Application of improved distributed naive Bayesian algorithms in text classification

The naive Bayes classifier is a widely used text classification method that applies statistical theory to text classification. Due to the particularity of the text, related feature items may generate new semantic information, which may be lost when the traditional vector space model represents text....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 75; číslo 9; s. 5831 - 5847
Hlavní autoři: Gao, Hongyi, Zeng, Xi, Yao, Chunhua
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2019
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The naive Bayes classifier is a widely used text classification method that applies statistical theory to text classification. Due to the particularity of the text, related feature items may generate new semantic information, which may be lost when the traditional vector space model represents text. This paper mainly studies the construction and improvement of distributed naive Bayes automatic classification system. The application of Hadoop cloud computing in web page classification is one of the focuses of this article. Firstly, the text classification system and Bayesian classification model are analyzed and discussed, including the representation and extraction of text information, text classification methods and Bayesian text classification methods. Then, in view of the shortcomings of the above-mentioned naive Bayesian text classification method, when training text, we use the mutual information method to check the correlation between the feature sets generated after feature selection, and then combine the features with higher correlation degree appropriately. Through a series of tests, the experimental data show that the improved text classification system can achieve better classification results.
AbstractList The naive Bayes classifier is a widely used text classification method that applies statistical theory to text classification. Due to the particularity of the text, related feature items may generate new semantic information, which may be lost when the traditional vector space model represents text. This paper mainly studies the construction and improvement of distributed naive Bayes automatic classification system. The application of Hadoop cloud computing in web page classification is one of the focuses of this article. Firstly, the text classification system and Bayesian classification model are analyzed and discussed, including the representation and extraction of text information, text classification methods and Bayesian text classification methods. Then, in view of the shortcomings of the above-mentioned naive Bayesian text classification method, when training text, we use the mutual information method to check the correlation between the feature sets generated after feature selection, and then combine the features with higher correlation degree appropriately. Through a series of tests, the experimental data show that the improved text classification system can achieve better classification results.
Author Gao, Hongyi
Zeng, Xi
Yao, Chunhua
Author_xml – sequence: 1
  givenname: Hongyi
  surname: Gao
  fullname: Gao, Hongyi
  email: ghydhr@mail.ustc.edu.cn
  organization: China Electronics Technology Group Corporation
– sequence: 2
  givenname: Xi
  surname: Zeng
  fullname: Zeng, Xi
  organization: China Electronics Technology Group Corporation
– sequence: 3
  givenname: Chunhua
  surname: Yao
  fullname: Yao, Chunhua
  organization: China Electronics Technology Group Corporation
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9F8bZI91uIXFLzUc8juJjVlu1uTtNh_b-wWBA9lDjOHed535p2AUdd3FoBbgu8JxvIhEkKpRJiUCFMlKCIXYEwKyRDmio_AGJcUI1VwegUmMa4xxpxJNgbL2Xbb-tok33ewd9BvtqHf2wY2Pqbgq13Kc2f83sJHc7DRmw6adtUHnz43EfoOJvudYN2aGL07CV2DS2faaG9OfQo-np-W81e0eH95m88WqGakTKhxFWWFtFJVQqgGl4IrJ0tTMVpYI7ghDXWWiyqXqkVZVc4ZZTmnBBusFJuCu0E33_y1szHpdb8LXbbUlJZCEkkYz1t02KpDH2OwTm-D35hw0ATr3_T0kJ7O6eljeppkSP2Dap-Oz6VgfHseZQMas0-3suHvqjPUD2t0hyc
CitedBy_id crossref_primary_10_1007_s00259_021_05489_8
crossref_primary_10_1007_s10916_020_01626_2
crossref_primary_10_1109_ACCESS_2023_3250109
crossref_primary_10_1109_ACCESS_2020_2995905
crossref_primary_10_1007_s11227_021_03649_z
crossref_primary_10_1007_s00170_025_15812_4
crossref_primary_10_2196_55721
crossref_primary_10_1155_2021_5518967
crossref_primary_10_3390_info16060512
crossref_primary_10_3390_machines11111027
crossref_primary_10_1109_ACCESS_2024_3415350
crossref_primary_10_1007_s10639_023_12097_6
crossref_primary_10_1042_BST20211240
crossref_primary_10_1038_s41598_025_13484_4
crossref_primary_10_3390_su151411186
crossref_primary_10_1007_s11227_020_03490_w
crossref_primary_10_1007_s12065_023_00887_3
crossref_primary_10_1016_j_heliyon_2023_e18812
crossref_primary_10_1109_ACCESS_2022_3226324
crossref_primary_10_1155_2022_7882294
crossref_primary_10_3390_app14041565
crossref_primary_10_1109_ACCESS_2020_3048172
Cites_doi 10.1016/j.asoc.2016.12.043
10.1016/j.engappai.2016.02.002
10.1109/JSEN.2015.2477540
10.1080/07350015.2014.903086
10.1109/ICDMW.2009.34
10.1007/s10257-014-0252-5
10.1007/s10115-014-0746-y
10.1049/iet-ipr.2017.0892
10.1007/s10618-012-0296-4
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-019-02862-1
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 5847
ExternalDocumentID 10_1007_s11227_019_02862_1
GrantInformation_xml – fundername: Chinese National Natural Science Fund Project
  grantid: 61802271
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-dfb2357e78b668d09648f79ab325ea64a1d2fe46b6b68c69bbffa8e44210a0883
IEDL.DBID RSV
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487643900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:48:52 EDT 2025
Sat Nov 29 04:27:37 EST 2025
Tue Nov 18 20:52:47 EST 2025
Fri Feb 21 02:27:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Feature selection
Naive Bayesian algorithm
Distributed
Text classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-dfb2357e78b668d09648f79ab325ea64a1d2fe46b6b68c69bbffa8e44210a0883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2296717134
PQPubID 2043774
PageCount 17
ParticipantIDs proquest_journals_2296717134
crossref_primary_10_1007_s11227_019_02862_1
crossref_citationtrail_10_1007_s11227_019_02862_1
springer_journals_10_1007_s11227_019_02862_1
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GuanGGuoJWangHVarying Naïve Bayes models with applications to classification of chinese text documentsJ Bus Econ Stat201432344545610.1080/07350015.2014.903086
Jing-HuiLIXiao-GangZHuaCImproved algorithm for learning hidden Naive BayesJ Chin Comput Syst2013211013611371
YangBLeiYYanBDistributed multi-human location algorithm using Naive Bayes classifier for a binary pyroelectric infrared sensor tracking systemIEEE Sens J201616121622310.1109/JSEN.2015.2477540
Wegener D, Mock M, Adranale D, Wrobel S (2009) Toolkit-based high-performance data mining of large data on MapReduce clusters. In: IEEE International Conference on Data Mining Workshops. IEEE. 11048117, Miami, FL, USA. https://doi.org/10.1109/ICDMW.2009.34
NisaRQamarUA text mining based approach for web service classificationInf Syst e-Bus Manag201513475176810.1007/s10257-014-0252-5
ChettriRPradhanSChettriLInternet of things: comparative study on classification algorithms (k-NN, Naive Bayes and case based reasoning)Int J Comput Appl20151301279
JiangJCLinTYMahalanobis-Taguchi system and selective Naive Bayesian algorithm for multivariate pattern recognitionJ Comput Theor Nanosci2013192638641
ZhangXJiangJHongRAccelerated image classification algorithm based on naive Bayes K-nearest neighborBeijing Hangkong Hangtian Daxue Xuebao/J Beijing Univ Aeronaut Astronaut2015412302310
WongTzu-TsungGeneralized Dirichlet priors for Naive Bayesian classifiers with multinomial models in document classificationData Min Knowl Discov2014281123144314756610.1007/s10618-012-0296-4
DiabDMEl HindiKMUsing differential evolution for fine tuning naïve Bayesian classifiers and its application for text classificationAppl Soft Comput20175418319910.1016/j.asoc.2016.12.043
WangSJiangLLiCAdapting naive Bayes tree for text classificationKnowl Inf Syst2015441778910.1007/s10115-014-0746-y
XuJMaBStudy of network public opinion classification method based on naive bayesian algorithm in hadoop environmentAppl Mech Mater2014519–5204
CaoYSunLHanCImproved side information generation algorithm based on naive Bayesian theory for distributed video codingIET Image Process201812335436010.1049/iet-ipr.2017.0892
JiangLLiCWangSDeep feature weighting for naive Bayes and its application to text classificationEng Appl Artif Intell201652263910.1016/j.engappai.2016.02.002
S Wang (2862_CR12) 2015; 44
R Chettri (2862_CR13) 2015; 130
JC Jiang (2862_CR14) 2013; 19
G Guan (2862_CR8) 2014; 32
Tzu-Tsung Wong (2862_CR7) 2014; 28
L Jiang (2862_CR3) 2016; 52
J Xu (2862_CR2) 2014; 519–520
2862_CR1
X Zhang (2862_CR11) 2015; 41
DM Diab (2862_CR6) 2017; 54
Y Cao (2862_CR4) 2018; 12
LI Jing-Hui (2862_CR9) 2013; 21
R Nisa (2862_CR5) 2015; 13
B Yang (2862_CR10) 2016; 16
References_xml – reference: JiangLLiCWangSDeep feature weighting for naive Bayes and its application to text classificationEng Appl Artif Intell201652263910.1016/j.engappai.2016.02.002
– reference: XuJMaBStudy of network public opinion classification method based on naive bayesian algorithm in hadoop environmentAppl Mech Mater2014519–5204
– reference: ChettriRPradhanSChettriLInternet of things: comparative study on classification algorithms (k-NN, Naive Bayes and case based reasoning)Int J Comput Appl20151301279
– reference: CaoYSunLHanCImproved side information generation algorithm based on naive Bayesian theory for distributed video codingIET Image Process201812335436010.1049/iet-ipr.2017.0892
– reference: WongTzu-TsungGeneralized Dirichlet priors for Naive Bayesian classifiers with multinomial models in document classificationData Min Knowl Discov2014281123144314756610.1007/s10618-012-0296-4
– reference: Jing-HuiLIXiao-GangZHuaCImproved algorithm for learning hidden Naive BayesJ Chin Comput Syst2013211013611371
– reference: WangSJiangLLiCAdapting naive Bayes tree for text classificationKnowl Inf Syst2015441778910.1007/s10115-014-0746-y
– reference: NisaRQamarUA text mining based approach for web service classificationInf Syst e-Bus Manag201513475176810.1007/s10257-014-0252-5
– reference: Wegener D, Mock M, Adranale D, Wrobel S (2009) Toolkit-based high-performance data mining of large data on MapReduce clusters. In: IEEE International Conference on Data Mining Workshops. IEEE. 11048117, Miami, FL, USA. https://doi.org/10.1109/ICDMW.2009.34
– reference: YangBLeiYYanBDistributed multi-human location algorithm using Naive Bayes classifier for a binary pyroelectric infrared sensor tracking systemIEEE Sens J201616121622310.1109/JSEN.2015.2477540
– reference: ZhangXJiangJHongRAccelerated image classification algorithm based on naive Bayes K-nearest neighborBeijing Hangkong Hangtian Daxue Xuebao/J Beijing Univ Aeronaut Astronaut2015412302310
– reference: JiangJCLinTYMahalanobis-Taguchi system and selective Naive Bayesian algorithm for multivariate pattern recognitionJ Comput Theor Nanosci2013192638641
– reference: GuanGGuoJWangHVarying Naïve Bayes models with applications to classification of chinese text documentsJ Bus Econ Stat201432344545610.1080/07350015.2014.903086
– reference: DiabDMEl HindiKMUsing differential evolution for fine tuning naïve Bayesian classifiers and its application for text classificationAppl Soft Comput20175418319910.1016/j.asoc.2016.12.043
– volume: 54
  start-page: 183
  year: 2017
  ident: 2862_CR6
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.12.043
– volume: 52
  start-page: 26
  year: 2016
  ident: 2862_CR3
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.02.002
– volume: 16
  start-page: 216
  issue: 1
  year: 2016
  ident: 2862_CR10
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2015.2477540
– volume: 41
  start-page: 302
  issue: 2
  year: 2015
  ident: 2862_CR11
  publication-title: Beijing Hangkong Hangtian Daxue Xuebao/J Beijing Univ Aeronaut Astronaut
– volume: 19
  start-page: 638
  issue: 2
  year: 2013
  ident: 2862_CR14
  publication-title: J Comput Theor Nanosci
– volume: 32
  start-page: 445
  issue: 3
  year: 2014
  ident: 2862_CR8
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.2014.903086
– volume: 21
  start-page: 1361
  issue: 10
  year: 2013
  ident: 2862_CR9
  publication-title: J Chin Comput Syst
– ident: 2862_CR1
  doi: 10.1109/ICDMW.2009.34
– volume: 519–520
  start-page: 4
  year: 2014
  ident: 2862_CR2
  publication-title: Appl Mech Mater
– volume: 13
  start-page: 751
  issue: 4
  year: 2015
  ident: 2862_CR5
  publication-title: Inf Syst e-Bus Manag
  doi: 10.1007/s10257-014-0252-5
– volume: 44
  start-page: 77
  issue: 1
  year: 2015
  ident: 2862_CR12
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-014-0746-y
– volume: 12
  start-page: 354
  issue: 3
  year: 2018
  ident: 2862_CR4
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2017.0892
– volume: 28
  start-page: 123
  issue: 1
  year: 2014
  ident: 2862_CR7
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-012-0296-4
– volume: 130
  start-page: 7
  issue: 12
  year: 2015
  ident: 2862_CR13
  publication-title: Int J Comput Appl
SSID ssj0004373
Score 2.3358223
Snippet The naive Bayes classifier is a widely used text classification method that applies statistical theory to text classification. Due to the particularity of the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5831
SubjectTerms Algorithms
Bayesian analysis
Classification
Cloud computing
Comparative analysis
Compilers
Computer Science
Interpreters
Processor Architectures
Programming Languages
Text editing
Websites
Title Application of improved distributed naive Bayesian algorithms in text classification
URI https://link.springer.com/article/10.1007/s11227-019-02862-1
https://www.proquest.com/docview/2296717134
Volume 75
WOSCitedRecordID wos000487643900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8MwNMj04MX5idMpOXjTwPLRNDlOcXgQEZ2yW0mbRAuzk7UK_nuTrLUoKii9FJo-wvvMy_sC4IhERDs-scgMMomYiAZIidgHHFOsY-obkAdKX8ZXV2Iykdd1UVjZZLs3IcmgqdtiN0yIT5OUyNlETpDzeZaduRNeHG9u79tqSLqIK0vnGImIkbpU5nsYn81Re8b8EhYN1mbU_d8-18FafbqEwwU7bIAlU2yCbjO5AdaCvAXGwzZuDWcW5uFqwWiofR9dPwLLvRfKaUJ4qt6ML7SEavowm-fV41MJ8wL6hBGY-aO3zzUKgLbB3eh8fHaB6vkKKHOCVyFtU9_sxsQi5Vxo58wwYWOpUkoiozhTWBNrGE_dIzIu09RaJQxjzk1UTjvRHdApZoXZBVAwbHikYmIwZUxJQbXVBsfO-mWUykEP4AbNSVY3H_czMKZJ2zbZoy1xaEsC2hLcA8cf_zwvWm_8urrfUC-pxbBMCJHc-atuTz1w0lCr_fwztL2_Ld8HqyQQ3Oee9UGnmr-YA7CSvVZ5OT8M7PkOnhDdEA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8MwNMgU9OL8xOnUHLxpYU3SNDlOcUycQ3TKbiFtUi3MTtYq-O9NstaiqKD0Umj6CO8zL-8LgCMUIGX4JPF0J-YeYUHHkyy0AcfIVyG2DcgdpQfhcMjGY35dFoXlVbZ7FZJ0mroudvMRsmmS3DM2kSLP-DyLxFgsm8h3c3tfV0PieVyZG8eIBQSVpTLfw_hsjuoz5pewqLM2veb_9rkGVsvTJezO2WEdLOhsAzSryQ2wFORNMOrWcWs4TWDqrha0gsr20bUjsMx7Jo0mhKfyTdtCSygnD9NZWjw-5TDNoE0YgbE9ettcIwdoC9z1zkdnfa-cr-DFRvAKTyWRbXajQxZRypRxZghLQi4jjAItKZG-QokmNDIPiymPoiSRTBOD9I402glvg0Y2zfQOgIz4mgYyRNrHhEjOsEqU9kNj_WKMeacF_ArNIi6bj9sZGBNRt022aBMGbcKhTfgtcPzxz_O89cavq9sV9UQphrlAiFPjr5o9tcBJRa3688_Qdv-2_BAs90dXAzG4GF7ugRXkiG_z0NqgUcxe9D5Yil-LNJ8dOFZ9BwMo3_Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIr44P3E6NQ--adiapG3yOD-G4hgDp-wtpE2ihdmNrQr-9yZda1VUEOlLoWkI95HL5e5-B8Ax9rGycmKQbsUcUea3kGShCzhGngqJAyDPOd0Nez02HPL-hyr-PNu9DEnOaxocSlOaNSfKNKvCNw9jlzLJkbWPAUbW_1mirmmQ89dv76vKSDKPMXPrJDGf4qJs5vs5Ppum6rz5JUSaW55O7f9rXgdrxakTtudisgEWdLoJamVHB1go-BYYtKt4NhwbmORXDlpB5fB1XWss-55Ku0PCM_mqXQEmlKOH8TTJHp9mMEmhSySBsTuSuxykfKJtcNe5HJxfoaLvAoqtQmZImciB4OiQRUHAlHVyKDMhlxHBvpYBlZ7CRtMgsg-LAx5FxkimKbXuo7S7FtkBi-k41bsAMurpwJch1h6hVHJGlFHaC61VjAnhrTrwSpKLuAAld70xRqKCU3ZkE5ZsIieb8Org5P2fyRyS49fRjZKTolDPmcCYB9aPtWuqg9OSc9Xnn2fb-9vwI7DSv-iI7nXvZh-s4pz3Lj2tARaz6bM-AMvxS5bMpoe51L4Be5Xo2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+improved+distributed+naive+Bayesian+algorithms+in+text+classification&rft.jtitle=The+Journal+of+supercomputing&rft.au=Gao%2C+Hongyi&rft.au=Zeng%2C+Xi&rft.au=Yao%2C+Chunhua&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=75&rft.issue=9&rft.spage=5831&rft.epage=5847&rft_id=info:doi/10.1007%2Fs11227-019-02862-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon