Multi-objective Archimedes Optimization Algorithm with Fusion-based Deep Learning model for brain tumor diagnosis and classification
Earlier identification of brain tumors (BT) is essential to increase the survival rate. Magnetic Resonance Imaging (MRI) is a commonly employed method that records brain abnormalities by the use of several modalities for clinical study. The recently developed computer vision and image processing sch...
Gespeichert in:
| Veröffentlicht in: | Multimedia tools and applications Jg. 82; H. 11; S. 16985 - 17007 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.05.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1380-7501, 1573-7721 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Earlier identification of brain tumors (BT) is essential to increase the survival rate. Magnetic Resonance Imaging (MRI) is a commonly employed method that records brain abnormalities by the use of several modalities for clinical study. The recently developed computer vision and image processing schemes can be used for the detection and localization of tumor regions in the brain, which can be utilized for further treatment. In this regard, the study presents a novel Multiobjective Archimedes Optimization Algorithm with Fusion based Deep Learning (MOAOA-FDL) technique for brain tumor diagnosis and classification. In addition, the MOAOA-FDL technique preprocesses the MRI images via contrast enhancement and skull stripping. Moreover, AOA with Shannon entropy based multi-level thresholding approach is developed for medical image segmentation. Furthermore, the fusion of two deep learning models namely MobileNet and EfficientNet models is employed for feature extraction process. Finally, the AOA with long short term memory (LSTM) method is applied for classification model and thus allocates proper class label to it. The AOA is used to properly choose the hyper parameters like batch size, learning rate, and epoch count. The design of fusion process and MOAOA for BT diagnosis demonstrates the innovation of this study. For showcasing the better performance of the MOAOA-FDL method, a series of simulations have been executed utilizing benchmark dataset. The experimental outcome shows that the MOAOA-FDL method has outperformed the other recent approaches in terms of several performance measures. |
|---|---|
| AbstractList | Earlier identification of brain tumors (BT) is essential to increase the survival rate. Magnetic Resonance Imaging (MRI) is a commonly employed method that records brain abnormalities by the use of several modalities for clinical study. The recently developed computer vision and image processing schemes can be used for the detection and localization of tumor regions in the brain, which can be utilized for further treatment. In this regard, the study presents a novel Multiobjective Archimedes Optimization Algorithm with Fusion based Deep Learning (MOAOA-FDL) technique for brain tumor diagnosis and classification. In addition, the MOAOA-FDL technique preprocesses the MRI images via contrast enhancement and skull stripping. Moreover, AOA with Shannon entropy based multi-level thresholding approach is developed for medical image segmentation. Furthermore, the fusion of two deep learning models namely MobileNet and EfficientNet models is employed for feature extraction process. Finally, the AOA with long short term memory (LSTM) method is applied for classification model and thus allocates proper class label to it. The AOA is used to properly choose the hyper parameters like batch size, learning rate, and epoch count. The design of fusion process and MOAOA for BT diagnosis demonstrates the innovation of this study. For showcasing the better performance of the MOAOA-FDL method, a series of simulations have been executed utilizing benchmark dataset. The experimental outcome shows that the MOAOA-FDL method has outperformed the other recent approaches in terms of several performance measures. |
| Author | Devanathan, B. Kamarasan, M. |
| Author_xml | – sequence: 1 givenname: B. surname: Devanathan fullname: Devanathan, B. email: devacisau@gmail.com organization: Department of Computer and Information Science, Annamalai University – sequence: 2 givenname: M. surname: Kamarasan fullname: Kamarasan, M. organization: Department of Computer and Information Science, Annamalai University |
| BookMark | eNp9kM9vFCEUgIlpE9vaf8ATiWcqDDDDHDfVqsmaXvRMgHls2czACkxNPfuHi7smTTz0Ai8v73s_vkt0FlMEhN4yesMoHd4XxqjoCO06wgTrBZGv0AWTAyfD0LGzFnNFySApe40uS9lTynrZiQv0--s610CS3YOr4RHwJruHsMAEBd8faljCL1NDingz71IO9WHBP9uL79bSssSaAhP-AHDAWzA5hrjDS5pgxj5lbLMJEdd1afEUzC6mEgo2ccJuNqUEH9yx-Rt07s1c4Prff4W-3338dvuZbO8_fbndbInjbKxk8kL2inM2WQrGC8eEt8Zy53yvrBkVp9zTsRde0FEpO3Ale0mlG5wSFoBfoXenvoecfqxQqt6nNcc2UneKMkH5MHatqjtVuZxKyeD1IYfF5CfNqP5rW59s62ZbH21r2SD1H-RCPR5Xm4T5ZZSf0NLmxB3k561eoP4AwM-Yig |
| CitedBy_id | crossref_primary_10_3390_info16060456 crossref_primary_10_1016_j_aej_2025_03_007 crossref_primary_10_1016_j_eswa_2023_121453 crossref_primary_10_4018_IRMJ_349948 crossref_primary_10_1111_coin_70018 |
| Cites_doi | 10.3390/s20102809 10.3390/s21165571 10.1007/s00521-020-05332-5 10.1016/j.patrec.2017.10.036 10.1016/j.cma.2020.113609 10.3390/s21082852 10.1007/s42452-019-1682-y 10.1016/j.patrec.2017.05.028 10.3390/diagnostics11112017 10.1002/jemt.23688 10.1016/j.future.2018.04.065 10.1007/s12652-021-03612-z 10.1007/s40747-021-00321-0 10.1016/j.measurement.2019.07.058 10.1109/ACCESS.2020.3016319 10.1002/jemt.23694 10.1109/ICSSE50014.2020.9219319 10.1007/s00521-021-05841-x 10.3390/healthcare9020153 10.1016/B978-0-12-819061-6.00004-5 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11042-022-14164-5 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 17007 |
| ExternalDocumentID | 10_1007_s11042_022_14164_5 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-df4568331db0eaf4c14fbab3ccf68ba98303f0964f40988b73856505c7c84bee3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878962500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Wed Nov 05 03:09:11 EST 2025 Sat Nov 29 06:20:23 EST 2025 Tue Nov 18 22:01:15 EST 2025 Fri Feb 21 02:44:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Brain tumor Deep learning Magnetic resonance imaging Multiobjective optimization Fusion models Computer aided diagnosis Image classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-df4568331db0eaf4c14fbab3ccf68ba98303f0964f40988b73856505c7c84bee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2801403792 |
| PQPubID | 54626 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2801403792 crossref_primary_10_1007_s11042_022_14164_5 crossref_citationtrail_10_1007_s11042_022_14164_5 springer_journals_10_1007_s11042_022_14164_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20230500 2023-05-00 20230501 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 5 year: 2023 text: 20230500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Khan, Afzal, Lee (CR11) 2022; 22 Rahman, Islam, Sassi, Aktaruzzaman (CR15) 2019; 1 Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (CR1) 2021; 376 Mandal, Singh, Ijaz, Shafi, Sarkar (CR13) 2021; 21 CR4 Rajinikanth, Satapathy, Fernandes, Nachiappan (CR17) 2017; 94 Rajasree, Columbus, Shilaja (CR16) 2021; 33 Srinivasu, SivaSai, Ijaz, Bhoi, Kim, Kang (CR22) 2021; 21 CR19 CR7 Devanathan, Venkatachalapathy (CR6) 2020; 11 CR9 CR14 CR24 CR12 CR23 CR10 CR20 Srinivasu, Ahmed, Alhumam, Kumar, Ijaz (CR21) 2021; 69 Sadad, Rehman, Munir, Saba, Tariq, Ayesha, Abbasi (CR18) 2021; 84 Amin, Sharif, Yasmin, Fernandes (CR3) 2020; 139 Ijaz, Attique, Son (CR8) 2020; 20 Dash, Verma, Khan, Wozniak, Shafi, Ijaz (CR5) 2021; 11 Amin, Sharif, Yasmin, Fernandes (CR2) 2018; 87 14164_CR9 T Sadad (14164_CR18) 2021; 84 J Amin (14164_CR3) 2020; 139 14164_CR7 V Rajinikanth (14164_CR17) 2017; 94 14164_CR4 J Amin (14164_CR2) 2018; 87 PN Srinivasu (14164_CR21) 2021; 69 PN Srinivasu (14164_CR22) 2021; 21 R Rajasree (14164_CR16) 2021; 33 M Rahman (14164_CR15) 2019; 1 S Dash (14164_CR5) 2021; 11 14164_CR14 14164_CR24 L Abualigah (14164_CR1) 2021; 376 14164_CR10 14164_CR20 MF Ijaz (14164_CR8) 2020; 20 14164_CR12 14164_CR23 IU Khan (14164_CR11) 2022; 22 B Devanathan (14164_CR6) 2020; 11 M Mandal (14164_CR13) 2021; 21 14164_CR19 |
| References_xml | – volume: 22 start-page: 323 issue: 1 year: 2022 ident: CR11 publication-title: Hum Activity Recognit via Hybrid Deep Learn Based Model Sens – ident: CR19 – volume: 20 start-page: 2809 issue: 10 year: 2020 ident: CR8 article-title: Data-driven cervical cancer prediction model with outlier detection and over-sampling methods publication-title: Sensors doi: 10.3390/s20102809 – volume: 21 start-page: 5571 issue: 16 year: 2021 ident: CR13 article-title: A tri-stage wrapper-filter feature selection framework for disease classification publication-title: Sensors doi: 10.3390/s21165571 – ident: CR4 – ident: CR14 – volume: 33 start-page: 5543 issue: 11 year: 2021 end-page: 5553 ident: CR16 article-title: Multiscale-based multimodal image classification of brain tumor using deep learning method publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05332-5 – volume: 139 start-page: 118 year: 2020 end-page: 127 ident: CR3 article-title: A distinctive approach in brain tumor detection and classification using MRI publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2017.10.036 – volume: 11 start-page: 1 issue: 4 year: 2020 end-page: 8 ident: CR6 article-title: Brain tumor detection and classification model using optimal kapur’s thresholding based segmentation with deep neural networks publication-title: IIOABJ – volume: 376 start-page: 113609 year: 2021 ident: CR1 article-title: The arithmetic optimization algorithm publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – ident: CR12 – volume: 21 start-page: 2852 issue: 8 year: 2021 ident: CR22 article-title: Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM publication-title: Sensors doi: 10.3390/s21082852 – ident: CR10 – ident: CR9 – volume: 1 start-page: 1 issue: 12 year: 2019 end-page: 11 ident: CR15 article-title: Convolutional neural networks performance comparison for handwritten Bengali numerals recognition publication-title: SN Appl Sci doi: 10.1007/s42452-019-1682-y – volume: 94 start-page: 87 year: 2017 end-page: 95 ident: CR17 article-title: Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2017.05.028 – ident: CR7 – volume: 11 start-page: 2017 issue: 11 year: 2021 ident: CR5 article-title: A hybrid method to enhance thick and thin vessels for blood vessel segmentation publication-title: Diagnostics doi: 10.3390/diagnostics11112017 – volume: 84 start-page: 1296 issue: 6 year: 2021 end-page: 1308 ident: CR18 article-title: Brain tumor detection and multi-classification using advanced deep learning techniques publication-title: Microsc Res Tech doi: 10.1002/jemt.23688 – ident: CR24 – volume: 87 start-page: 290 year: 2018 end-page: 297 ident: CR2 article-title: Big data analysis for brain tumor detection: deep convolutional neural networks publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2018.04.065 – ident: CR23 – ident: CR20 – volume: 69 start-page: 3303 issue: 3 year: 2021 end-page: 3319 ident: CR21 article-title: An AW-HARIS based automated segmentation of human liver using CT images publication-title: Comput Mater Contin – volume: 139 start-page: 118 year: 2020 ident: 14164_CR3 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2017.10.036 – ident: 14164_CR12 doi: 10.1007/s12652-021-03612-z – volume: 33 start-page: 5543 issue: 11 year: 2021 ident: 14164_CR16 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05332-5 – ident: 14164_CR23 – volume: 11 start-page: 1 issue: 4 year: 2020 ident: 14164_CR6 publication-title: IIOABJ – ident: 14164_CR19 doi: 10.1007/s40747-021-00321-0 – volume: 11 start-page: 2017 issue: 11 year: 2021 ident: 14164_CR5 publication-title: Diagnostics doi: 10.3390/diagnostics11112017 – volume: 22 start-page: 323 issue: 1 year: 2022 ident: 14164_CR11 publication-title: Hum Activity Recognit via Hybrid Deep Learn Based Model Sens – volume: 1 start-page: 1 issue: 12 year: 2019 ident: 14164_CR15 publication-title: SN Appl Sci doi: 10.1007/s42452-019-1682-y – volume: 87 start-page: 290 year: 2018 ident: 14164_CR2 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2018.04.065 – volume: 20 start-page: 2809 issue: 10 year: 2020 ident: 14164_CR8 publication-title: Sensors doi: 10.3390/s20102809 – ident: 14164_CR14 doi: 10.1016/j.measurement.2019.07.058 – volume: 69 start-page: 3303 issue: 3 year: 2021 ident: 14164_CR21 publication-title: Comput Mater Contin – volume: 94 start-page: 87 year: 2017 ident: 14164_CR17 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2017.05.028 – ident: 14164_CR9 doi: 10.1109/ACCESS.2020.3016319 – ident: 14164_CR10 doi: 10.1002/jemt.23694 – ident: 14164_CR4 doi: 10.1109/ICSSE50014.2020.9219319 – ident: 14164_CR24 doi: 10.1007/s00521-021-05841-x – volume: 84 start-page: 1296 issue: 6 year: 2021 ident: 14164_CR18 publication-title: Microsc Res Tech doi: 10.1002/jemt.23688 – ident: 14164_CR7 doi: 10.3390/healthcare9020153 – volume: 21 start-page: 5571 issue: 16 year: 2021 ident: 14164_CR13 publication-title: Sensors doi: 10.3390/s21165571 – volume: 21 start-page: 2852 issue: 8 year: 2021 ident: 14164_CR22 publication-title: Sensors doi: 10.3390/s21082852 – volume: 376 start-page: 113609 year: 2021 ident: 14164_CR1 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – ident: 14164_CR20 doi: 10.1016/B978-0-12-819061-6.00004-5 |
| SSID | ssj0016524 |
| Score | 2.3805306 |
| Snippet | Earlier identification of brain tumors (BT) is essential to increase the survival rate. Magnetic Resonance Imaging (MRI) is a commonly employed method that... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 16985 |
| SubjectTerms | Abnormalities Algorithms Brain Brain cancer Classification Computer Communication Networks Computer Science Computer vision Data Structures and Information Theory Deep learning Diagnosis Entropy (Information theory) Feature extraction Image contrast Image enhancement Image processing Image segmentation Machine learning Magnetic resonance imaging Medical imaging Multimedia Information Systems Multiple objective analysis Optimization Optimization algorithms Special Purpose and Application-Based Systems Tumors |
| SummonAdditionalLinks | – databaseName: Computer Science Database (ProQuest) dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-L6IgdvGmz6zJ5E1EVQ1IOCt9KkiQ_ch9uuv8Af7kybuiroxUOh0CYtzGRmMpn5PoC90DPGU8ZwG2rF8bJcRSLm6KxzGRjrezVryWVydSXv7zs3LuFWuLLKxiZWhjofaMqRH_oEc-IFScc_Gr5yYo2i01VHoTENM8L3Ben5RcI_TxHiyJHaSo-jZxSuaaZunRPUmEK17AJjkpBH3x3TJNr8cUBa-Z3u4n__eAkWXMTJjmsVWYYp01-BxYbNgbnFvQLzX6AJV-G96szlA_VcW0RWQdSi6zQFu0Yz03P9m-z45QE_Wj72GKV0WXdM6TdOzjFnp8YMmUNwfWAV6Q7DIJkp4qVg5biH93ld6_dUsKyfM03BPFUvVZOvwV337PbknDvGBq5xKZc8txiPySAQufJMhuIXoVWZCrS2sVRZR6LDtLhpCi1uK6VUBKWDIWKkEy1D1JhgHVr9Qd9sAItyX2SJUiZGixHFOhNWhzgu0KHvxZlpg2jElWoHZ06sGi_pBIiZRJyiiNNKxGnUhv3PMcMazOPPt7cbuaZuYRfpRKhtOGg0Y_L499k2_55tC-aIyL4updyGVjkamx2Y1W_lUzHardT6A_Nd_so priority: 102 providerName: ProQuest |
| Title | Multi-objective Archimedes Optimization Algorithm with Fusion-based Deep Learning model for brain tumor diagnosis and classification |
| URI | https://link.springer.com/article/10.1007/s11042-022-14164-5 https://www.proquest.com/docview/2801403792 |
| Volume | 82 |
| WOSCitedRecordID | wos000878962500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD6Cdg_wMBgX0QGVH_bGLMW5uo8dUCEBbdXdgJcoduyuU29q0v2C_fAdJ07LEENiD7ESxbEiHx9_x_Y55wP44DtKOUIpqn0pKF6aioCFFME65Z7SrlOyltxE3S6_u2v1bVBYVnm7V0eSxUy9DnZjJpTEeJ8ztCJ8GmxCHeGOG3UcfP62OjsIA0tlyx2KeMhsqMzzbfwNR2sb88mxaIE2nZ3_-89deGutS9Iuh8M72FDTPdipmBuIVeQ92H6UhnAffhdRuHQmfpazHynS0SJMqoz0cEqZ2FhN0h4PZ4tR_mNCzPYt6SzNVhs1QJiSC6XmxGZrHZKCYIegQUyE4aAg-XKC92np1zfKSDJNiTSGu_FUKho_gK-dyy_nV9SyM1CJapvTVKPtxT2PpcJRCYqa-VokwpNSh1wkLY7gqHGB5GtcQnIuTNocNAcDGUnu4-jwDqE2nU3VEZAgdVkSCaFCnB2CUCZMSx-_86TvOmGiGsAqIcXSpi43DBrjeJ102XR6jJ0eF50eBw04W30zLxN3vFj7pJJ9bJU4i12TWcfxopbbgI-VrNev_93a-9dVP4YtQ2JfulGeQC1fLNUpvJG_8lG2aMJm9P2-CfVPl93-AJ-uI4rlrXNuSreHZT94aBYq8AdlQftF |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgkQ5UCggFgrMAU5gESdO1ntAqGpZtep24VCk3kLs2KVV94MmC-LO7-E3MpM4XUCitx44RIqU2MrH85uxPTMP4LmKnIuMc8IrawQdXphUZoKMdakT5-OoVS0Z9cdjfXQ0-LACP7tcGA6r7DixIepyZnmN_HXMZU6ipD-I386_CFaN4t3VTkKjhcW--_6NpmzVm70d-r8v4nj47nB7VwRVAWEJbrUoPfkMOklkaSJX0CNK5U1hEmt9pk0x0ETqnhx75Wnqo7Xhci_kxqS2b7Wit0qo32twXdHDMBEcRNsXuxZZGkR0dSTIEsuQpNOm6klOhOHYeUk-kBLpn4Zw6d3-tSHb2Lnh-v_2he7A7eBR41Y7BO7CiptuwHqnVoGBvDbg1m-lF-_BjybzWMzMacv42JTgJdfAVfieaHQS8lNx6-yYXrL-PEFessbhgpcXBRv_Enecm2OoUHuMjagQ0iQADetuYL2Y0HnZxjKeVFhMS7Q8WeHorKbz-_DxSr7MA1idzqbuIWBaxrLoG-MyYsQ0s4X0VlG7xKo4ygrXA9nBI7ehXDurhpzly0LTDKmcIJU3kMrTHry8aDNvi5Vcevdmh6M8EFeVL0HUg1cdEpeX_93bo8t7ewY3dw8PRvlob7z_GNZichXbsNFNWK3PF-4J3LBf65Pq_GkzpBA-XTVCfwFV-FxR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VglA5tFBasdDCHOAEVuN8eg-oqrqsqLZaegCptxA7dinqftBkQdz5Vfw6ZhKnC0j01gOHSJGSWHHyPPNsz8wDeB4H1gbaWuFiowUdTuhEpoKcdaki68KgVS05zsZjdXraP1mBn10uDIdVdjaxMdTlzPAa-V7IZU6CKOuHe86HRZwMhvvzL4IVpHintZPTaCEyst-_0fSten00oH_9IgyHb94fvhVeYUAYgl4tSkf8QUWRLHVgC3pdGTtd6MgYlypd9BUZeEckP3Y0DVJKc-kXojSJyYyKqYcRtXsLbpMXTniMjTJxtYORJl5QVwWCvLL0CTtt2p7kpBiOo5fEh2KR_OkUl0z3r83ZxucNN_7nr3Uf1j3TxoN2aDyAFTvdhI1OxQK9UduEe7-VZHwIP5qMZDHTn1tPgE1pXqIMtsJ3ZF4nPm8VDy7OqJP1pwnyUjYOF7zsKJgUlDiwdo6-cu0ZNmJDSJMD1KzHgfViQudlG-N4XmExLdHwJIajtprGt-DDjXyZbVidzqb2EWBShrLItLYpWcokNYV0JqbnIhOHQVrYHsgOKrnxZdxZTeQiXxagZnjlBK-8gVee9ODl1TPztojJtXfvdJjKvUGr8iWgevCqQ-Xy8r9be3x9a8_gLgEzPz4aj57AWkgMso0m3YHV-nJhd-GO-VqfV5dPm9GF8PGmAfoLUE9k9w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+Archimedes+Optimization+Algorithm+with+Fusion-based+Deep+Learning+model+for+brain+tumor+diagnosis+and+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Devanathan%2C+B.&rft.au=Kamarasan%2C+M.&rft.date=2023-05-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=11&rft.spage=16985&rft.epage=17007&rft_id=info:doi/10.1007%2Fs11042-022-14164-5&rft.externalDocID=10_1007_s11042_022_14164_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |