A survey of machine learning techniques in structural and multidisciplinary optimization

Machine Learning (ML) techniques have been used in an extensive range of applications in the field of structural and multidisciplinary optimization over the last few years. This paper presents a survey of this wide but disjointed literature on ML techniques in the structural and multidisciplinary op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization Jg. 65; H. 9
Hauptverfasser: Ramu, Palaniappan, Thananjayan, Pugazhenthi, Acar, Erdem, Bayrak, Gamze, Park, Jeong Woo, Lee, Ikjin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Springer Nature B.V
Schlagworte:
ISSN:1615-147X, 1615-1488
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Machine Learning (ML) techniques have been used in an extensive range of applications in the field of structural and multidisciplinary optimization over the last few years. This paper presents a survey of this wide but disjointed literature on ML techniques in the structural and multidisciplinary optimization field. First, we discuss the challenges associated with conventional optimization and how Machine learning can address them. Then, we review the literature in the context of how ML can accelerate design synthesis and optimization. Some real-life engineering applications in structural design, material design, fluid mechanics, aerodynamics, heat transfer, and multidisciplinary design are summarized, and a brief list of widely used open-source codes as well as commercial packages are provided. Finally, the survey culminates with some concluding remarks and future research suggestions. For the sake of completeness, categories of ML problems, algorithms, and paradigms are presented in the Appendix.
AbstractList Machine Learning (ML) techniques have been used in an extensive range of applications in the field of structural and multidisciplinary optimization over the last few years. This paper presents a survey of this wide but disjointed literature on ML techniques in the structural and multidisciplinary optimization field. First, we discuss the challenges associated with conventional optimization and how Machine learning can address them. Then, we review the literature in the context of how ML can accelerate design synthesis and optimization. Some real-life engineering applications in structural design, material design, fluid mechanics, aerodynamics, heat transfer, and multidisciplinary design are summarized, and a brief list of widely used open-source codes as well as commercial packages are provided. Finally, the survey culminates with some concluding remarks and future research suggestions. For the sake of completeness, categories of ML problems, algorithms, and paradigms are presented in the Appendix.
ArticleNumber 266
Author Ramu, Palaniappan
Acar, Erdem
Bayrak, Gamze
Park, Jeong Woo
Lee, Ikjin
Thananjayan, Pugazhenthi
Author_xml – sequence: 1
  givenname: Palaniappan
  surname: Ramu
  fullname: Ramu, Palaniappan
  organization: Advanced Design, Optimization and Probabilistic Techniques Laboratory, Department of Engineering Design, Indian Institute of Technology Madras
– sequence: 2
  givenname: Pugazhenthi
  surname: Thananjayan
  fullname: Thananjayan, Pugazhenthi
  organization: Advanced Design, Optimization and Probabilistic Techniques Laboratory, Department of Engineering Design, Indian Institute of Technology Madras
– sequence: 3
  givenname: Erdem
  surname: Acar
  fullname: Acar, Erdem
  organization: Department of Mechanical Engineering, TOBB University of Economics and Technology
– sequence: 4
  givenname: Gamze
  surname: Bayrak
  fullname: Bayrak, Gamze
  organization: Department of Mechanical Engineering, TOBB University of Economics and Technology
– sequence: 5
  givenname: Jeong Woo
  surname: Park
  fullname: Park, Jeong Woo
  organization: Mechanical Engineering Department, Korea Advanced Institute of Science and Technology
– sequence: 6
  givenname: Ikjin
  orcidid: 0000-0002-3470-7341
  surname: Lee
  fullname: Lee, Ikjin
  email: ikjin.lee@kaist.ac.kr
  organization: Mechanical Engineering Department, Korea Advanced Institute of Science and Technology
BookMark eNp9kEtLAzEUhYNUsK3-AVcB16PJZB7JshRfUHCj0F24zWTalJnMmGQE_fWmHVFw0dW9i_Ode-6ZoYntrEbompJbSkh55wmhOU9ImiaEsUIk4gxNaUHzhGacT373cn2BZt7vCSGcZGKK1gvsB_ehP3FX4xbUzliNGw3OGrvFQaudNe-D9thY7IMbVBgcNBhshduhCaYyXpm-MRZctOiDac0XBNPZS3ReQ-P11c-co7eH-9flU7J6eXxeLlaJYlSERJOUlTrLoVAcSiHihHxTF5pVqk4h26TZhhOoi1LzomBllueCVoRACVpBVrM5uhl9e9cdgga57wZn40mZljRlmaC0iCo-qpTrvHe6lsqEY87gwDSSEnnoUY49ytijPPYoRUTTf2jvTBvfPQ2xEfJRbLfa_aU6QX0D-9yJgQ
CitedBy_id crossref_primary_10_1016_j_engstruct_2025_120300
crossref_primary_10_1177_09544070231226349
crossref_primary_10_1016_j_cma_2024_117665
crossref_primary_10_1093_jcde_qwaf064
crossref_primary_10_1121_10_0034429
crossref_primary_10_1016_j_resconrec_2025_108567
crossref_primary_10_1016_j_cma_2024_117521
crossref_primary_10_1016_j_mtcomm_2025_113057
crossref_primary_10_1016_j_engappai_2025_110906
crossref_primary_10_1016_j_cma_2023_116052
crossref_primary_10_1016_j_jclepro_2024_141410
crossref_primary_10_1016_j_aei_2023_102238
crossref_primary_10_1080_0305215X_2024_2308555
crossref_primary_10_1177_09544070241233776
crossref_primary_10_1007_s00158_023_03574_0
crossref_primary_10_1016_j_matdes_2025_113699
crossref_primary_10_3390_app14177781
crossref_primary_10_1016_j_cma_2025_117837
crossref_primary_10_1016_j_engstruct_2025_120810
crossref_primary_10_1007_s00158_024_03836_5
crossref_primary_10_1007_s00158_024_03957_x
crossref_primary_10_1016_j_amf_2025_200198
crossref_primary_10_1016_j_eswa_2024_125029
crossref_primary_10_1016_j_cma_2023_116146
crossref_primary_10_1016_j_autcon_2025_106283
crossref_primary_10_1007_s00158_025_04130_8
crossref_primary_10_1080_13632469_2024_2424176
crossref_primary_10_1002_msd2_70038
crossref_primary_10_3390_smartcities6040089
crossref_primary_10_1007_s42405_024_00811_8
crossref_primary_10_1039_D3MH00039G
crossref_primary_10_1016_j_enganabound_2024_105855
crossref_primary_10_1007_s00158_024_03888_7
crossref_primary_10_32604_cmes_2024_048118
crossref_primary_10_1007_s00158_025_04030_x
crossref_primary_10_1016_j_cej_2025_162698
crossref_primary_10_1007_s00158_023_03611_y
crossref_primary_10_1007_s00466_024_02565_2
crossref_primary_10_1080_09544828_2024_2366686
crossref_primary_10_3390_ai5040085
crossref_primary_10_1016_j_jobe_2024_111083
Cites_doi 10.1177/0954410019864485
10.3390/pr8091170
10.1007/s00158-021-03028-5
10.1111/j.2517-6161.1958.tb00292.x
10.1007/s10898-020-00912-0
10.1016/j.cma.2020.113485
10.1007/s00158-021-02926-y
10.1115/1.4044401
10.1115/1.4044228
10.1007/s00158-012-0857-6
10.1080/0305215X.2021.1902998
10.1016/j.compchemeng.2017.12.015
10.1115/1.4045044
10.1137/16M1082469
10.7763/IJMO.2019.V9.714
10.1007/s00158-011-0666-3
10.1016/j.eswa.2013.05.053
10.1016/j.jss.2020.110617
10.1007/s00158-020-02659-4
10.1002/qre.2579
10.1109/BigData.2017.8258307
10.1115/DETC2016-60091
10.1115/1.4044400
10.1115/1.4049533
10.1088/1361-6463/ab8036
10.1007/s00158-020-02748-4
10.1098/rspa.2021.0495
10.1115/1.4048626
10.1615/Int.J.UncertaintyQuantification.2020031957
10.1016/j.cma.2020.113575
10.1111/j.1469-1809.1936.tb02137.x
10.3390/electronics8030292
10.1007/s00158-017-1653-0
10.1007/978-3-662-39778-7_10
10.1007/s00158-007-0110-x
10.1115/1.4043678
10.1115/1.4044077
10.1007/s00158-019-02276-w
10.1007/s13042-019-01044-y
10.1007/s00158-020-02545-z
10.1016/j.cad.2021.103014
10.2514/1.J055595
10.1115/1.4044332
10.1007/s00158-020-02522-6
10.1007/s00158-008-0230-y
10.1002/advs.201902607
10.2514/1.J051573
10.1016/j.ast.2019.07.002
10.1007/BF01650949
10.1109/ICDS47004.2019.8942318
10.1007/s11590-019-01428-7
10.1016/j.engstruct.2020.111327
10.1007/BF02478259
10.1109/IJCNN.2018.8489043
10.1109/TMAG.2019.2899934
10.1007/978-3-540-28650-9_4
10.1016/j.knosys.2020.105887
10.2514/1.J058853
10.1007/s00466-020-01859-5
10.1023/A:1007618119488
10.1016/j.jcp.2019.109020
10.1115/1.4044257
10.1007/s00158-020-02788-w
10.1016/j.oceaneng.2019.106462
10.1007/s00158-006-0051-9
10.1007/s00158-018-2145-6
10.1515/rnam-2019-0018
10.1145/2939672.2939785
10.1109/SSCI47803.2020.9308255
10.1063/1.5113494
10.1093/oso/9780198538493.001.0001
10.1186/s40323-020-00176-z
10.1007/s00158-021-02851-0
10.1515/nanoph-2019-0330
10.1115/1.4044229
10.2307/2371268
10.1016/j.jcp.2018.10.045
10.1016/j.cma.2019.112739
10.2514/6.2019-2351
10.1016/j.camwa.2011.09.028
10.1016/j.advengsoft.2020.102841
10.1007/s00466-019-01739-7
10.2514/6.2019-2990
10.1016/j.compstruc.2020.106457
10.1115/1.4045419
10.1080/0305215X.2019.1646258
10.1115/1.4044199
10.1115/1.4044256
10.1016/j.jfranklin.2012.11.003
10.1016/j.asoc.2021.107909
10.1016/j.icheatmasstransfer.2019.104368
10.1038/323533a0
10.1007/s00158-019-02222-w
10.1007/978-3-642-21551-3_33
10.1016/j.cma.2018.10.046
10.1007/BF00994018
10.1115/DETC2018-86333
10.1080/0305215X.2020.1846031
10.1007/s00158-008-0327-3
10.1007/s00158-019-02211-z
10.21203/rs.3.rs-146826/v1
10.1016/j.icheatmasstransfer.2018.07.001
10.2514/1.35374
10.1115/1.4044690
10.1016/j.cma.2020.112892
10.1016/j.engstruct.2017.11.005
10.1016/j.ast.2018.11.014
10.1007/978-94-011-2787-5_35
10.1007/s11042-020-09142-8
10.1016/j.jcp.2017.11.039
10.1016/j.pnucene.2014.08.006
10.1016/j.jcp.2017.10.034
10.1115/1.4033427
10.1007/s00158-020-02559-7
10.2514/6.2018-3882
10.3390/e22091022
10.1007/s11220-018-0222-y
10.3389/fenvs.2019.00105
10.1115/1.4041319
10.1115/1.4053469
10.1016/j.compstruc.2020.106283
10.1016/0893-6080(88)90014-7
10.1080/0305215X.2018.1519559
10.3390/designs4020010
10.1073/pnas.2101784118
10.1115/1.4044397
10.1017/dsd.2020.42
10.1115/1.4047636
10.1109/TMAG.2019.2901906
10.3233/JAE-171164
10.1115/1.4042084
10.1016/0045-7949(95)00048-L
10.1115/1.0003772V
10.1016/j.jcp.2020.109942
10.1002/nme.6809
10.1111/mice.12263
10.1016/j.strusafe.2017.06.003
10.7551/mitpress/3206.001.0001
10.1109/ACCESS.2018.2888903
10.1007/s00158-018-2101-5
10.1007/s00521-019-04146-4
10.1115/1.4048625
10.1016/j.cma.2021.114197
10.3389/frai.2020.00004
10.4271/2015-01-1369
10.1002/nme.5583
10.1016/j.jcp.2018.08.036
10.1021/acs.nanolett.9b01857
10.1016/j.matdes.2020.109098
10.1016/j.cad.2020.102947
10.1016/j.cma.2021.114083
10.1088/1873-7005/abb91d
10.1016/j.promfg.2020.02.251
10.1007/s00158-020-02797-9
10.1016/j.cad.2018.12.008
10.1007/s00158-020-02770-6
10.1002/nme.6828
10.1073/pnas.1911815116
10.1007/s00158-011-0711-2
10.1007/s42979-021-00702-9
10.1016/j.ress.2017.09.029
10.1016/j.ergon.2015.11.005
10.1002/9780470770801
10.1137/20M1349965
10.1023/B:MACH.0000015881.36452.6e
10.1007/s00466-019-01718-y
10.1177/09544100211022244
10.1016/j.cad.2019.05.038
10.2514/1.J059877
10.1007/s00158-019-02424-2
10.1109/ACCESS.2020.3032280
10.1115/DETC2020-22729
10.1007/s00158-020-02665-6
10.1016/j.cma.2020.113401
10.1016/j.compstruct.2021.114949
10.21105/joss.02809
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00158-022-03369-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
ExternalDocumentID 10_1007_s00158_022_03369_9
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-e0237e45a6c8a799a6ca5bf6e3dcf2a4b24b80af67e8663745591d00a7aeca4f3
IEDL.DBID RSV
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852375400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-147X
IngestDate Wed Nov 05 03:14:52 EST 2025
Sat Nov 29 02:50:19 EST 2025
Tue Nov 18 21:18:11 EST 2025
Fri Feb 21 02:45:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Uncertainty
Reinforcement learning
Regression
Variational autoencoder
Neural network
Clustering
Supervised/unsupervised learning
Optimization
Deep learning
Design diversity
Dimension reduction
Classification
Machine learning
Generative design
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e0237e45a6c8a799a6ca5bf6e3dcf2a4b24b80af67e8663745591d00a7aeca4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3470-7341
PQID 2712349116
PQPubID 2043658
ParticipantIDs proquest_journals_2712349116
crossref_citationtrail_10_1007_s00158_022_03369_9
crossref_primary_10_1007_s00158_022_03369_9
springer_journals_10_1007_s00158_022_03369_9
PublicationCentury 2000
PublicationDate 20220900
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 9
  year: 2022
  text: 20220900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Wang, van Beek, Da, Chan, Zhu, Chen (CR191) 2022; 280
CR163
CR160
Yonekura, Hattori (CR206) 2019; 60
Garriga, Mainini, Ponnusamy (CR68) 2019; 141
Amsallem, Farhat (CR7) 2008; 46
CR159
CR157
Chen, Ahmed (CR33) 2021; 113
Kochkov, Smith, Alieva, Wang, Brenner, Hoyer (CR103) 2021; 118
Sun, Wang (CR179) 2019; 233
Lin, Liu, Hong (CR120) 2019; 109
Zhang, Ye (CR209) 2019; 60
Khan, Gunpinar, Sener (CR99) 2019; 191
Fukushima (CR64) 1988; 1
Trinchero, Larbi, Torun, Canavero, Swaminathan (CR186) 2018; 7
Khatouri, Benamara, Breitkopf, Demange, Feliot (CR100) 2020; 7
Baraldi, Mangili, Zio (CR12) 2015; 78
Hou, Lam, Zhang, Zhang (CR81) 2019; 64
Cox (CR43) 1958; 20
Yuan, Moghaddam (CR208) 2020; 8
Rumelhart, Hinton, Williams (CR165) 1986; 323
Diego-Mas, Alcaide-Marzal (CR49) 2016; 53
Wu, Kozlowski, Meidani (CR197) 2018; 169
García-Segura, Yepes, Frangopol (CR65) 2017; 56
Pereira, Piteri, Souza, Papa, Adeli (CR152) 2020; 32
Li, Huang, Li, Zheng, Hong (CR116) 2019; 115
CR141
Zhang, Li, Zhou, Chen, Yao, Zhao (CR212) 2021; 386
CR136
CR132
Jung, Yoon, Lee (CR89) 2020; 372
Lynch, Sarkar, Maute (CR124) 2019; 141
Acar, Rais-Rohani (CR3) 2009; 37
Caldeira, Nord (CR25) 2020; 2
Sosnovik, Oseledets (CR175) 2019; 34
Forrester, Sobester, Keane (CR61) 2008
CR148
Janda, Zemanová, Hála, Konrád, Schmidt (CR83) 2020; 8
CR146
Raissi, Karniadakis (CR161) 2018; 357
CR147
CR144
McFall (CR127) 2013; 350
CR145
Cha, Choi, Büyüköztürk (CR29) 2017; 32
CR143
Chen, Ahmed (CR34) 2021; 143
Solanki, Acar, Rais-Rohani, Horstemeyer, Steele (CR173) 2009; 2
Thole, Ramu (CR184) 2020; 62
Perron, Rajaram, Mavris (CR154) 2021; 477
Kallioras, Lagaros (CR90) 2020; 44
Chhabra, Warn (CR40) 2019; 59
Harman (CR76) 1976
Raissi, Perdikaris, Karniadakis (CR162) 2019; 378
Tao, Sun (CR182) 2019; 92
Abueidda, Koric, Sobh (CR1) 2020; 237
Lee, Kim, Lieu, Lee (CR110) 2020; 198
Song, Choi, Lee, Zhao, Lamb (CR174) 2013; 47
CR111
CR112
Qian, Ye (CR158) 2021; 63
CR117
Wang, Xie, Wang (CR190) 2021; 63
McCulloch, Pitts (CR126) 1943; 5
Gomes, Ludermir (CR73) 2013; 40
CR130
Kumar, Yadav (CR106) 2011; 62
Nagarajan, Mokhtarian, Jafarian, Dimassi, Bakrani-Balani, Hamedi, Haapala (CR135) 2019; 141
Chan, Elsheikh (CR31) 2018; 354
Kollmann, Abueidda, Koric, Guleryuz, Sobh (CR104) 2020; 196
CR121
Su, Peng, Hu (CR177) 2017; 68
Zhang, Zhao (CR210) 2021; 59
Yao, Gao, Liu (CR204) 2020; 363
Ates, Gorguluarslan (CR10) 2021; 63
Gray, Hwang, Martins, Moore, Naylor (CR75) 2019; 59
Ferreiro-Cabello, Fraile-Garcia, de Pison Ascacibar, Martinez-de-Pison (CR58) 2018; 155
Napier, Sriraman, Tran, James (CR137) 2020; 142
CR17
CR14
CR13
CR11
He, Qian, Zhao, Wang (CR79) 2020; 22
CR28
Friedman (CR63) 2001; 25
Lee, Jeong, Kang (CR108) 2008; 35
Chen, Gu (CR35) 2020; 7
Keshavarzzadeh, Alirezaei, Tasdizen, Kirby (CR97) 2021; 130
CR24
CR23
CR21
CR102
Ke, Meng, Finley, Wang, Chen, Ma, Liu (CR96) 2017; 30
CR107
Popov, Mou, Sandu, Iliescu (CR156) 2021; 43
Bostanabad, Chan, Wang, Zhu, Chen (CR20) 2019; 141
Sun, Ma (CR178) 2020; 4
CR39
Nie, Lin, Jiang, Kara (CR139) 2021; 143
CR38
CR37
Li, Mei (CR114) 2021; 80
Kim, Boukouvala (CR101) 2020; 14
Yu, Hur, Jung, Jang (CR207) 2019; 59
Lee, Balu, Stoecklein, Ganapathysubramanian, Sarkar (CR109) 2019; 141
Tripathy, Bilionis (CR187) 2018; 375
Burnap, Pan, Liu, Ren, Lee, Gonzalez, Papalambros (CR22) 2016; 138
Liu, Wang (CR122) 2019; 141
Chi, Zhang, Tang, Mirabella, Dalloro, Song, Paulino (CR41) 2021; 375
An, Liu, Zhang, Chen, Chen, Sun (CR8) 2020; 167
CR48
CR46
Naranjo-Pérez, Infantes, Jiménez-Alonso, Sáez (CR138) 2020; 225
Peherstorfer, Willcox, Gunzburger (CR151) 2018; 60
CR44
CR201
Du, Xu, Zhu (CR52) 2021; 244
CR202
CR200
Chen, Chen, Zhou, Zhang, Yao (CR36) 2020; 62
Fisher (CR59) 1936; 7
CR205
Chandrasekhar, Suresh (CR32) 2021; 63
Fix, Hodges (CR60) 1989; 57
Capuano, Rimoli (CR27) 2019; 345
Rätsch, Onoda, Müller (CR164) 2001; 42
Jiang, Wang, Li, Mo (CR87) 2020; 149
Shi, Lv, Sun, Song (CR168) 2020; 61
CR57
Lei, Liu, Du, Zhang, Guo (CR113) 2019; 86
CR51
Goel, Haftka, Shyy, Queipo (CR70) 2007; 33
Perez, Jansen, Martins (CR153) 2012; 45
Tan, Zhang, Ye (CR181) 2020; 61
Lin, Hong, Liu, Li, Wang (CR119) 2018; 97
Deng, To (CR47) 2020; 66
Falck, Gray, Ponnapalli, Wright (CR56) 2021; 6
Zhang, Xie, Ji, Zhu, Zheng (CR211) 2021; 373
Wang, Yao, Wang, Hu (CR189) 2021; 53
Jiang, Fan (CR85) 2019; 19
Bishop (CR19) 1995
Gomes (CR72) 2020; 6
Cortes, Vapnik (CR42) 1995; 20
Chakraborty (CR30) 2021; 426
Trehan, Carlberg, Durlofsky (CR185) 2017; 112
Acar, Solanki (CR4) 2009; 39
Adeli, Park (CR5) 1995; 57
CR69
CR67
CR66
Li, Wang (CR115) 2021; 143
Sasaki, Igarashi (CR167) 2019; 59
Liao, Zhang, Dong, Poczos, Shimada, Burak Kara (CR118) 2020; 142
Abueidda, Lu, Koric (CR2) 2021; 122
Ma, Kim, Kim (CR125) 2020; 8
Kou, Zhang (CR105) 2019; 84
Pillai, Thies, Johanning (CR155) 2019; 51
Bielecki, Patel, Rai, Dargush (CR18) 2021; 64
Cang, Yao, Ren (CR26) 2019; 109
Patel, Choi (CR149) 2012; 45
Singh, Medida, Duraisamy (CR171) 2017; 55
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (CR95) 2021; 3
Minisci, Vasile (CR129) 2013; 51
Singla, Ghosh, Shukla (CR172) 2020; 11
Strömberg (CR176) 2020; 52
CR77
Wiener (CR194) 1938; 60
CR74
CR199
CR71
CR198
Elingaard, Aage, Bærentzen, Sigmund (CR54) 2022; 388
Hasegawa, Fukami, Murata, Fukagata (CR78) 2020; 52
Yang, Perdikaris (CR203) 2019; 64
Mozaffar, Bostanabad, Chen, Ehmann, Cao, Bessa (CR133) 2019; 116
Alom, Taha, Yakopcic, Westberg, Sidike, Nasrin, Asari (CR6) 2019; 8
CR84
Doi, Sasaki, Igarashi (CR50) 2019; 55
Asperti, Evangelista, Piccolomini (CR9) 2021; 2
Freiesleben, Keim, Grutsch (CR62) 2020; 36
Pawar, Rahman, Vaddireddy, San, Rasheed, Vedula (CR150) 2019; 31
Khan, Gunpinar, Moriguchi, Suzuki (CR98) 2019; 141
Jin (CR88) 2020; 62
Karlik, Olgac (CR94) 2011; 1
Kallioras, Kazakis, Lagaros (CR91) 2020; 62
Lye, Mishra, Ray, Chandrashekar (CR123) 2021; 374
Behzadi, Ilieş (CR15) 2021; 135
Jiang, Fan (CR86) 2020; 9
Shu, Cunningham, Stump, Miller, Yukish, Simpson, Tucker (CR170) 2020; 142
CR183
Ning, You (CR140) 2018; 111
CR180
Sasaki, Igarashi (CR166) 2019; 55
Dai, Li, Liu (CR45) 2019; 20
Bendsøe (CR16) 1989; 1
Müller, Park, Sahu, Varadharajan, Arora, Faybishenko, Agarwal (CR134) 2021; 81
CR93
Odonkor, Lewis (CR142) 2019; 141
CR92
Montgomery, Peck, Vining (CR131) 2021
Jabarullah Khan, Elsheikh (CR82) 2019; 7
He, Mader, Martins, Maki (CR80) 2020; 58
Shi, Qiu, Wang, Zhao, Qu (CR169) 2020; 53
Meng, Karniadakis (CR128) 2020; 401
Džeroski, Ženko (CR53) 2004; 54
CR195
CR196
CR193
CR192
CR188
Emmert-Streib, Yang, Feng, Tripathi, Dehmer (CR55) 2020; 3
S Khan (3369_CR99) 2019; 191
3369_CR37
C Yuan (3369_CR208) 2020; 8
X Lei (3369_CR113) 2019; 86
T García-Segura (3369_CR65) 2017; 56
SS Jin (3369_CR88) 2020; 62
G Sun (3369_CR179) 2019; 233
3369_CR39
H Deng (3369_CR47) 2020; 66
3369_CR38
MO Elingaard (3369_CR54) 2022; 388
G Capuano (3369_CR27) 2019; 345
3369_CR24
3369_CR23
X Wu (3369_CR197) 2018; 169
3369_CR21
3369_CR201
3369_CR202
3369_CR205
DR Pereira (3369_CR152) 2020; 32
JS Gray (3369_CR75) 2019; 59
Y Yu (3369_CR207) 2019; 59
JA Diego-Mas (3369_CR49) 2016; 53
3369_CR28
Z Nie (3369_CR139) 2021; 143
3369_CR200
3369_CR57
JP Chhabra (3369_CR40) 2019; 59
3369_CR51
GE Karniadakis (3369_CR95) 2021; 3
MZ Alom (3369_CR6) 2019; 8
A Chandrasekhar (3369_CR32) 2021; 63
J Jiang (3369_CR85) 2019; 19
HH Harman (3369_CR76) 1976
Y Yang (3369_CR203) 2019; 64
I Sosnovik (3369_CR175) 2019; 34
HT Kollmann (3369_CR104) 2020; 196
3369_CR46
M Raissi (3369_CR162) 2019; 378
3369_CR48
KS McFall (3369_CR127) 2013; 350
A Asperti (3369_CR9) 2021; 2
3369_CR44
J Lee (3369_CR108) 2008; 35
NK Jabarullah Khan (3369_CR82) 2019; 7
L He (3369_CR79) 2020; 22
B Li (3369_CR116) 2019; 115
Q Lin (3369_CR120) 2019; 109
JH Friedman (3369_CR63) 2001; 25
M Shi (3369_CR168) 2020; 61
D An (3369_CR8) 2020; 167
A Burnap (3369_CR22) 2016; 138
KO Lye (3369_CR123) 2021; 374
V Keshavarzzadeh (3369_CR97) 2021; 130
XY Lee (3369_CR109) 2019; 141
J Müller (3369_CR134) 2021; 81
J Kou (3369_CR105) 2019; 84
S Pawar (3369_CR150) 2019; 31
M Singla (3369_CR172) 2020; 11
J Naranjo-Pérez (3369_CR138) 2020; 225
CM Bishop (3369_CR19) 1995
C Qian (3369_CR158) 2021; 63
G Ke (3369_CR96) 2017; 30
Q Lin (3369_CR119) 2018; 97
R Cang (3369_CR26) 2019; 109
F Emmert-Streib (3369_CR55) 2020; 3
J Jung (3369_CR89) 2020; 372
D Liu (3369_CR122) 2019; 141
MM Behzadi (3369_CR15) 2021; 135
J Patel (3369_CR149) 2012; 45
X Shi (3369_CR169) 2020; 53
H Chi (3369_CR41) 2021; 375
X Meng (3369_CR128) 2020; 401
3369_CR13
H Khatouri (3369_CR100) 2020; 7
H Sun (3369_CR178) 2020; 4
3369_CR14
CT Chen (3369_CR35) 2020; 7
Y Li (3369_CR114) 2021; 80
3369_CR11
M Raissi (3369_CR161) 2018; 357
GC Ates (3369_CR10) 2021; 63
B Peherstorfer (3369_CR151) 2018; 60
3369_CR193
J Caldeira (3369_CR25) 2020; 2
E Fix (3369_CR60) 1989; 57
3369_CR195
3369_CR196
3369_CR17
3369_CR198
3369_CR199
K Fukushima (3369_CR64) 1988; 1
ME Lynch (3369_CR124) 2019; 141
P Baraldi (3369_CR12) 2015; 78
M Li (3369_CR115) 2021; 143
E Acar (3369_CR4) 2009; 39
X Zhang (3369_CR211) 2021; 373
3369_CR192
NA Kallioras (3369_CR90) 2020; 44
RA Fisher (3369_CR59) 1936; 7
D Kochkov (3369_CR103) 2021; 118
H Sasaki (3369_CR166) 2019; 55
AA Popov (3369_CR156) 2021; 43
3369_CR183
G Su (3369_CR177) 2017; 68
3369_CR188
P He (3369_CR80) 2020; 58
3369_CR180
NA Kallioras (3369_CR91) 2020; 62
N Strömberg (3369_CR176) 2020; 52
RE Perez (3369_CR153) 2012; 45
S Džeroski (3369_CR53) 2004; 54
R Bostanabad (3369_CR20) 2019; 141
K Hasegawa (3369_CR78) 2020; 52
S Lee (3369_CR110) 2020; 198
N Napier (3369_CR137) 2020; 142
KN Solanki (3369_CR173) 2009; 2
SP Thole (3369_CR184) 2020; 62
A Forrester (3369_CR61) 2008
Z Zhang (3369_CR212) 2021; 386
AG Garriga (3369_CR68) 2019; 141
3369_CR160
3369_CR163
E Acar (3369_CR3) 2009; 37
H Liao (3369_CR118) 2020; 142
T Goel (3369_CR70) 2007; 33
3369_CR157
3369_CR159
H Sasaki (3369_CR167) 2019; 59
DW Abueidda (3369_CR1) 2020; 237
H Song (3369_CR174) 2013; 47
J Zhang (3369_CR210) 2021; 59
HP Nagarajan (3369_CR135) 2019; 141
SB Ma (3369_CR125) 2020; 8
WS McCulloch (3369_CR126) 1943; 5
C Perron (3369_CR154) 2021; 477
D Shu (3369_CR170) 2020; 142
RK Tan (3369_CR181) 2020; 61
N Wiener (3369_CR194) 1938; 60
R Falck (3369_CR56) 2021; 6
Y Dai (3369_CR45) 2019; 20
3369_CR146
3369_CR147
J Jiang (3369_CR86) 2020; 9
3369_CR148
G Rätsch (3369_CR164) 2001; 42
R Trinchero (3369_CR186) 2018; 7
C Wang (3369_CR189) 2021; 53
S Trehan (3369_CR185) 2017; 112
3369_CR141
3369_CR143
X Du (3369_CR52) 2021; 244
3369_CR144
D Amsallem (3369_CR7) 2008; 46
C Cortes (3369_CR42) 1995; 20
3369_CR145
WJDS Gomes (3369_CR72) 2020; 6
3369_CR74
DW Abueidda (3369_CR2) 2021; 122
3369_CR77
3369_CR71
3369_CR136
M Mozaffar (3369_CR133) 2019; 116
X Jiang (3369_CR87) 2020; 149
TY Hou (3369_CR81) 2019; 64
P Odonkor (3369_CR142) 2019; 141
C Ning (3369_CR140) 2018; 111
3369_CR130
3369_CR132
3369_CR67
3369_CR69
J Ferreiro-Cabello (3369_CR58) 2018; 155
T Janda (3369_CR83) 2020; 8
W Chen (3369_CR34) 2021; 143
S Doi (3369_CR50) 2019; 55
3369_CR66
J Freiesleben (3369_CR62) 2020; 36
DR Cox (3369_CR43) 1958; 20
B Karlik (3369_CR94) 2011; 1
X Chen (3369_CR36) 2020; 62
S Chakraborty (3369_CR30) 2021; 426
H Yao (3369_CR204) 2020; 363
W Chen (3369_CR33) 2021; 113
D Bielecki (3369_CR18) 2021; 64
E Minisci (3369_CR129) 2013; 51
J Tao (3369_CR182) 2019; 92
SH Kim (3369_CR101) 2020; 14
RK Tripathy (3369_CR187) 2018; 375
GSDS Gomes (3369_CR73) 2013; 40
3369_CR121
K Yonekura (3369_CR206) 2019; 60
3369_CR93
3369_CR92
S Khan (3369_CR98) 2019; 141
3369_CR117
AC Pillai (3369_CR155) 2019; 51
Y Zhang (3369_CR209) 2019; 60
YJ Cha (3369_CR29) 2017; 32
3369_CR111
3369_CR112
L Wang (3369_CR191) 2022; 280
DE Rumelhart (3369_CR165) 1986; 323
DC Montgomery (3369_CR131) 2021
3369_CR84
AP Singh (3369_CR171) 2017; 55
3369_CR102
M Kumar (3369_CR106) 2011; 62
D Wang (3369_CR190) 2021; 63
S Chan (3369_CR31) 2018; 354
MP Bendsøe (3369_CR16) 1989; 1
3369_CR107
H Adeli (3369_CR5) 1995; 57
References_xml – volume: 60
  start-page: 527
  issue: 2
  year: 2019
  end-page: 536
  ident: CR209
  article-title: Deep learning-based inverse method for layout design
  publication-title: Struct Multidisc Optim
– volume: 56
  start-page: 139
  issue: 1
  year: 2017
  end-page: 150
  ident: CR65
  article-title: Multi-objective design of post-tensioned concrete road bridges using artificial neural networks
  publication-title: Struct Multidisc Optim
– volume: 143
  start-page: 031715
  issue: 3
  year: 2021
  ident: CR139
  article-title: Topologygan: Topology optimization using generative adversarial networks based on physical fields over the initial domain
  publication-title: J Mech Des
– ident: CR196
– ident: CR74
– ident: CR39
– volume: 6
  start-page: 2809
  issue: 59
  year: 2021
  ident: CR56
  article-title: dymos: A Python package for optimal control of multidisciplinary systems
  publication-title: J Open Source Soft
– ident: CR51
– volume: 59
  start-page: 787
  issue: 3
  year: 2019
  end-page: 799
  ident: CR207
  article-title: Deep learning for determining a near-optimal topological design without any iteration
  publication-title: Struct Multidisc Optim
– volume: 61
  start-page: 1417
  issue: 4
  year: 2020
  end-page: 1438
  ident: CR181
  article-title: A deep learning-based method for the design of microstructural materials
  publication-title: Struct Multidisc Optim
– volume: 97
  start-page: 103
  year: 2018
  end-page: 109
  ident: CR119
  article-title: Investigation into the topology optimization for conductive heat transfer based on deep learning approach
  publication-title: Int Commun Heat Mass Transfer
– volume: 61
  start-page: 2363
  issue: 6
  year: 2020
  end-page: 2375
  ident: CR168
  article-title: A multi-fidelity surrogate model based on support vector regression
  publication-title: Struct Multidisc Optim
– volume: 109
  start-page: 12
  year: 2019
  end-page: 21
  ident: CR26
  article-title: One-shot generation of near-optimal topology through theory-driven machine learning
  publication-title: Comput-Aided Des
– ident: CR201
– ident: CR121
– volume: 57
  start-page: 383
  issue: 3
  year: 1995
  end-page: 390
  ident: CR5
  article-title: A neural dynamics model for structural optimization—theory
  publication-title: Comput Struct
– ident: CR144
– volume: 363
  start-page: 112892
  year: 2020
  ident: CR204
  article-title: FEA-Net: A physics-guided data-driven model for efficient mechanical response prediction
  publication-title: Comput Methods Appl Mech Eng
– volume: 66
  start-page: 449
  year: 2020
  end-page: 469
  ident: CR47
  article-title: Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design
  publication-title: Comput Mech
– year: 1976
  ident: CR76
  publication-title: Modern factor analysis
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  end-page: 20
  ident: CR100
  article-title: Constrained multi-fidelity surrogate framework using Bayesian optimization with non-intrusive reduced-order basis
  publication-title: Adv Model Simul Eng Sci
– volume: 141
  start-page: 111401
  issue: 11
  year: 2019
  ident: CR109
  article-title: A case study of deep reinforcement learning for engineering design: Application to microfluidic devices for flow sculpting
  publication-title: J Mech Des
– volume: 33
  start-page: 199
  issue: 3
  year: 2007
  end-page: 216
  ident: CR70
  article-title: Ensemble of Surrogates
  publication-title: Struct Multidisc Optim
– volume: 401
  start-page: 109020
  year: 2020
  ident: CR128
  article-title: A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems
  publication-title: J Comput Phys
– ident: CR92
– ident: CR132
– volume: 45
  start-page: 529
  issue: 4
  year: 2012
  end-page: 543
  ident: CR149
  article-title: Classification approach for reliability-based topology optimization using probabilistic neural networks
  publication-title: Struct Multidisc Optim
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR42
  article-title: Support-Vector Networks
  publication-title: Mach Learn
– year: 2008
  ident: CR61
  publication-title: Engineering design via surrogate modelling: a practical guide
– ident: CR11
– volume: 3
  start-page: 4
  year: 2020
  ident: CR55
  article-title: An introductory review of deep learning for prediction models with big data
  publication-title: Front Artif Intel
– ident: CR57
– volume: 233
  start-page: 5863
  issue: 16
  year: 2019
  end-page: 5872
  ident: CR179
  article-title: A review of the artificial neural network surrogate modeling in aerodynamic design
  publication-title: Proc Inst Mech Eng, Part G: J Aeros Eng
– volume: 68
  start-page: 97
  year: 2017
  end-page: 109
  ident: CR177
  article-title: A Gaussian process-based dynamic surrogate model for complex engineering structural reliability analysis
  publication-title: Struct Saf
– volume: 2
  start-page: 1
  issue: 4
  year: 2021
  end-page: 23
  ident: CR9
  article-title: A survey on variational autoencoders from a green AI perspective
  publication-title: SN Computer Science
– volume: 8
  start-page: 36
  issue: 1
  year: 2020
  end-page: 46
  ident: CR83
  article-title: Reduced order model of glass plate loaded by low-velocity impact
  publication-title: Int J Comput Methods Exp Meas
– volume: 149
  start-page: 102841
  year: 2020
  ident: CR87
  article-title: Machine learning based parameter tuning strategy for MMC based topology optimization
  publication-title: Adv Eng Softw
– volume: 46
  start-page: 1803
  issue: 7
  year: 2008
  end-page: 1813
  ident: CR7
  article-title: Interpolation method for adapting reduced-order models and application to aeroelasticity
  publication-title: AIAA J
– volume: 32
  start-page: 6393
  issue: 10
  year: 2020
  end-page: 6404
  ident: CR152
  article-title: FEMa: A finite element machine for fast learning
  publication-title: Neural Comput Appl
– volume: 138
  start-page: 071404
  issue: 7
  year: 2016
  ident: CR22
  article-title: Improving design preference prediction accuracy using feature learning
  publication-title: J Mech Des
– volume: 53
  start-page: 2108
  issue: 12
  year: 2021
  end-page: 2121
  ident: CR189
  article-title: Deep super-resolution neural network for structural topology optimization
  publication-title: Eng Optim
– volume: 1
  start-page: 111
  issue: 4
  year: 2011
  end-page: 122
  ident: CR94
  article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks
  publication-title: Int J Artif Intel Exp Sys
– volume: 477
  start-page: 20210495
  issue: 2253
  year: 2021
  ident: CR154
  article-title: Multi-fidelity non-intrusive reduced-order modelling based on manifold alignment
  publication-title: Proce Royal Soc A
– volume: 47
  start-page: 479
  issue: 4
  year: 2013
  end-page: 491
  ident: CR174
  article-title: Adaptive virtual support vector machine for reliability analysis of high-dimensional problems
  publication-title: Struct Multidisc Optim
– volume: 8
  start-page: 292
  issue: 3
  year: 2019
  ident: CR6
  article-title: A state-of-the-art survey on deep learning theory and architectures
  publication-title: Electronics
– volume: 59
  start-page: 87
  issue: 1
  year: 2019
  end-page: 96
  ident: CR167
  article-title: Topology optimization of IPM motor with aid of deep learning
  publication-title: Int J Appl Electromagnet Mech
– volume: 280
  start-page: 114949
  year: 2022
  ident: CR191
  article-title: Data-driven multiscale design of cellular composites with multiclass microstructures for natural frequency maximization
  publication-title: Compos Struct
– volume: 64
  start-page: 3473
  issue: 6
  year: 2021
  end-page: 3487
  ident: CR18
  article-title: Multi-stage deep neural network accelerated topology optimization
  publication-title: Struct Multidisc Optim
– volume: 141
  start-page: 111101
  issue: 11
  year: 2019
  ident: CR98
  article-title: Evolving a psycho-physical distance metric for generative design exploration of diverse shapes
  publication-title: J Mech Des
– volume: 196
  start-page: 109098
  year: 2020
  ident: CR104
  article-title: Deep learning for topology optimization of 2D metamaterials
  publication-title: Mater Des
– volume: 80
  start-page: 17391
  issue: 11
  year: 2021
  end-page: 17413
  ident: CR114
  article-title: Deep learning-based method coupled with small sample learning for solving partial differential equations
  publication-title: Mult Tools Appl
– ident: CR69
– volume: 111
  start-page: 115
  year: 2018
  end-page: 133
  ident: CR140
  article-title: Data-driven stochastic robust optimization: General computational framework and algorithm leveraging machine learning for optimization under uncertainty in the big data era
  publication-title: Comput Chem Eng
– ident: CR44
– volume: 8
  start-page: 1170
  issue: 9
  year: 2020
  ident: CR125
  article-title: Optimization design of a two-vane pump for wastewater treatment using machine-learning-based surrogate modeling
  publication-title: Processes
– volume: 63
  start-page: 1927
  issue: 4
  year: 2021
  end-page: 1950
  ident: CR10
  article-title: Two-stage convolutional encoder-decoder network to improve the performance and reliability of deep learning models for topology optimization
  publication-title: Struct Multidisc Optim
– volume: 115
  start-page: 172
  year: 2019
  end-page: 180
  ident: CR116
  article-title: Non-iterative structural topology optimization using deep learning
  publication-title: Comput Aided Des
– ident: CR38
– year: 1995
  ident: CR19
  publication-title: Neural networks for pattern recognition
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  end-page: 188
  ident: CR59
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann Eugen
– volume: 198
  start-page: 105887
  year: 2020
  ident: CR110
  article-title: CNN-based image recognition for topology optimization
  publication-title: Knowl-Based Syst
– volume: 36
  start-page: 1837
  issue: 6
  year: 2020
  end-page: 1848
  ident: CR62
  article-title: Machine learning and design of experiments: Alternative approaches or complementary methodologies for quality improvement?
  publication-title: Qual Reliab Eng Int
– volume: 113
  start-page: 107909
  year: 2021
  ident: CR33
  article-title: MO-PaDGAN: Reparameterizing Engineering Designs for augmented multi-objective optimization
  publication-title: Appl Soft Comput
– volume: 60
  start-page: 1709
  issue: 4
  year: 2019
  end-page: 1713
  ident: CR206
  article-title: Framework for design optimization using deep reinforcement learning
  publication-title: Struct Multidisc Optim
– volume: 40
  start-page: 6438
  issue: 16
  year: 2013
  end-page: 6446
  ident: CR73
  article-title: Optimization of the weights and asymmetric activation function family of neural network for time series forecasting
  publication-title: Expert Syst Appl
– ident: CR202
– volume: 109
  year: 2019
  ident: CR120
  article-title: Method for directly and instantaneously predicting conductive heat transfer topologies by using supervised deep learning
  publication-title: Int Commun Heat Mass Transfer
– volume: 53
  start-page: 275105
  issue: 27
  year: 2020
  ident: CR169
  article-title: Metasurface inverse design using machine learning approaches
  publication-title: J Phys D Appl Phys
– volume: 143
  start-page: 031703
  issue: 3
  year: 2021
  ident: CR34
  article-title: Padgan: Learning to generate high-quality novel designs
  publication-title: J Mech Des
– ident: CR145
– volume: 374
  start-page: 113575
  year: 2021
  ident: CR123
  article-title: Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks
  publication-title: Comput Methods Appl Mech Eng
– ident: CR148
– ident: CR93
– volume: 62
  start-page: 1185
  issue: 3
  year: 2020
  end-page: 1212
  ident: CR91
  article-title: Accelerated topology optimization by means of deep learning
  publication-title: Struct Multidisc Optim
– ident: CR111
– year: 2021
  ident: CR131
  publication-title: Introduction to linear regression analysis
– volume: 52
  start-page: 1136
  issue: 7
  year: 2020
  end-page: 1148
  ident: CR176
  article-title: Efficient detailed design optimization of topology optimization concepts by using support vector machines and metamodels
  publication-title: Eng Optim
– volume: 142
  start-page: 011402
  issue: 1
  year: 2020
  ident: CR137
  article-title: An artificial neural network approach for generating high-resolution designs from low-resolution input in topology optimization
  publication-title: J Mech Des
– volume: 8
  start-page: 190710
  year: 2020
  end-page: 190721
  ident: CR208
  article-title: Attribute-aware generative design with generative adversarial networks
  publication-title: IEEE Access
– volume: 122
  start-page: 7182
  issue: 23
  year: 2021
  end-page: 7201
  ident: CR2
  article-title: Meshless physics-informed deep learning method for three-dimensional solid mechanics
  publication-title: Int J Numer Meth Eng
– ident: CR21
– volume: 57
  start-page: 238
  issue: 3
  year: 1989
  end-page: 247
  ident: CR60
  article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties
  publication-title: Inter Stat Rev/revue Internationale De Statistique
– volume: 54
  start-page: 255
  issue: 3
  year: 2004
  end-page: 273
  ident: CR53
  article-title: Is combining classifiers with stacking better than selecting the best one?
  publication-title: Mach Learn
– volume: 169
  start-page: 422
  year: 2018
  end-page: 436
  ident: CR197
  article-title: Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data
  publication-title: Reliab Eng Syst Saf
– volume: 191
  start-page: 106462
  year: 2019
  ident: CR99
  article-title: GenYacht: An interactive generative design system for computer-aided yacht hull design
  publication-title: Ocean Eng
– volume: 14
  start-page: 989
  issue: 4
  year: 2020
  end-page: 1010
  ident: CR101
  article-title: Machine learning-based surrogate modeling for data-driven optimization: A comparison of subset selection for regression techniques
  publication-title: Optim Lett
– ident: CR195
– volume: 6
  start-page: 041006
  issue: 4
  year: 2020
  ident: CR72
  article-title: Shallow and deep artificial neural networks for structural reliability analysis
  publication-title: ASME J Risk Uncertainty Part B
– volume: 2
  start-page: 47
  issue: 1
  year: 2009
  end-page: 79
  ident: CR173
  article-title: Product design optimisation with microstructure-property modelling and associated uncertainties
  publication-title: Int J Des Eng
– volume: 388
  start-page: 114197
  year: 2022
  ident: CR54
  article-title: De-homogenization using convolutional neural networks
  publication-title: Comput Methods Appl Mech Eng
– volume: 39
  start-page: 311
  issue: 3
  year: 2009
  end-page: 325
  ident: CR4
  article-title: System reliability based vehicle design for crashworthiness and effects of various uncertainty reduction measures
  publication-title: Struct Multidisc Optim
– volume: 86
  start-page: 011004
  issue: 1
  year: 2019
  ident: CR113
  article-title: Machine learning-driven real-time topology optimization under moving morphable component-based framework
  publication-title: J Appl Mech
– volume: 59
  start-page: 868
  issue: 3
  year: 2021
  end-page: 879
  ident: CR210
  article-title: Machine-learning-based surrogate modeling of aerodynamic flow around distributed structures
  publication-title: AIAA J
– volume: 375
  start-page: 565
  year: 2018
  end-page: 588
  ident: CR187
  article-title: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
  publication-title: J Comput Phys
– volume: 19
  start-page: 5366
  issue: 8
  year: 2019
  end-page: 5372
  ident: CR85
  article-title: Global optimization of dielectric metasurfaces using a physics-driven neural network
  publication-title: Nano Lett
– volume: 63
  start-page: 915
  issue: 2
  year: 2021
  end-page: 928
  ident: CR190
  article-title: An adaptive RBF neural network–based multi-objective optimization method for lightweight and crashworthiness design of cab floor rails using fuzzy subtractive clustering algorithm
  publication-title: Struct Multidisc Optim
– volume: 167
  year: 2020
  ident: CR8
  article-title: Uncertainty modeling and runtime verification for autonomous vehicles driving control: A machine learning-based approach
  publication-title: J Syst Softw
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  end-page: 16
  ident: CR45
  article-title: New product design with automatic scheme generation
  publication-title: Sens Imag
– volume: 135
  year: 2021
  ident: CR15
  article-title: Real-time topology optimization in 3D via deep transfer learning
  publication-title: Comput Aided Des
– volume: 63
  start-page: 1135
  issue: 3
  year: 2021
  end-page: 1149
  ident: CR32
  article-title: TOuNN: Topology optimization using neural networks
  publication-title: Struct Multidisc Optim
– volume: 35
  start-page: 29
  issue: 1
  year: 2008
  end-page: 40
  ident: CR108
  article-title: Derivative and GA-based methods in metamodeling of back-propagation neural networks for constrained approximate optimization
  publication-title: Struct Multidisc Optim
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  ident: CR161
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: J Comput Phys
– ident: CR143
– ident: CR160
– volume: 1
  start-page: 119
  issue: 2
  year: 1988
  end-page: 130
  ident: CR64
  article-title: Neocognitron: A hierarchical neural network capable of visual pattern recognition
  publication-title: Neural Netw
– volume: 141
  start-page: 121403
  issue: 12
  year: 2019
  ident: CR122
  article-title: Multi-fidelity physics-constrained neural network and its application in materials modeling
  publication-title: J Mech Des
– volume: 9
  start-page: 1059
  issue: 5
  year: 2020
  end-page: 1069
  ident: CR86
  article-title: Simulator-based training of generative neural networks for the inverse design of metasurfaces
  publication-title: Nanophotonics
– ident: CR14
– volume: 92
  start-page: 722
  year: 2019
  end-page: 737
  ident: CR182
  article-title: Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization
  publication-title: Aerosp Sci Technol
– volume: 426
  start-page: 109942
  year: 2021
  ident: CR30
  article-title: Transfer learning based multi-fidelity physics informed deep neural network
  publication-title: J Comput Phys
– ident: CR37
– volume: 25
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: CR63
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Annal Stat
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  end-page: 536
  ident: CR165
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– ident: CR188
– volume: 20
  start-page: 215
  issue: 2
  year: 1958
  end-page: 232
  ident: CR43
  article-title: The regression analysis of binary sequences
  publication-title: J Roy Stat Soc: Ser B (methodol)
– ident: CR48
– volume: 84
  start-page: 880
  year: 2019
  end-page: 894
  ident: CR105
  article-title: A hybrid reduced-order framework for complex aeroelastic simulations
  publication-title: Aerosp Sci Technol
– volume: 116
  start-page: 26414
  issue: 52
  year: 2019
  end-page: 26420
  ident: CR133
  article-title: Deep learning predicts path-dependent plasticity
  publication-title: Proc Natl Acad Sci
– volume: 143
  start-page: 031702
  issue: 3
  year: 2021
  ident: CR115
  article-title: An LSTM-based ensemble learning approach for time-dependent reliability analysis
  publication-title: J Mech Des
– ident: CR183
– volume: 142
  start-page: 071701
  issue: 7
  year: 2020
  ident: CR170
  article-title: 3d design using generative adversarial networks and physics-based validation
  publication-title: J Mech Des
– volume: 81
  start-page: 203
  issue: 1
  year: 2021
  end-page: 231
  ident: CR134
  article-title: Surrogate optimization of deep neural networks for groundwater predictions
  publication-title: J Global Optim
– volume: 112
  start-page: 1801
  issue: 12
  year: 2017
  end-page: 1827
  ident: CR185
  article-title: Error modeling for surrogates of dynamical systems using machine learning
  publication-title: Int J Numer Meth Eng
– ident: CR77
– volume: 11
  start-page: 1359
  issue: 7
  year: 2020
  end-page: 1385
  ident: CR172
  article-title: A survey of robust optimization based machine learning with special reference to support vector machines
  publication-title: Int J Mach Learn Cybern
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  end-page: 133
  ident: CR126
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Math Biophys
– volume: 45
  start-page: 101
  issue: 1
  year: 2012
  end-page: 118
  ident: CR153
  article-title: pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization
  publication-title: Struct Multidisc Optim
– volume: 141
  start-page: 111404
  issue: 11
  year: 2019
  ident: CR142
  article-title: Data-driven design of control strategies for distributed energy systems
  publication-title: J Mech Des
– ident: CR71
– volume: 62
  start-page: 1313
  year: 2020
  end-page: 1351
  ident: CR88
  article-title: Compositional kernel learning using tree-based genetic programming for Gaussian process regression
  publication-title: Struct Multidisc Optim
– ident: CR199
– volume: 59
  start-page: 1521
  issue: 5
  year: 2019
  end-page: 1542
  ident: CR40
  article-title: A method for model selection using reinforcement learning when viewing design as a sequential decision process
  publication-title: Struct Multidisc Optim
– volume: 354
  start-page: 493
  year: 2018
  end-page: 511
  ident: CR31
  article-title: A machine learning approach for efficient uncertainty quantification using multiscale methods
  publication-title: J Comput Phys
– volume: 62
  start-page: 3127
  issue: 6
  year: 2020
  end-page: 3148
  ident: CR36
  article-title: The heat source layout optimization using deep learning surrogate modeling
  publication-title: Struct Multidisc Optim
– ident: CR112
– volume: 51
  start-page: 1284
  issue: 6
  year: 2013
  end-page: 1295
  ident: CR129
  article-title: Robust design of a reentry unmanned space vehicle by multifidelity evolution control
  publication-title: AIAA J
– volume: 64
  start-page: 417
  issue: 2
  year: 2019
  end-page: 434
  ident: CR203
  article-title: Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems
  publication-title: Comput Mech
– volume: 7
  start-page: 1902607
  issue: 5
  year: 2020
  ident: CR35
  article-title: Generative deep neural networks for inverse materials design using backpropagation and active learning
  publication-title: Adv Sci
– ident: CR147
– volume: 78
  start-page: 141
  year: 2015
  end-page: 154
  ident: CR12
  article-title: A prognostics approach to nuclear component degradation modeling based on Gaussian process regression
  publication-title: Prog Nucl Energy
– ident: CR198
– ident: CR66
– volume: 43
  start-page: A1134
  issue: 2
  year: 2021
  end-page: A1162
  ident: CR156
  article-title: A multifidelity ensemble Kalman filter with reduced order control variates
  publication-title: SIAM J Sci Comput
– volume: 34
  start-page: 215
  issue: 4
  year: 2019
  end-page: 223
  ident: CR175
  article-title: Neural networks for topology optimization
  publication-title: Russ J Numer Anal Math Model
– volume: 225
  start-page: 111327
  year: 2020
  ident: CR138
  article-title: A collaborative machine learning-optimization algorithm to improve the finite element model updating of civil engineering structures
  publication-title: Eng Struct
– ident: CR117
– volume: 60
  start-page: 550
  issue: 3
  year: 2018
  end-page: 591
  ident: CR151
  article-title: Survey of multifidelity methods in uncertainty propagation, inference, and optimization
  publication-title: SIAM Rev
– volume: 22
  start-page: 1022
  issue: 9
  year: 2020
  ident: CR79
  article-title: Multi-fidelity aerodynamic data fusion with a deep neural network modeling method
  publication-title: Entropy
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: CR162
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
– volume: 53
  start-page: 102
  year: 2016
  end-page: 114
  ident: CR49
  article-title: Single users' affective responses models for product form design
  publication-title: Int J Ind Ergon
– volume: 118
  start-page: e2101784118
  issue: 21
  year: 2021
  ident: CR103
  article-title: Machine learning–accelerated computational fluid dynamics
  publication-title: Proc Nat Acad Sci
– volume: 30
  start-page: 3146
  year: 2017
  end-page: 3154
  ident: CR96
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Adv Neural Inf Process Syst
– ident: CR193
– volume: 55
  start-page: 2215
  issue: 7
  year: 2017
  end-page: 2227
  ident: CR171
  article-title: Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils
  publication-title: AIAA J
– ident: CR13
– volume: 7
  start-page: 105
  year: 2019
  ident: CR82
  article-title: A machine learning based hybrid multi-fidelity multi-level Monte Carlo method for uncertainty quantification
  publication-title: Front Environ Sci
– ident: CR159
– volume: 64
  start-page: 395
  issue: 2
  year: 2019
  end-page: 408
  ident: CR81
  article-title: Solving Bayesian inverse problems from the perspective of deep generative networks
  publication-title: Comput Mech
– volume: 4
  start-page: 10
  issue: 2
  year: 2020
  ident: CR178
  article-title: Generative design by using exploration approaches of reinforcement learning in density-based structural topology optimization
  publication-title: Designs
– ident: CR24
– volume: 44
  start-page: 591
  year: 2020
  end-page: 598
  ident: CR90
  article-title: DzAIℕ: Deep learning based generative design
  publication-title: Procedia Manufacturing
– volume: 62
  start-page: 1071
  issue: 3
  year: 2020
  end-page: 1088
  ident: CR184
  article-title: Design space exploration and optimization using self-organizing maps
  publication-title: Struct Multidisc Optim
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  end-page: 378
  ident: CR29
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput-Aided Civ Inf Eng
– volume: 345
  start-page: 363
  year: 2019
  end-page: 381
  ident: CR27
  article-title: Smart finite elements: a novel machine learning application
  publication-title: Comput Methods Appl Mech Eng
– ident: CR102
– ident: CR205
– volume: 55
  start-page: 1
  issue: 6
  year: 2019
  end-page: 5
  ident: CR166
  article-title: Topology optimization accelerated by deep learning
  publication-title: IEEE Trans Magn
– volume: 244
  start-page: 106457
  year: 2021
  ident: CR52
  article-title: A data mining method for structure design with uncertainty in design variables
  publication-title: Comput Struct
– ident: CR192
– volume: 51
  start-page: 1370
  issue: 8
  year: 2019
  end-page: 1392
  ident: CR155
  article-title: Mooring system design optimization using a surrogate assisted multi-objective genetic algorithm
  publication-title: Eng Optim
– volume: 31
  start-page: 085101
  issue: 8
  year: 2019
  ident: CR150
  article-title: A deep learning enabler for nonintrusive reduced order modeling of fluid flows
  publication-title: Phys Fluids
– volume: 237
  start-page: 106283
  year: 2020
  ident: CR1
  article-title: Topology optimization of 2D structures with nonlinearities using deep learning
  publication-title: Comput Struct
– ident: CR84
– volume: 2
  start-page: 015002
  issue: 1
  year: 2020
  ident: CR25
  article-title: Deeply uncertain: Comparing methods of uncertainty quantification in deep learning algorithms
  publication-title: Mach Learn: Sci Technol
– ident: CR163
– volume: 60
  start-page: 897
  issue: 4
  year: 1938
  end-page: 936
  ident: CR194
  article-title: The homogeneous chaos
  publication-title: Am J Math
– ident: CR46
– volume: 55
  start-page: 1
  issue: 6
  year: 2019
  end-page: 5
  ident: CR50
  article-title: Multi-objective topology optimization of rotating machines using deep learning
  publication-title: IEEE Trans Magn
– volume: 42
  start-page: 287
  issue: 3
  year: 2001
  end-page: 320
  ident: CR164
  article-title: Soft Margins for AdaBoost
  publication-title: Mach Learn
– volume: 386
  year: 2021
  ident: CR212
  article-title: TONR: An exploration for a novel way combining neural network with topology optimization
  publication-title: Comput Method Appl Mech Eng
– ident: CR67
– volume: 58
  start-page: 1304
  issue: 3
  year: 2020
  end-page: 1319
  ident: CR80
  article-title: Dafoam: an open-source adjoint framework for multidisciplinary design optimization with openfoam
  publication-title: AIAA J
– ident: CR157
– volume: 141
  start-page: 114502
  issue: 11
  year: 2019
  ident: CR124
  article-title: Machine learning to aid tuning of numerical parameters in topology optimization
  publication-title: J Mech Des
– volume: 373
  start-page: 113485
  year: 2021
  ident: CR211
  article-title: Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization
  publication-title: Comput Methods Appl Mech Eng
– ident: CR136
– volume: 375
  start-page: 112739
  year: 2021
  ident: CR41
  article-title: Universal machine learning for topology optimization
  publication-title: Comput Methods Appl Mech Eng
– volume: 59
  start-page: 1075
  issue: 4
  year: 2019
  end-page: 1104
  ident: CR75
  article-title: OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization
  publication-title: Struct Multidisc Optim
– volume: 3
  start-page: 422
  issue: 6
  year: 2021
  end-page: 440
  ident: CR95
  article-title: Physics-informed machine learning. Nature Reviews
  publication-title: Physics
– ident: CR200
– volume: 130
  start-page: 102947
  year: 2021
  ident: CR97
  article-title: Image-based multiresolution topology optimization using deep disjunctive normal shape model
  publication-title: Comput Aided Des
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  end-page: 202
  ident: CR16
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct Optim
– volume: 372
  start-page: 113401
  year: 2020
  ident: CR89
  article-title: Deep learned finite elements
  publication-title: Comput Methods Appl Mech Eng
– volume: 350
  start-page: 300
  issue: 2
  year: 2013
  end-page: 317
  ident: CR127
  article-title: Automated design parameter selection for neural networks solving coupled partial differential equations with discontinuities
  publication-title: J Franklin Inst
– volume: 7
  start-page: 4056
  year: 2018
  end-page: 4066
  ident: CR186
  article-title: Machine learning and uncertainty quantification for surrogate models of integrated devices with a large number of parameters
  publication-title: IEEE Access
– volume: 37
  start-page: 279
  issue: 3
  year: 2009
  end-page: 294
  ident: CR3
  article-title: Ensemble of metamodels with optimized weight factors
  publication-title: Struct Multidisc Optim
– volume: 63
  start-page: 1687
  issue: 4
  year: 2021
  end-page: 1707
  ident: CR158
  article-title: Accelerating gradient-based topology optimization design with dual-model artificial neural networks
  publication-title: Struct Multidisc Optim
– volume: 155
  start-page: 91
  year: 2018
  end-page: 101
  ident: CR58
  article-title: Metamodel-based design optimization of structural one-way slabs based on deep learning neural networks to reduce environmental impact
  publication-title: Eng Struct
– volume: 62
  start-page: 3796
  issue: 10
  year: 2011
  end-page: 3811
  ident: CR106
  article-title: Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: A survey
  publication-title: Comput Math Appl
– ident: CR180
– volume: 52
  start-page: 065501
  issue: 6
  year: 2020
  ident: CR78
  article-title: CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers
  publication-title: Fluid Dyn Res
– ident: CR146
– ident: CR23
– volume: 141
  start-page: 021705
  issue: 2
  year: 2019
  ident: CR135
  article-title: Knowledge-based design of artificial neural network topology for additive manufacturing process modeling: A new approach and case study for fused deposition modeling
  publication-title: J Mech Des
– volume: 141
  start-page: 111402
  issue: 11
  year: 2019
  ident: CR20
  article-title: Globally approximate gaussian processes for big data with application to data-driven metamaterials design
  publication-title: J Mech Des
– ident: CR130
– ident: CR17
– volume: 142
  start-page: 061701
  issue: 6
  year: 2020
  ident: CR118
  article-title: A deep reinforcement learning approach for global routing
  publication-title: J Mech Des
– ident: CR107
– ident: CR28
– ident: CR141
– volume: 141
  start-page: 121405
  issue: 12
  year: 2019
  ident: CR68
  article-title: A machine learning enabled multi-fidelity platform for the integrated design of aircraft systems
  publication-title: J Mech Des
– volume: 233
  start-page: 5863
  issue: 16
  year: 2019
  ident: 3369_CR179
  publication-title: Proc Inst Mech Eng, Part G: J Aeros Eng
  doi: 10.1177/0954410019864485
– volume: 8
  start-page: 1170
  issue: 9
  year: 2020
  ident: 3369_CR125
  publication-title: Processes
  doi: 10.3390/pr8091170
– volume: 64
  start-page: 3473
  issue: 6
  year: 2021
  ident: 3369_CR18
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-021-03028-5
– volume: 20
  start-page: 215
  issue: 2
  year: 1958
  ident: 3369_CR43
  publication-title: J Roy Stat Soc: Ser B (methodol)
  doi: 10.1111/j.2517-6161.1958.tb00292.x
– volume: 81
  start-page: 203
  issue: 1
  year: 2021
  ident: 3369_CR134
  publication-title: J Global Optim
  doi: 10.1007/s10898-020-00912-0
– volume: 373
  start-page: 113485
  year: 2021
  ident: 3369_CR211
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113485
– ident: 3369_CR201
  doi: 10.1007/s00158-021-02926-y
– volume: 141
  start-page: 121405
  issue: 12
  year: 2019
  ident: 3369_CR68
  publication-title: J Mech Des
  doi: 10.1115/1.4044401
– volume: 141
  start-page: 114502
  issue: 11
  year: 2019
  ident: 3369_CR124
  publication-title: J Mech Des
  doi: 10.1115/1.4044228
– volume: 47
  start-page: 479
  issue: 4
  year: 2013
  ident: 3369_CR174
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-012-0857-6
– ident: 3369_CR193
  doi: 10.1080/0305215X.2021.1902998
– volume-title: Modern factor analysis
  year: 1976
  ident: 3369_CR76
– volume: 111
  start-page: 115
  year: 2018
  ident: 3369_CR140
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2017.12.015
– volume: 142
  start-page: 061701
  issue: 6
  year: 2020
  ident: 3369_CR118
  publication-title: J Mech Des
  doi: 10.1115/1.4045044
– volume: 60
  start-page: 550
  issue: 3
  year: 2018
  ident: 3369_CR151
  publication-title: SIAM Rev
  doi: 10.1137/16M1082469
– ident: 3369_CR183
  doi: 10.7763/IJMO.2019.V9.714
– volume: 45
  start-page: 101
  issue: 1
  year: 2012
  ident: 3369_CR153
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-011-0666-3
– volume: 40
  start-page: 6438
  issue: 16
  year: 2013
  ident: 3369_CR73
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.05.053
– volume: 167
  year: 2020
  ident: 3369_CR8
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2020.110617
– volume: 62
  start-page: 3127
  issue: 6
  year: 2020
  ident: 3369_CR36
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-020-02659-4
– ident: 3369_CR44
– volume: 36
  start-page: 1837
  issue: 6
  year: 2020
  ident: 3369_CR62
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2579
– ident: 3369_CR111
  doi: 10.1109/BigData.2017.8258307
– ident: 3369_CR23
  doi: 10.1115/DETC2016-60091
– volume: 141
  start-page: 121403
  issue: 12
  year: 2019
  ident: 3369_CR122
  publication-title: J Mech Des
  doi: 10.1115/1.4044400
– volume: 143
  start-page: 031715
  issue: 3
  year: 2021
  ident: 3369_CR139
  publication-title: J Mech Des
  doi: 10.1115/1.4049533
– volume: 53
  start-page: 275105
  issue: 27
  year: 2020
  ident: 3369_CR169
  publication-title: J Phys D Appl Phys
  doi: 10.1088/1361-6463/ab8036
– volume: 63
  start-page: 1135
  issue: 3
  year: 2021
  ident: 3369_CR32
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-020-02748-4
– volume: 477
  start-page: 20210495
  issue: 2253
  year: 2021
  ident: 3369_CR154
  publication-title: Proce Royal Soc A
  doi: 10.1098/rspa.2021.0495
– volume: 143
  start-page: 031703
  issue: 3
  year: 2021
  ident: 3369_CR34
  publication-title: J Mech Des
  doi: 10.1115/1.4048626
– ident: 3369_CR143
– ident: 3369_CR132
  doi: 10.1615/Int.J.UncertaintyQuantification.2020031957
– volume: 374
  start-page: 113575
  year: 2021
  ident: 3369_CR123
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113575
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  ident: 3369_CR59
  publication-title: Ann Eugen
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 8
  start-page: 292
  issue: 3
  year: 2019
  ident: 3369_CR6
  publication-title: Electronics
  doi: 10.3390/electronics8030292
– ident: 3369_CR74
– volume: 56
  start-page: 139
  issue: 1
  year: 2017
  ident: 3369_CR65
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-017-1653-0
– ident: 3369_CR71
  doi: 10.1007/978-3-662-39778-7_10
– volume: 35
  start-page: 29
  issue: 1
  year: 2008
  ident: 3369_CR108
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-007-0110-x
– ident: 3369_CR180
– volume: 141
  start-page: 111101
  issue: 11
  year: 2019
  ident: 3369_CR98
  publication-title: J Mech Des
  doi: 10.1115/1.4043678
– volume: 141
  start-page: 111404
  issue: 11
  year: 2019
  ident: 3369_CR142
  publication-title: J Mech Des
  doi: 10.1115/1.4044077
– volume: 2
  start-page: 47
  issue: 1
  year: 2009
  ident: 3369_CR173
  publication-title: Int J Des Eng
– volume: 60
  start-page: 1709
  issue: 4
  year: 2019
  ident: 3369_CR206
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-019-02276-w
– volume: 11
  start-page: 1359
  issue: 7
  year: 2020
  ident: 3369_CR172
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-01044-y
– volume: 62
  start-page: 1185
  issue: 3
  year: 2020
  ident: 3369_CR91
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-020-02545-z
– volume: 135
  year: 2021
  ident: 3369_CR15
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2021.103014
– volume: 55
  start-page: 2215
  issue: 7
  year: 2017
  ident: 3369_CR171
  publication-title: AIAA J
  doi: 10.2514/1.J055595
– volume: 142
  start-page: 011402
  issue: 1
  year: 2020
  ident: 3369_CR137
  publication-title: J Mech Des
  doi: 10.1115/1.4044332
– volume: 61
  start-page: 2363
  issue: 6
  year: 2020
  ident: 3369_CR168
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-020-02522-6
– volume: 37
  start-page: 279
  issue: 3
  year: 2009
  ident: 3369_CR3
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-008-0230-y
– volume: 7
  start-page: 1902607
  issue: 5
  year: 2020
  ident: 3369_CR35
  publication-title: Adv Sci
  doi: 10.1002/advs.201902607
– volume: 51
  start-page: 1284
  issue: 6
  year: 2013
  ident: 3369_CR129
  publication-title: AIAA J
  doi: 10.2514/1.J051573
– volume: 92
  start-page: 722
  year: 2019
  ident: 3369_CR182
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2019.07.002
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  ident: 3369_CR16
  publication-title: Struct Optim
  doi: 10.1007/BF01650949
– ident: 3369_CR147
  doi: 10.1109/ICDS47004.2019.8942318
– volume: 14
  start-page: 989
  issue: 4
  year: 2020
  ident: 3369_CR101
  publication-title: Optim Lett
  doi: 10.1007/s11590-019-01428-7
– volume: 225
  start-page: 111327
  year: 2020
  ident: 3369_CR138
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111327
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 3369_CR126
  publication-title: Bull Math Biophys
  doi: 10.1007/BF02478259
– ident: 3369_CR202
– ident: 3369_CR199
  doi: 10.1109/IJCNN.2018.8489043
– volume: 55
  start-page: 1
  issue: 6
  year: 2019
  ident: 3369_CR50
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2019.2899934
– ident: 3369_CR69
– ident: 3369_CR163
  doi: 10.1007/978-3-540-28650-9_4
– volume: 198
  start-page: 105887
  year: 2020
  ident: 3369_CR110
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105887
– volume: 58
  start-page: 1304
  issue: 3
  year: 2020
  ident: 3369_CR80
  publication-title: AIAA J
  doi: 10.2514/1.J058853
– volume: 66
  start-page: 449
  year: 2020
  ident: 3369_CR47
  publication-title: Comput Mech
  doi: 10.1007/s00466-020-01859-5
– ident: 3369_CR159
– ident: 3369_CR192
– volume: 42
  start-page: 287
  issue: 3
  year: 2001
  ident: 3369_CR164
  publication-title: Mach Learn
  doi: 10.1023/A:1007618119488
– volume: 401
  start-page: 109020
  year: 2020
  ident: 3369_CR128
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2019.109020
– volume: 141
  start-page: 111402
  issue: 11
  year: 2019
  ident: 3369_CR20
  publication-title: J Mech Des
  doi: 10.1115/1.4044257
– volume: 63
  start-page: 1927
  issue: 4
  year: 2021
  ident: 3369_CR10
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-020-02788-w
– volume: 191
  start-page: 106462
  year: 2019
  ident: 3369_CR99
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.106462
– ident: 3369_CR102
– volume: 33
  start-page: 199
  issue: 3
  year: 2007
  ident: 3369_CR70
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-006-0051-9
– volume: 59
  start-page: 1521
  issue: 5
  year: 2019
  ident: 3369_CR40
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-018-2145-6
– volume: 34
  start-page: 215
  issue: 4
  year: 2019
  ident: 3369_CR175
  publication-title: Russ J Numer Anal Math Model
  doi: 10.1515/rnam-2019-0018
– ident: 3369_CR198
– ident: 3369_CR38
  doi: 10.1145/2939672.2939785
– ident: 3369_CR148
  doi: 10.1109/SSCI47803.2020.9308255
– volume: 31
  start-page: 085101
  issue: 8
  year: 2019
  ident: 3369_CR150
  publication-title: Phys Fluids
  doi: 10.1063/1.5113494
– volume-title: Neural networks for pattern recognition
  year: 1995
  ident: 3369_CR19
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 3369_CR100
  publication-title: Adv Model Simul Eng Sci
  doi: 10.1186/s40323-020-00176-z
– ident: 3369_CR205
  doi: 10.1007/s00158-021-02851-0
– volume: 9
  start-page: 1059
  issue: 5
  year: 2020
  ident: 3369_CR86
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0330
– ident: 3369_CR144
  doi: 10.1115/1.4044229
– volume: 60
  start-page: 897
  issue: 4
  year: 1938
  ident: 3369_CR194
  publication-title: Am J Math
  doi: 10.2307/2371268
– volume: 378
  start-page: 686
  year: 2019
  ident: 3369_CR162
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.10.045
– volume: 375
  start-page: 112739
  year: 2021
  ident: 3369_CR41
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112739
– ident: 3369_CR39
  doi: 10.2514/6.2019-2351
– volume: 62
  start-page: 3796
  issue: 10
  year: 2011
  ident: 3369_CR106
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2011.09.028
– ident: 3369_CR136
– volume: 149
  start-page: 102841
  year: 2020
  ident: 3369_CR87
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2020.102841
– volume: 64
  start-page: 395
  issue: 2
  year: 2019
  ident: 3369_CR81
  publication-title: Comput Mech
  doi: 10.1007/s00466-019-01739-7
– ident: 3369_CR107
  doi: 10.2514/6.2019-2990
– volume: 244
  start-page: 106457
  year: 2021
  ident: 3369_CR52
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2020.106457
– ident: 3369_CR14
– volume: 142
  start-page: 071701
  issue: 7
  year: 2020
  ident: 3369_CR170
  publication-title: J Mech Des
  doi: 10.1115/1.4045419
– volume: 57
  start-page: 238
  issue: 3
  year: 1989
  ident: 3369_CR60
  publication-title: Inter Stat Rev/revue Internationale De Statistique
– volume: 52
  start-page: 1136
  issue: 7
  year: 2020
  ident: 3369_CR176
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2019.1646258
– ident: 3369_CR196
  doi: 10.1115/1.4044199
– ident: 3369_CR24
– ident: 3369_CR160
  doi: 10.1115/1.4044256
– volume: 350
  start-page: 300
  issue: 2
  year: 2013
  ident: 3369_CR127
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2012.11.003
– volume: 113
  start-page: 107909
  year: 2021
  ident: 3369_CR33
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107909
– volume: 109
  year: 2019
  ident: 3369_CR120
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2019.104368
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 3369_CR165
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 60
  start-page: 527
  issue: 2
  year: 2019
  ident: 3369_CR209
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-019-02222-w
– ident: 3369_CR21
  doi: 10.1007/978-3-642-21551-3_33
– ident: 3369_CR141
– volume: 345
  start-page: 363
  year: 2019
  ident: 3369_CR27
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.10.046
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 3369_CR42
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– ident: 3369_CR48
  doi: 10.1115/DETC2018-86333
– ident: 3369_CR130
– volume: 53
  start-page: 2108
  issue: 12
  year: 2021
  ident: 3369_CR189
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2020.1846031
– volume: 39
  start-page: 311
  issue: 3
  year: 2009
  ident: 3369_CR4
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-008-0327-3
– volume: 59
  start-page: 1075
  issue: 4
  year: 2019
  ident: 3369_CR75
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-019-02211-z
– ident: 3369_CR46
  doi: 10.21203/rs.3.rs-146826/v1
– volume: 97
  start-page: 103
  year: 2018
  ident: 3369_CR119
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2018.07.001
– ident: 3369_CR117
– volume: 46
  start-page: 1803
  issue: 7
  year: 2008
  ident: 3369_CR7
  publication-title: AIAA J
  doi: 10.2514/1.35374
– ident: 3369_CR146
  doi: 10.1115/1.4044690
– volume: 363
  start-page: 112892
  year: 2020
  ident: 3369_CR204
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.112892
– volume: 155
  start-page: 91
  year: 2018
  ident: 3369_CR58
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.11.005
– volume: 84
  start-page: 880
  year: 2019
  ident: 3369_CR105
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2018.11.014
– ident: 3369_CR28
  doi: 10.1007/978-94-011-2787-5_35
– volume: 80
  start-page: 17391
  issue: 11
  year: 2021
  ident: 3369_CR114
  publication-title: Mult Tools Appl
  doi: 10.1007/s11042-020-09142-8
– volume: 357
  start-page: 125
  year: 2018
  ident: 3369_CR161
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.11.039
– volume: 78
  start-page: 141
  year: 2015
  ident: 3369_CR12
  publication-title: Prog Nucl Energy
  doi: 10.1016/j.pnucene.2014.08.006
– volume: 25
  start-page: 1189
  year: 2001
  ident: 3369_CR63
  publication-title: Annal Stat
– volume: 354
  start-page: 493
  year: 2018
  ident: 3369_CR31
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.10.034
– volume: 138
  start-page: 071404
  issue: 7
  year: 2016
  ident: 3369_CR22
  publication-title: J Mech Des
  doi: 10.1115/1.4033427
– volume: 62
  start-page: 1313
  year: 2020
  ident: 3369_CR88
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-020-02559-7
– ident: 3369_CR92
  doi: 10.2514/6.2018-3882
– volume: 30
  start-page: 3146
  year: 2017
  ident: 3369_CR96
  publication-title: Adv Neural Inf Process Syst
– volume: 22
  start-page: 1022
  issue: 9
  year: 2020
  ident: 3369_CR79
  publication-title: Entropy
  doi: 10.3390/e22091022
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: 3369_CR45
  publication-title: Sens Imag
  doi: 10.1007/s11220-018-0222-y
– ident: 3369_CR13
– volume: 2
  start-page: 015002
  issue: 1
  year: 2020
  ident: 3369_CR25
  publication-title: Mach Learn: Sci Technol
– volume: 7
  start-page: 105
  year: 2019
  ident: 3369_CR82
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2019.00105
– volume: 86
  start-page: 011004
  issue: 1
  year: 2019
  ident: 3369_CR113
  publication-title: J Appl Mech
  doi: 10.1115/1.4041319
– ident: 3369_CR112
  doi: 10.1115/1.4053469
– volume: 237
  start-page: 106283
  year: 2020
  ident: 3369_CR1
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2020.106283
– volume: 1
  start-page: 119
  issue: 2
  year: 1988
  ident: 3369_CR64
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(88)90014-7
– volume: 1
  start-page: 111
  issue: 4
  year: 2011
  ident: 3369_CR94
  publication-title: Int J Artif Intel Exp Sys
– volume: 51
  start-page: 1370
  issue: 8
  year: 2019
  ident: 3369_CR155
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2018.1519559
– volume: 4
  start-page: 10
  issue: 2
  year: 2020
  ident: 3369_CR178
  publication-title: Designs
  doi: 10.3390/designs4020010
– volume: 118
  start-page: e2101784118
  issue: 21
  year: 2021
  ident: 3369_CR103
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.2101784118
– volume: 141
  start-page: 111401
  issue: 11
  year: 2019
  ident: 3369_CR109
  publication-title: J Mech Des
  doi: 10.1115/1.4044397
– ident: 3369_CR157
  doi: 10.1017/dsd.2020.42
– volume: 6
  start-page: 041006
  issue: 4
  year: 2020
  ident: 3369_CR72
  publication-title: ASME J Risk Uncertainty Part B
  doi: 10.1115/1.4047636
– volume: 55
  start-page: 1
  issue: 6
  year: 2019
  ident: 3369_CR166
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2019.2901906
– volume: 59
  start-page: 87
  issue: 1
  year: 2019
  ident: 3369_CR167
  publication-title: Int J Appl Electromagnet Mech
  doi: 10.3233/JAE-171164
– volume: 141
  start-page: 021705
  issue: 2
  year: 2019
  ident: 3369_CR135
  publication-title: J Mech Des
  doi: 10.1115/1.4042084
– ident: 3369_CR188
– volume: 57
  start-page: 383
  issue: 3
  year: 1995
  ident: 3369_CR5
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(95)00048-L
– ident: 3369_CR77
– volume: 3
  start-page: 422
  issue: 6
  year: 2021
  ident: 3369_CR95
  publication-title: Physics
– ident: 3369_CR66
– ident: 3369_CR11
– ident: 3369_CR145
  doi: 10.1115/1.0003772V
– volume: 426
  start-page: 109942
  year: 2021
  ident: 3369_CR30
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2020.109942
– ident: 3369_CR200
  doi: 10.1002/nme.6809
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  ident: 3369_CR29
  publication-title: Comput-Aided Civ Inf Eng
  doi: 10.1111/mice.12263
– volume: 68
  start-page: 97
  year: 2017
  ident: 3369_CR177
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2017.06.003
– ident: 3369_CR195
  doi: 10.7551/mitpress/3206.001.0001
– volume: 7
  start-page: 4056
  year: 2018
  ident: 3369_CR186
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888903
– volume: 59
  start-page: 787
  issue: 3
  year: 2019
  ident: 3369_CR207
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-018-2101-5
– ident: 3369_CR57
– volume: 32
  start-page: 6393
  issue: 10
  year: 2020
  ident: 3369_CR152
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04146-4
– volume: 143
  start-page: 031702
  issue: 3
  year: 2021
  ident: 3369_CR115
  publication-title: J Mech Des
  doi: 10.1115/1.4048625
– volume: 388
  start-page: 114197
  year: 2022
  ident: 3369_CR54
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114197
– volume: 3
  start-page: 4
  year: 2020
  ident: 3369_CR55
  publication-title: Front Artif Intel
  doi: 10.3389/frai.2020.00004
– ident: 3369_CR121
  doi: 10.4271/2015-01-1369
– volume: 112
  start-page: 1801
  issue: 12
  year: 2017
  ident: 3369_CR185
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.5583
– volume: 375
  start-page: 565
  year: 2018
  ident: 3369_CR187
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.08.036
– volume: 19
  start-page: 5366
  issue: 8
  year: 2019
  ident: 3369_CR85
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b01857
– volume: 196
  start-page: 109098
  year: 2020
  ident: 3369_CR104
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2020.109098
– volume: 130
  start-page: 102947
  year: 2021
  ident: 3369_CR97
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2020.102947
– volume: 386
  year: 2021
  ident: 3369_CR212
  publication-title: Comput Method Appl Mech Eng
  doi: 10.1016/j.cma.2021.114083
– volume: 8
  start-page: 36
  issue: 1
  year: 2020
  ident: 3369_CR83
  publication-title: Int J Comput Methods Exp Meas
– volume: 52
  start-page: 065501
  issue: 6
  year: 2020
  ident: 3369_CR78
  publication-title: Fluid Dyn Res
  doi: 10.1088/1873-7005/abb91d
– volume: 44
  start-page: 591
  year: 2020
  ident: 3369_CR90
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2020.02.251
– ident: 3369_CR84
– volume: 63
  start-page: 915
  issue: 2
  year: 2021
  ident: 3369_CR190
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-020-02797-9
– volume: 109
  start-page: 12
  year: 2019
  ident: 3369_CR26
  publication-title: Comput-Aided Des
  doi: 10.1016/j.cad.2018.12.008
– volume: 63
  start-page: 1687
  issue: 4
  year: 2021
  ident: 3369_CR158
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-020-02770-6
– volume: 122
  start-page: 7182
  issue: 23
  year: 2021
  ident: 3369_CR2
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.6828
– ident: 3369_CR17
– volume: 116
  start-page: 26414
  issue: 52
  year: 2019
  ident: 3369_CR133
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1911815116
– volume: 45
  start-page: 529
  issue: 4
  year: 2012
  ident: 3369_CR149
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-011-0711-2
– ident: 3369_CR51
– volume: 2
  start-page: 1
  issue: 4
  year: 2021
  ident: 3369_CR9
  publication-title: SN Computer Science
  doi: 10.1007/s42979-021-00702-9
– volume-title: Introduction to linear regression analysis
  year: 2021
  ident: 3369_CR131
– volume: 169
  start-page: 422
  year: 2018
  ident: 3369_CR197
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.09.029
– volume: 53
  start-page: 102
  year: 2016
  ident: 3369_CR49
  publication-title: Int J Ind Ergon
  doi: 10.1016/j.ergon.2015.11.005
– volume-title: Engineering design via surrogate modelling: a practical guide
  year: 2008
  ident: 3369_CR61
  doi: 10.1002/9780470770801
– volume: 43
  start-page: A1134
  issue: 2
  year: 2021
  ident: 3369_CR156
  publication-title: SIAM J Sci Comput
  doi: 10.1137/20M1349965
– volume: 54
  start-page: 255
  issue: 3
  year: 2004
  ident: 3369_CR53
  publication-title: Mach Learn
  doi: 10.1023/B:MACH.0000015881.36452.6e
– volume: 64
  start-page: 417
  issue: 2
  year: 2019
  ident: 3369_CR203
  publication-title: Comput Mech
  doi: 10.1007/s00466-019-01718-y
– ident: 3369_CR93
  doi: 10.1177/09544100211022244
– ident: 3369_CR67
– volume: 115
  start-page: 172
  year: 2019
  ident: 3369_CR116
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2019.05.038
– volume: 59
  start-page: 868
  issue: 3
  year: 2021
  ident: 3369_CR210
  publication-title: AIAA J
  doi: 10.2514/1.J059877
– volume: 61
  start-page: 1417
  issue: 4
  year: 2020
  ident: 3369_CR181
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-019-02424-2
– volume: 8
  start-page: 190710
  year: 2020
  ident: 3369_CR208
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3032280
– ident: 3369_CR37
  doi: 10.1115/DETC2020-22729
– volume: 62
  start-page: 1071
  issue: 3
  year: 2020
  ident: 3369_CR184
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-020-02665-6
– volume: 372
  start-page: 113401
  year: 2020
  ident: 3369_CR89
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113401
– volume: 280
  start-page: 114949
  year: 2022
  ident: 3369_CR191
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.114949
– volume: 6
  start-page: 2809
  issue: 59
  year: 2021
  ident: 3369_CR56
  publication-title: J Open Source Soft
  doi: 10.21105/joss.02809
SSID ssj0008049
Score 2.5399745
SecondaryResourceType review_article
Snippet Machine Learning (ML) techniques have been used in an extensive range of applications in the field of structural and multidisciplinary optimization over the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Design optimization
Engineering
Engineering Design
Fluid mechanics
Keywords
Literature reviews
Machine learning
Mechanical engineering
Neural networks
Review Paper
Software utilities
Structural design
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6K85IENLPJwYmdCFaJiqpAAqVvk-oEq0aQ0pRL_Httx2oJEF6YMSawo3_m7s333HcCVNF4mHRj2k5RwTJROMNM0NKsUGaVUUE0C7ppN0F6P9fvZk99wq3xaZcOJjqhlKewe-W1EDccSMzXTu_EHtl2j7Omqb6GxDhtWJSF0qXvPcyZmdfhrgxocEtr3RTOudM4GCwzbXPYgjtMMZz8d0yLa_HVA6vxOd_e_X7wHOz7iRJ3aRPZhTRUHsL2kQ3gI_Q6qPicz9YVKjUYuvVIh30_iDc1lXis0LFAtOGvFOhAvJHIJiculvag0JDTy1Z1H8Np9eLl_xL7lAhZmLk6xMi6cKpLwVDBOs8xceTLQqYql0BEng4gMWMB1ShUzsQolZkESyiDglCvBiY6PoVWUhToBlPAokzKKteEIEjPCZBJLzQU3KxgptWhD2PzvXHg9ctsW4z2fKyk7jHKDUe4wyrM2XM_fGddqHCufPm-Ayf3MrPIFKm24aaBd3P57tNPVo53BVuSsyaafnUPLgKEuYFPMpsNqcuns8hvqq-lg
  priority: 102
  providerName: ProQuest
Title A survey of machine learning techniques in structural and multidisciplinary optimization
URI https://link.springer.com/article/10.1007/s00158-022-03369-9
https://www.proquest.com/docview/2712349116
Volume 65
WOSCitedRecordID wos000852375400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: RSV
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BywADb0ShVB7YIFKaOLEzFtSKqapaQNkixw9UiaaoKZX499jOg4IACaYMcazozr7vLH_3HcCl0CgTpjr6CYKZg6UKHKpIV59ShBcSThR2mW02QYZDGsfRqCwKyyu2e3UlaSN1Xexm4J06hn3u-n4YOdEmNDXcUdOwYTx5rOMvLZJek8o4XUzislTm-zk-w9FHjvnlWtSizWDvf_-5D7tldol6xXI4gA2ZHcLOmubgEcQ9lL8uVvINzRWaWSqlRGXviCdUS7rmaJqhQlzWCHMglglkyYfrZbxorgPOrKzkPIaHQf_-9s4p2ys4XO-7pSM1XBOJAxZyykgU6ScLUhVKX3DlMZx6OKUuUyGRVOclBOvDR1e4LiNMcoaVfwKNbJ7JU0AB8yIhPF_peIB9iqkIfKEYZ_q0IoTiLehWVk54qT1uWmA8J7VqsrVaoq2WWKslUQuu6m9eCuWNX0e3K-cl5S7ME49oXMY6nIctuK6c9fH659nO_jb8HLY9629DPWtDQztHXsAWXy2n-aIDzZv-cDTuGFrppGPX6jvf3-IG
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2i00qFBX0ihle9aFet1YzjxM4CIcRDIOioUqk0u9TxoxqpkxkmA4if6jf22klmoFLZsegqiySWEh-fe5zcey7Ae4NRJi2Q_YzginLrEiqd6OEuxbBUaOF4pEKzCdHvy8Eg-7oEv9taGJ9W2XJiIGoz1v4b-WcmkGM5Ls10b3JJfdco_3e1baFRw-LM3t7glq3aPT3E-f3A2PHRxcEJbboKUI1wm1GLUUpYnqhUSyWyDI8qKVxqY6MdU7xgvJCRcqmwEsOx4Ki5eyaKlFBWK-5iHPcJPEUZwbKQKvhtzvyyltteRNEeF4OmSCeU6nlxIqnPnY_iOM1odj8QLtTtXz9kQ5w7fvG_vaGXsNooarJfL4FXsGTL17Byx2fxDQz2SXU1vba3ZOzIKKSPWtL0y_hJ5ja2FRmWpDbU9WYkRJWGhITLu6XLZIwkO2qqV9_C90d5tDXolOPSrgNJFMuMYbFDDuSx5NIksXFKK9yhGeN0F3rt_Oa68Vv3bT9-5XOn6ICJHDGRB0zkWRc-zu-Z1G4jD1691QIhb5inyhco6MKnFkqL0_8ebePh0d7B85OLL-f5-Wn_bBOWWUCyT7Xbgg5OjN2GZ_p6NqymO2FNEPjx2BD7A4AaR8g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujBt1ifOXjTpfvIbrLHohZFKQUf9LakeUjBbku3Fvz3JtlHq6ggnnLYbAgzyXwzZOYbgDOhUSbqaesnCGYOlip0qCKejlKEHxFOFHaZbTZB2m3a7caduSp-m-1ePknmNQ2GpSmdNEZCNarCNwP11DGZ6G4QRLETL8ISNon0Jl5_eK5sMc0dYOPWOB4m3aJs5vs1PkPTzN_88kRqkae18f89b8J64XWiZn5MtmBBptuwNsdFuAPdJsrexlP5joYKDWyKpURFT4kXVFG9Zqifopx01hB2IJYKZJMS58t70VAbokFR4bkLT63rx8sbp2i74HB9HyeO1DBOJA5ZxCkjcaxHFvZUJAPBlc9wz8c96jIVEUm1v0KwDko84bqMMMkZVsEe1NJhKvcBhcyPhfADpe0EDiimIgyEYpzpKEYIxevglRJPeMFJblpjvCYVm7KVWqKlllipJXEdzqt_Rjkjx6-zj0pFJsXtzBKfaLzG2sxHdbgoFTf7_PNqB3-bfgornatWcn_bvjuEVd-q3mSnHUFN60kewzKfTvrZ-MQe2g-aJOs8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+machine+learning+techniques+in+structural+and+multidisciplinary+optimization&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Ramu%2C+Palaniappan&rft.au=Thananjayan%2C+Pugazhenthi&rft.au=Acar%2C+Erdem&rft.au=Bayrak%2C+Gamze&rft.date=2022-09-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=65&rft.issue=9&rft_id=info:doi/10.1007%2Fs00158-022-03369-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_022_03369_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon