doi: 10.4271/2015-01-1369 – volume: 112 start-page: 1801 issue: 12 year: 2017 ident: 3369_CR185 publication-title: Int J Numer Meth Eng doi: 10.1002/nme.5583 – volume: 375 start-page: 565 year: 2018 ident: 3369_CR187 publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.08.036 – volume: 19 start-page: 5366 issue: 8 year: 2019 ident: 3369_CR85 publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b01857 – volume: 196 start-page: 109098 year: 2020 ident: 3369_CR104 publication-title: Mater Des doi: 10.1016/j.matdes.2020.109098 – volume: 130 start-page: 102947 year: 2021 ident: 3369_CR97 publication-title: Comput Aided Des doi: 10.1016/j.cad.2020.102947 – volume: 386 year: 2021 ident: 3369_CR212 publication-title: Comput Method Appl Mech Eng doi: 10.1016/j.cma.2021.114083 – volume: 8 start-page: 36 issue: 1 year: 2020 ident: 3369_CR83 publication-title: Int J Comput Methods Exp Meas – volume: 52 start-page: 065501 issue: 6 year: 2020 ident: 3369_CR78 publication-title: Fluid Dyn Res doi: 10.1088/1873-7005/abb91d – volume: 44 start-page: 591 year: 2020 ident: 3369_CR90 publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2020.02.251 – ident: 3369_CR84 – volume: 63 start-page: 915 issue: 2 year: 2021 ident: 3369_CR190 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02797-9 – volume: 109 start-page: 12 year: 2019 ident: 3369_CR26 publication-title: Comput-Aided Des doi: 10.1016/j.cad.2018.12.008 – volume: 63 start-page: 1687 issue: 4 year: 2021 ident: 3369_CR158 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02770-6 – volume: 122 start-page: 7182 issue: 23 year: 2021 ident: 3369_CR2 publication-title: Int J Numer Meth Eng doi: 10.1002/nme.6828 – ident: 3369_CR17 – volume: 116 start-page: 26414 issue: 52 year: 2019 ident: 3369_CR133 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1911815116 – volume: 45 start-page: 529 issue: 4 year: 2012 ident: 3369_CR149 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-011-0711-2 – ident: 3369_CR51 – volume: 2 start-page: 1 issue: 4 year: 2021 ident: 3369_CR9 publication-title: SN Computer Science doi: 10.1007/s42979-021-00702-9 – volume-title: Introduction to linear regression analysis year: 2021 ident: 3369_CR131 – volume: 169 start-page: 422 year: 2018 ident: 3369_CR197 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.09.029 – volume: 53 start-page: 102 year: 2016 ident: 3369_CR49 publication-title: Int J Ind Ergon doi: 10.1016/j.ergon.2015.11.005 – volume-title: Engineering design via surrogate modelling: a practical guide year: 2008 ident: 3369_CR61 doi: 10.1002/9780470770801 – volume: 43 start-page: A1134 issue: 2 year: 2021 ident: 3369_CR156 publication-title: SIAM J Sci Comput doi: 10.1137/20M1349965 – volume: 54 start-page: 255 issue: 3 year: 2004 ident: 3369_CR53 publication-title: Mach Learn doi: 10.1023/B:MACH.0000015881.36452.6e – volume: 64 start-page: 417 issue: 2 year: 2019 ident: 3369_CR203 publication-title: Comput Mech doi: 10.1007/s00466-019-01718-y – ident: 3369_CR93 doi: 10.1177/09544100211022244 – ident: 3369_CR67 – volume: 115 start-page: 172 year: 2019 ident: 3369_CR116 publication-title: Comput Aided Des doi: 10.1016/j.cad.2019.05.038 – volume: 59 start-page: 868 issue: 3 year: 2021 ident: 3369_CR210 publication-title: AIAA J doi: 10.2514/1.J059877 – volume: 61 start-page: 1417 issue: 4 year: 2020 ident: 3369_CR181 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-019-02424-2 – volume: 8 start-page: 190710 year: 2020 ident: 3369_CR208 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3032280 – ident: 3369_CR37 doi: 10.1115/DETC2020-22729 – volume: 62 start-page: 1071 issue: 3 year: 2020 ident: 3369_CR184 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02665-6 – volume: 372 start-page: 113401 year: 2020 ident: 3369_CR89 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113401 – volume: 280 start-page: 114949 year: 2022 ident: 3369_CR191 publication-title: Compos Struct doi: 10.1016/j.compstruct.2021.114949 – volume: 6 start-page: 2809 issue: 59 year: 2021 ident: 3369_CR56 publication-title: J Open Source Soft doi: 10.21105/joss.02809 |
| SSID | ssj0008049 |
| Score | 2.5399745 |
| SecondaryResourceType | review_article |
| Snippet | Machine Learning (ML) techniques have been used in an extensive range of applications in the field of structural and multidisciplinary optimization over the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Computational Mathematics and Numerical Analysis Design optimization Engineering Engineering Design Fluid mechanics Keywords Literature reviews Machine learning Mechanical engineering Neural networks Review Paper Software utilities Structural design Theoretical and Applied Mechanics |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PejB3-J0Sg7eNNgfadOcZIjDgwxBhd5KkiYycO1c58D_3iRNuym4i6ce2obS772XL8l73wPgEoeCKE9GKIxjjjS_pYhLvWqVxOOUCaWNykrmP5LhMElT-uQ23CqXVtnERBuo81KYPfKbgOgYi7VrxreTD2S6RpnTVddCYx1sGJUE36buPbeROKnpryE1yMckdUUztnTOkIUEmVx2LwxjiujPiWnBNn8dkNp5Z7D73y_eAzuOccJ-bSL7YE0WB2B7SYfwEKR9WH1O5_ILlgqObXqlhK6fxBtsZV4rOCpgLThrxDogK3JoExKXS3thqYPQ2FV3HoHXwf3L3QNyLReQ0L44Q1JP4UTiiMUiYYRSfWURV7EMc6EChnmAeeIxFROZaK5CsF6Q-LnnMcKkYFiFx6BTlIU8ATAPI675XJ5jTjGJCNPUg_g5wUwwxQTuAr_535lweuSmLcZ71iopW4wyjVFmMcpoF1y170xqNY6VT_caYDLnmVW2QKULrhtoF7f_Hu109WhnYCuw1mTSz3qgo8GQ52BTzGejanph7fIbf33pEw priority: 102 providerName: ProQuest |
| Title | A survey of machine learning techniques in structural and multidisciplinary optimization |
| URI | https://link.springer.com/article/10.1007/s00158-022-03369-9 https://www.proquest.com/docview/2712349116 |
| Volume | 65 |
| WOSCitedRecordID | wos000852375400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1615-1488 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: M7S dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1615-1488 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1615-1488 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: RSV dateStart: 20000301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o5kEPfovTOXLwpoF-pE1znLLhQcbYVHoraZrKwHWyzoH_vUn6sSkq6KmHpqG89_LeL-T3fgG4JK6gqSU97Pp-jBW-ZTiWatcqqRUzLlIVVEYy_54OBkEYsmHZFJZXbPfqSNJk6rrZTZf3AGv2ueW6PsNsE5qq3FEdy6PxU51_gwL0aiiDbULDslXm-zk-l6MVxvxyLGqqTX_vf_-5D7slukTdIhwOYENmh7Czpjl4BGEX5W_zpXxHsxRNDZVSovLuiGdUS7rmaJKhQlxWC3MgniXIkA_X23jRTCWcadnJeQyP_d7D7R0ur1fAQq27BZaqXFNJPO6LgFPG1JN7cepLNxGpw0nskDiweOpTGShcQonafNiJZXHKpeAkdU-gkc0yeQoocb1YYbckITEj1KNcwQxqJ5RwwVMuSAvsysqRKLXH9RUYL1GtmmysFimrRcZqEWvBVf3Na6G88evoduW8qFyFeeRQVZeJSud-C64rZ61e_zzb2d-Gn8O2Y_ytqWdtaCjnyAvYEsvFJJ93oHnTGwxHHU0rHXdMrH4AgoLhwQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gXrwLa7PHPSkwW6bNs1BRHyguC6CCnuraZrKgnZ1uyr-KX-jk7TdVUFvHjz10CbQzpeZL83MNwCbzFM8dbRPvSCIKfJbQWONu1bNnVhIlSKorGR-gzebYaslLofgvaqFMWmVlU-0jjrpKPOPfNfl6GMZLs1g__GJmq5R5nS1aqFRwOJcv73ili3fOztC-2657snx9eEpLbsKUIVw61GNUYpr5stAhZILgVfpx2mgvUSlrmSxy-LQkWnAdYjhmDPk3PXEcSSXWkmWejjvMIwijXBDmyp41ff8YUG3DYmidcZbZZGOLdUz5CSkJnfe8bxAUPE1EA7Y7bcDWRvnTqb_2xeagamSUZODYgnMwpDO5mDyk87iPLQOSP7cfdFvpJOSB5s-qknZL-OO9GVsc9LOSCGoa8RIiMwSYhMuP5cukw462YeyenUBbv7k1RZhJOtkeglI4vkx8tUkYbFg3OcSqRWvJ5xJJVOpWA3qlX0jVeqtm7Yf91FfKdpiIkJMRBYTkajBdn_MY6E28uvTqxUQotLz5NEABTXYqaA0uP3zbMu_z7YB46fXF42ocdY8X4EJ1yLZpNqtwggaRq_BmHrptfPuul0TBG7_GmIf4fxHeg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-K85sE3DeslbZrHoQ7FMYY39lbSNJGB68Y6B_570_SyKSqIT31oGso5J-d8Ief7AnBGXEGVJT3s-n6ENb5lOJJ61yqpFTEulA4qI5nfpp1O0Oux7hyL33S7l0eSOachU2lKJo1RrBoV8S0r9QHOOtEt1_UZZouwRGwryNTz7x-eq1wc5AA4gzXYJrRX0Ga-n-NzaZrhzS9HpKbytDb-_8-bsF6gTtTMw2QLFmSyDWtzWoQ70Gui9G08le9oqNDAtFhKVNwp8YIqqdcU9ROUi85mgh2IJzEyTYnz9F401IloUDA8d-Gpdf14eYOLaxew0OtxgqUu41QSj_si4JQx_eRepHzpxkI5nEQOiQKLK5_KQOMVSvSmxI4ti1MuBSfK3YNaMkzkPqDY9SKN6eKYRIxQj3INP6gdU8IFV1yQOtilxUNRaJJnV2O8hpWasrFaqK0WGquFrA7n1TejXJHj19FHpSPDYnWmoUN1vSY6zft1uCgdN3v982wHfxt-Civdq1bYvu3cHcKqY1yfdacdQU37SR7DsphO-un4xATtByPb6u4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+machine+learning+techniques+in+structural+and+multidisciplinary+optimization&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Ramu%2C+Palaniappan&rft.au=Thananjayan%2C+Pugazhenthi&rft.au=Acar%2C+Erdem&rft.au=Bayrak%2C+Gamze&rft.date=2022-09-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=65&rft.issue=9&rft_id=info:doi/10.1007%2Fs00158-022-03369-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_022_03369_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |