Application of improved distributed naive Bayesian algorithms in text classification
The naive Bayes classifier is a widely used text classification method that applies statistical theory to text classification. Due to the particularity of the text, related feature items may generate new semantic information, which may be lost when the traditional vector space model represents text....
Uloženo v:
| Vydáno v: | The Journal of supercomputing Ročník 75; číslo 9; s. 5831 - 5847 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The naive Bayes classifier is a widely used text classification method that applies statistical theory to text classification. Due to the particularity of the text, related feature items may generate new semantic information, which may be lost when the traditional vector space model represents text. This paper mainly studies the construction and improvement of distributed naive Bayes automatic classification system. The application of Hadoop cloud computing in web page classification is one of the focuses of this article. Firstly, the text classification system and Bayesian classification model are analyzed and discussed, including the representation and extraction of text information, text classification methods and Bayesian text classification methods. Then, in view of the shortcomings of the above-mentioned naive Bayesian text classification method, when training text, we use the mutual information method to check the correlation between the feature sets generated after feature selection, and then combine the features with higher correlation degree appropriately. Through a series of tests, the experimental data show that the improved text classification system can achieve better classification results. |
|---|---|
| AbstractList | The naive Bayes classifier is a widely used text classification method that applies statistical theory to text classification. Due to the particularity of the text, related feature items may generate new semantic information, which may be lost when the traditional vector space model represents text. This paper mainly studies the construction and improvement of distributed naive Bayes automatic classification system. The application of Hadoop cloud computing in web page classification is one of the focuses of this article. Firstly, the text classification system and Bayesian classification model are analyzed and discussed, including the representation and extraction of text information, text classification methods and Bayesian text classification methods. Then, in view of the shortcomings of the above-mentioned naive Bayesian text classification method, when training text, we use the mutual information method to check the correlation between the feature sets generated after feature selection, and then combine the features with higher correlation degree appropriately. Through a series of tests, the experimental data show that the improved text classification system can achieve better classification results. |
| Author | Gao, Hongyi Zeng, Xi Yao, Chunhua |
| Author_xml | – sequence: 1 givenname: Hongyi surname: Gao fullname: Gao, Hongyi email: ghydhr@mail.ustc.edu.cn organization: China Electronics Technology Group Corporation – sequence: 2 givenname: Xi surname: Zeng fullname: Zeng, Xi organization: China Electronics Technology Group Corporation – sequence: 3 givenname: Chunhua surname: Yao fullname: Yao, Chunhua organization: China Electronics Technology Group Corporation |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9F8bZI91uIXFLzUc8juJjVlu1uTtNh_b-wWBA9lDjOHed535p2AUdd3FoBbgu8JxvIhEkKpRJiUCFMlKCIXYEwKyRDmio_AGJcUI1VwegUmMa4xxpxJNgbL2Xbb-tok33ewd9BvtqHf2wY2Pqbgq13Kc2f83sJHc7DRmw6adtUHnz43EfoOJvudYN2aGL07CV2DS2faaG9OfQo-np-W81e0eH95m88WqGakTKhxFWWFtFJVQqgGl4IrJ0tTMVpYI7ghDXWWiyqXqkVZVc4ZZTmnBBusFJuCu0E33_y1szHpdb8LXbbUlJZCEkkYz1t02KpDH2OwTm-D35hw0ATr3_T0kJ7O6eljeppkSP2Dap-Oz6VgfHseZQMas0-3suHvqjPUD2t0hyc |
| CitedBy_id | crossref_primary_10_1007_s00259_021_05489_8 crossref_primary_10_1007_s10916_020_01626_2 crossref_primary_10_1109_ACCESS_2023_3250109 crossref_primary_10_1109_ACCESS_2020_2995905 crossref_primary_10_1007_s11227_021_03649_z crossref_primary_10_1007_s00170_025_15812_4 crossref_primary_10_2196_55721 crossref_primary_10_1155_2021_5518967 crossref_primary_10_3390_info16060512 crossref_primary_10_3390_machines11111027 crossref_primary_10_1109_ACCESS_2024_3415350 crossref_primary_10_1007_s10639_023_12097_6 crossref_primary_10_1042_BST20211240 crossref_primary_10_1038_s41598_025_13484_4 crossref_primary_10_3390_su151411186 crossref_primary_10_1007_s11227_020_03490_w crossref_primary_10_1007_s12065_023_00887_3 crossref_primary_10_1016_j_heliyon_2023_e18812 crossref_primary_10_1109_ACCESS_2022_3226324 crossref_primary_10_1155_2022_7882294 crossref_primary_10_3390_app14041565 crossref_primary_10_1109_ACCESS_2020_3048172 |
| Cites_doi | 10.1016/j.asoc.2016.12.043 10.1016/j.engappai.2016.02.002 10.1109/JSEN.2015.2477540 10.1080/07350015.2014.903086 10.1109/ICDMW.2009.34 10.1007/s10257-014-0252-5 10.1007/s10115-014-0746-y 10.1049/iet-ipr.2017.0892 10.1007/s10618-012-0296-4 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-019-02862-1 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 5847 |
| ExternalDocumentID | 10_1007_s11227_019_02862_1 |
| GrantInformation_xml | – fundername: Chinese National Natural Science Fund Project grantid: 61802271 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c319t-dfb2357e78b668d09648f79ab325ea64a1d2fe46b6b68c69bbffa8e44210a0883 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487643900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:48:52 EDT 2025 Sat Nov 29 04:27:37 EST 2025 Tue Nov 18 20:52:47 EST 2025 Fri Feb 21 02:27:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Feature selection Naive Bayesian algorithm Distributed Text classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-dfb2357e78b668d09648f79ab325ea64a1d2fe46b6b68c69bbffa8e44210a0883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2296717134 |
| PQPubID | 2043774 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2296717134 crossref_primary_10_1007_s11227_019_02862_1 crossref_citationtrail_10_1007_s11227_019_02862_1 springer_journals_10_1007_s11227_019_02862_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | GuanGGuoJWangHVarying Naïve Bayes models with applications to classification of chinese text documentsJ Bus Econ Stat201432344545610.1080/07350015.2014.903086 Jing-HuiLIXiao-GangZHuaCImproved algorithm for learning hidden Naive BayesJ Chin Comput Syst2013211013611371 YangBLeiYYanBDistributed multi-human location algorithm using Naive Bayes classifier for a binary pyroelectric infrared sensor tracking systemIEEE Sens J201616121622310.1109/JSEN.2015.2477540 Wegener D, Mock M, Adranale D, Wrobel S (2009) Toolkit-based high-performance data mining of large data on MapReduce clusters. In: IEEE International Conference on Data Mining Workshops. IEEE. 11048117, Miami, FL, USA. https://doi.org/10.1109/ICDMW.2009.34 NisaRQamarUA text mining based approach for web service classificationInf Syst e-Bus Manag201513475176810.1007/s10257-014-0252-5 ChettriRPradhanSChettriLInternet of things: comparative study on classification algorithms (k-NN, Naive Bayes and case based reasoning)Int J Comput Appl20151301279 JiangJCLinTYMahalanobis-Taguchi system and selective Naive Bayesian algorithm for multivariate pattern recognitionJ Comput Theor Nanosci2013192638641 ZhangXJiangJHongRAccelerated image classification algorithm based on naive Bayes K-nearest neighborBeijing Hangkong Hangtian Daxue Xuebao/J Beijing Univ Aeronaut Astronaut2015412302310 WongTzu-TsungGeneralized Dirichlet priors for Naive Bayesian classifiers with multinomial models in document classificationData Min Knowl Discov2014281123144314756610.1007/s10618-012-0296-4 DiabDMEl HindiKMUsing differential evolution for fine tuning naïve Bayesian classifiers and its application for text classificationAppl Soft Comput20175418319910.1016/j.asoc.2016.12.043 WangSJiangLLiCAdapting naive Bayes tree for text classificationKnowl Inf Syst2015441778910.1007/s10115-014-0746-y XuJMaBStudy of network public opinion classification method based on naive bayesian algorithm in hadoop environmentAppl Mech Mater2014519–5204 CaoYSunLHanCImproved side information generation algorithm based on naive Bayesian theory for distributed video codingIET Image Process201812335436010.1049/iet-ipr.2017.0892 JiangLLiCWangSDeep feature weighting for naive Bayes and its application to text classificationEng Appl Artif Intell201652263910.1016/j.engappai.2016.02.002 S Wang (2862_CR12) 2015; 44 R Chettri (2862_CR13) 2015; 130 JC Jiang (2862_CR14) 2013; 19 G Guan (2862_CR8) 2014; 32 Tzu-Tsung Wong (2862_CR7) 2014; 28 L Jiang (2862_CR3) 2016; 52 J Xu (2862_CR2) 2014; 519–520 2862_CR1 X Zhang (2862_CR11) 2015; 41 DM Diab (2862_CR6) 2017; 54 Y Cao (2862_CR4) 2018; 12 LI Jing-Hui (2862_CR9) 2013; 21 R Nisa (2862_CR5) 2015; 13 B Yang (2862_CR10) 2016; 16 |
| References_xml | – reference: JiangLLiCWangSDeep feature weighting for naive Bayes and its application to text classificationEng Appl Artif Intell201652263910.1016/j.engappai.2016.02.002 – reference: XuJMaBStudy of network public opinion classification method based on naive bayesian algorithm in hadoop environmentAppl Mech Mater2014519–5204 – reference: ChettriRPradhanSChettriLInternet of things: comparative study on classification algorithms (k-NN, Naive Bayes and case based reasoning)Int J Comput Appl20151301279 – reference: CaoYSunLHanCImproved side information generation algorithm based on naive Bayesian theory for distributed video codingIET Image Process201812335436010.1049/iet-ipr.2017.0892 – reference: WongTzu-TsungGeneralized Dirichlet priors for Naive Bayesian classifiers with multinomial models in document classificationData Min Knowl Discov2014281123144314756610.1007/s10618-012-0296-4 – reference: Jing-HuiLIXiao-GangZHuaCImproved algorithm for learning hidden Naive BayesJ Chin Comput Syst2013211013611371 – reference: WangSJiangLLiCAdapting naive Bayes tree for text classificationKnowl Inf Syst2015441778910.1007/s10115-014-0746-y – reference: NisaRQamarUA text mining based approach for web service classificationInf Syst e-Bus Manag201513475176810.1007/s10257-014-0252-5 – reference: Wegener D, Mock M, Adranale D, Wrobel S (2009) Toolkit-based high-performance data mining of large data on MapReduce clusters. In: IEEE International Conference on Data Mining Workshops. IEEE. 11048117, Miami, FL, USA. https://doi.org/10.1109/ICDMW.2009.34 – reference: YangBLeiYYanBDistributed multi-human location algorithm using Naive Bayes classifier for a binary pyroelectric infrared sensor tracking systemIEEE Sens J201616121622310.1109/JSEN.2015.2477540 – reference: ZhangXJiangJHongRAccelerated image classification algorithm based on naive Bayes K-nearest neighborBeijing Hangkong Hangtian Daxue Xuebao/J Beijing Univ Aeronaut Astronaut2015412302310 – reference: JiangJCLinTYMahalanobis-Taguchi system and selective Naive Bayesian algorithm for multivariate pattern recognitionJ Comput Theor Nanosci2013192638641 – reference: GuanGGuoJWangHVarying Naïve Bayes models with applications to classification of chinese text documentsJ Bus Econ Stat201432344545610.1080/07350015.2014.903086 – reference: DiabDMEl HindiKMUsing differential evolution for fine tuning naïve Bayesian classifiers and its application for text classificationAppl Soft Comput20175418319910.1016/j.asoc.2016.12.043 – volume: 54 start-page: 183 year: 2017 ident: 2862_CR6 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.12.043 – volume: 52 start-page: 26 year: 2016 ident: 2862_CR3 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.02.002 – volume: 16 start-page: 216 issue: 1 year: 2016 ident: 2862_CR10 publication-title: IEEE Sens J doi: 10.1109/JSEN.2015.2477540 – volume: 41 start-page: 302 issue: 2 year: 2015 ident: 2862_CR11 publication-title: Beijing Hangkong Hangtian Daxue Xuebao/J Beijing Univ Aeronaut Astronaut – volume: 19 start-page: 638 issue: 2 year: 2013 ident: 2862_CR14 publication-title: J Comput Theor Nanosci – volume: 32 start-page: 445 issue: 3 year: 2014 ident: 2862_CR8 publication-title: J Bus Econ Stat doi: 10.1080/07350015.2014.903086 – volume: 21 start-page: 1361 issue: 10 year: 2013 ident: 2862_CR9 publication-title: J Chin Comput Syst – ident: 2862_CR1 doi: 10.1109/ICDMW.2009.34 – volume: 519–520 start-page: 4 year: 2014 ident: 2862_CR2 publication-title: Appl Mech Mater – volume: 13 start-page: 751 issue: 4 year: 2015 ident: 2862_CR5 publication-title: Inf Syst e-Bus Manag doi: 10.1007/s10257-014-0252-5 – volume: 44 start-page: 77 issue: 1 year: 2015 ident: 2862_CR12 publication-title: Knowl Inf Syst doi: 10.1007/s10115-014-0746-y – volume: 12 start-page: 354 issue: 3 year: 2018 ident: 2862_CR4 publication-title: IET Image Process doi: 10.1049/iet-ipr.2017.0892 – volume: 28 start-page: 123 issue: 1 year: 2014 ident: 2862_CR7 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-012-0296-4 – volume: 130 start-page: 7 issue: 12 year: 2015 ident: 2862_CR13 publication-title: Int J Comput Appl |
| SSID | ssj0004373 |
| Score | 2.3358223 |
| Snippet | The naive Bayes classifier is a widely used text classification method that applies statistical theory to text classification. Due to the particularity of the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5831 |
| SubjectTerms | Algorithms Bayesian analysis Classification Cloud computing Comparative analysis Compilers Computer Science Interpreters Processor Architectures Programming Languages Text editing Websites |
| Title | Application of improved distributed naive Bayesian algorithms in text classification |
| URI | https://link.springer.com/article/10.1007/s11227-019-02862-1 https://www.proquest.com/docview/2296717134 |
| Volume | 75 |
| WOSCitedRecordID | wos000487643900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8MwNMj04MX5idMpOXjTwPLRNDlOcXgQEZ2yW0mbRAuzk7UK_nuTrLUoKii9FJo-wvvMy_sC4IhERDs-scgMMomYiAZIidgHHFOsY-obkAdKX8ZXV2Iykdd1UVjZZLs3IcmgqdtiN0yIT5OUyNlETpDzeZaduRNeHG9u79tqSLqIK0vnGImIkbpU5nsYn81Re8b8EhYN1mbU_d8-18FafbqEwwU7bIAlU2yCbjO5AdaCvAXGwzZuDWcW5uFqwWiofR9dPwLLvRfKaUJ4qt6ML7SEavowm-fV41MJ8wL6hBGY-aO3zzUKgLbB3eh8fHaB6vkKKHOCVyFtU9_sxsQi5Vxo58wwYWOpUkoiozhTWBNrGE_dIzIu09RaJQxjzk1UTjvRHdApZoXZBVAwbHikYmIwZUxJQbXVBsfO-mWUykEP4AbNSVY3H_czMKZJ2zbZoy1xaEsC2hLcA8cf_zwvWm_8urrfUC-pxbBMCJHc-atuTz1w0lCr_fwztL2_Ld8HqyQQ3Oee9UGnmr-YA7CSvVZ5OT8M7PkOnhDdEA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8MwNMgU9OL8xOnUHLxpYU3SNDlOcUycQ3TKbiFtUi3MTtYq-O9NstaiqKD0Umj6CO8zL-8LgCMUIGX4JPF0J-YeYUHHkyy0AcfIVyG2DcgdpQfhcMjGY35dFoXlVbZ7FZJ0mroudvMRsmmS3DM2kSLP-DyLxFgsm8h3c3tfV0PieVyZG8eIBQSVpTLfw_hsjuoz5pewqLM2veb_9rkGVsvTJezO2WEdLOhsAzSryQ2wFORNMOrWcWs4TWDqrha0gsr20bUjsMx7Jo0mhKfyTdtCSygnD9NZWjw-5TDNoE0YgbE9ettcIwdoC9z1zkdnfa-cr-DFRvAKTyWRbXajQxZRypRxZghLQi4jjAItKZG-QokmNDIPiymPoiSRTBOD9I402glvg0Y2zfQOgIz4mgYyRNrHhEjOsEqU9kNj_WKMeacF_ArNIi6bj9sZGBNRt022aBMGbcKhTfgtcPzxz_O89cavq9sV9UQphrlAiFPjr5o9tcBJRa3688_Qdv-2_BAs90dXAzG4GF7ugRXkiG_z0NqgUcxe9D5Yil-LNJ8dOFZ9BwMo3_Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIr44P3E6NQ--adiapG3yOD-G4hgDp-wtpE2ihdmNrQr-9yZda1VUEOlLoWkI95HL5e5-B8Ax9rGycmKQbsUcUea3kGShCzhGngqJAyDPOd0Nez02HPL-hyr-PNu9DEnOaxocSlOaNSfKNKvCNw9jlzLJkbWPAUbW_1mirmmQ89dv76vKSDKPMXPrJDGf4qJs5vs5Ppum6rz5JUSaW55O7f9rXgdrxakTtudisgEWdLoJamVHB1go-BYYtKt4NhwbmORXDlpB5fB1XWss-55Ku0PCM_mqXQEmlKOH8TTJHp9mMEmhSySBsTuSuxykfKJtcNe5HJxfoaLvAoqtQmZImciB4OiQRUHAlHVyKDMhlxHBvpYBlZ7CRtMgsg-LAx5FxkimKbXuo7S7FtkBi-k41bsAMurpwJch1h6hVHJGlFHaC61VjAnhrTrwSpKLuAAld70xRqKCU3ZkE5ZsIieb8Org5P2fyRyS49fRjZKTolDPmcCYB9aPtWuqg9OSc9Xnn2fb-9vwI7DSv-iI7nXvZh-s4pz3Lj2tARaz6bM-AMvxS5bMpoe51L4Be5Xo2A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+improved+distributed+naive+Bayesian+algorithms+in+text+classification&rft.jtitle=The+Journal+of+supercomputing&rft.au=Gao%2C+Hongyi&rft.au=Zeng%2C+Xi&rft.au=Yao%2C+Chunhua&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=75&rft.issue=9&rft.spage=5831&rft.epage=5847&rft_id=info:doi/10.1007%2Fs11227-019-02862-1&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |