Multi-objective Archimedes Optimization Algorithm with Fusion-based Deep Learning model for brain tumor diagnosis and classification

Earlier identification of brain tumors (BT) is essential to increase the survival rate. Magnetic Resonance Imaging (MRI) is a commonly employed method that records brain abnormalities by the use of several modalities for clinical study. The recently developed computer vision and image processing sch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications Jg. 82; H. 11; S. 16985 - 17007
Hauptverfasser: Devanathan, B., Kamarasan, M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2023
Springer Nature B.V
Schlagworte:
ISSN:1380-7501, 1573-7721
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Earlier identification of brain tumors (BT) is essential to increase the survival rate. Magnetic Resonance Imaging (MRI) is a commonly employed method that records brain abnormalities by the use of several modalities for clinical study. The recently developed computer vision and image processing schemes can be used for the detection and localization of tumor regions in the brain, which can be utilized for further treatment. In this regard, the study presents a novel Multiobjective Archimedes Optimization Algorithm with Fusion based Deep Learning (MOAOA-FDL) technique for brain tumor diagnosis and classification. In addition, the MOAOA-FDL technique preprocesses the MRI images via contrast enhancement and skull stripping. Moreover, AOA with Shannon entropy based multi-level thresholding approach is developed for medical image segmentation. Furthermore, the fusion of two deep learning models namely MobileNet and EfficientNet models is employed for feature extraction process. Finally, the AOA with long short term memory (LSTM) method is applied for classification model and thus allocates proper class label to it. The AOA is used to properly choose the hyper parameters like batch size, learning rate, and epoch count. The design of fusion process and MOAOA for BT diagnosis demonstrates the innovation of this study. For showcasing the better performance of the MOAOA-FDL method, a series of simulations have been executed utilizing benchmark dataset. The experimental outcome shows that the MOAOA-FDL method has outperformed the other recent approaches in terms of several performance measures.
AbstractList Earlier identification of brain tumors (BT) is essential to increase the survival rate. Magnetic Resonance Imaging (MRI) is a commonly employed method that records brain abnormalities by the use of several modalities for clinical study. The recently developed computer vision and image processing schemes can be used for the detection and localization of tumor regions in the brain, which can be utilized for further treatment. In this regard, the study presents a novel Multiobjective Archimedes Optimization Algorithm with Fusion based Deep Learning (MOAOA-FDL) technique for brain tumor diagnosis and classification. In addition, the MOAOA-FDL technique preprocesses the MRI images via contrast enhancement and skull stripping. Moreover, AOA with Shannon entropy based multi-level thresholding approach is developed for medical image segmentation. Furthermore, the fusion of two deep learning models namely MobileNet and EfficientNet models is employed for feature extraction process. Finally, the AOA with long short term memory (LSTM) method is applied for classification model and thus allocates proper class label to it. The AOA is used to properly choose the hyper parameters like batch size, learning rate, and epoch count. The design of fusion process and MOAOA for BT diagnosis demonstrates the innovation of this study. For showcasing the better performance of the MOAOA-FDL method, a series of simulations have been executed utilizing benchmark dataset. The experimental outcome shows that the MOAOA-FDL method has outperformed the other recent approaches in terms of several performance measures.
Author Devanathan, B.
Kamarasan, M.
Author_xml – sequence: 1
  givenname: B.
  surname: Devanathan
  fullname: Devanathan, B.
  email: devacisau@gmail.com
  organization: Department of Computer and Information Science, Annamalai University
– sequence: 2
  givenname: M.
  surname: Kamarasan
  fullname: Kamarasan, M.
  organization: Department of Computer and Information Science, Annamalai University
BookMark eNp9kM9vFCEUgIlpE9vaf8ATiWcqDDDDHDfVqsmaXvRMgHls2czACkxNPfuHi7smTTz0Ai8v73s_vkt0FlMEhN4yesMoHd4XxqjoCO06wgTrBZGv0AWTAyfD0LGzFnNFySApe40uS9lTynrZiQv0--s610CS3YOr4RHwJruHsMAEBd8faljCL1NDingz71IO9WHBP9uL79bSssSaAhP-AHDAWzA5hrjDS5pgxj5lbLMJEdd1afEUzC6mEgo2ccJuNqUEH9yx-Rt07s1c4Prff4W-3338dvuZbO8_fbndbInjbKxk8kL2inM2WQrGC8eEt8Zy53yvrBkVp9zTsRde0FEpO3Ale0mlG5wSFoBfoXenvoecfqxQqt6nNcc2UneKMkH5MHatqjtVuZxKyeD1IYfF5CfNqP5rW59s62ZbH21r2SD1H-RCPR5Xm4T5ZZSf0NLmxB3k561eoP4AwM-Yig
CitedBy_id crossref_primary_10_3390_info16060456
crossref_primary_10_1016_j_aej_2025_03_007
crossref_primary_10_1016_j_eswa_2023_121453
crossref_primary_10_4018_IRMJ_349948
crossref_primary_10_1111_coin_70018
Cites_doi 10.3390/s20102809
10.3390/s21165571
10.1007/s00521-020-05332-5
10.1016/j.patrec.2017.10.036
10.1016/j.cma.2020.113609
10.3390/s21082852
10.1007/s42452-019-1682-y
10.1016/j.patrec.2017.05.028
10.3390/diagnostics11112017
10.1002/jemt.23688
10.1016/j.future.2018.04.065
10.1007/s12652-021-03612-z
10.1007/s40747-021-00321-0
10.1016/j.measurement.2019.07.058
10.1109/ACCESS.2020.3016319
10.1002/jemt.23694
10.1109/ICSSE50014.2020.9219319
10.1007/s00521-021-05841-x
10.3390/healthcare9020153
10.1016/B978-0-12-819061-6.00004-5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-022-14164-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 17007
ExternalDocumentID 10_1007_s11042_022_14164_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-df4568331db0eaf4c14fbab3ccf68ba98303f0964f40988b73856505c7c84bee3
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878962500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Wed Nov 05 03:09:11 EST 2025
Sat Nov 29 06:20:23 EST 2025
Tue Nov 18 22:01:15 EST 2025
Fri Feb 21 02:44:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Brain tumor
Deep learning
Magnetic resonance imaging
Multiobjective optimization
Fusion models
Computer aided diagnosis
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-df4568331db0eaf4c14fbab3ccf68ba98303f0964f40988b73856505c7c84bee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2801403792
PQPubID 54626
PageCount 23
ParticipantIDs proquest_journals_2801403792
crossref_primary_10_1007_s11042_022_14164_5
crossref_citationtrail_10_1007_s11042_022_14164_5
springer_journals_10_1007_s11042_022_14164_5
PublicationCentury 2000
PublicationDate 20230500
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 5
  year: 2023
  text: 20230500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Khan, Afzal, Lee (CR11) 2022; 22
Rahman, Islam, Sassi, Aktaruzzaman (CR15) 2019; 1
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (CR1) 2021; 376
Mandal, Singh, Ijaz, Shafi, Sarkar (CR13) 2021; 21
CR4
Rajinikanth, Satapathy, Fernandes, Nachiappan (CR17) 2017; 94
Rajasree, Columbus, Shilaja (CR16) 2021; 33
Srinivasu, SivaSai, Ijaz, Bhoi, Kim, Kang (CR22) 2021; 21
CR19
CR7
Devanathan, Venkatachalapathy (CR6) 2020; 11
CR9
CR14
CR24
CR12
CR23
CR10
CR20
Srinivasu, Ahmed, Alhumam, Kumar, Ijaz (CR21) 2021; 69
Sadad, Rehman, Munir, Saba, Tariq, Ayesha, Abbasi (CR18) 2021; 84
Amin, Sharif, Yasmin, Fernandes (CR3) 2020; 139
Ijaz, Attique, Son (CR8) 2020; 20
Dash, Verma, Khan, Wozniak, Shafi, Ijaz (CR5) 2021; 11
Amin, Sharif, Yasmin, Fernandes (CR2) 2018; 87
14164_CR9
T Sadad (14164_CR18) 2021; 84
J Amin (14164_CR3) 2020; 139
14164_CR7
V Rajinikanth (14164_CR17) 2017; 94
14164_CR4
J Amin (14164_CR2) 2018; 87
PN Srinivasu (14164_CR21) 2021; 69
PN Srinivasu (14164_CR22) 2021; 21
R Rajasree (14164_CR16) 2021; 33
M Rahman (14164_CR15) 2019; 1
S Dash (14164_CR5) 2021; 11
14164_CR14
14164_CR24
L Abualigah (14164_CR1) 2021; 376
14164_CR10
14164_CR20
MF Ijaz (14164_CR8) 2020; 20
14164_CR12
14164_CR23
IU Khan (14164_CR11) 2022; 22
B Devanathan (14164_CR6) 2020; 11
M Mandal (14164_CR13) 2021; 21
14164_CR19
References_xml – volume: 22
  start-page: 323
  issue: 1
  year: 2022
  ident: CR11
  publication-title: Hum Activity Recognit via Hybrid Deep Learn Based Model Sens
– ident: CR19
– volume: 20
  start-page: 2809
  issue: 10
  year: 2020
  ident: CR8
  article-title: Data-driven cervical cancer prediction model with outlier detection and over-sampling methods
  publication-title: Sensors
  doi: 10.3390/s20102809
– volume: 21
  start-page: 5571
  issue: 16
  year: 2021
  ident: CR13
  article-title: A tri-stage wrapper-filter feature selection framework for disease classification
  publication-title: Sensors
  doi: 10.3390/s21165571
– ident: CR4
– ident: CR14
– volume: 33
  start-page: 5543
  issue: 11
  year: 2021
  end-page: 5553
  ident: CR16
  article-title: Multiscale-based multimodal image classification of brain tumor using deep learning method
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05332-5
– volume: 139
  start-page: 118
  year: 2020
  end-page: 127
  ident: CR3
  article-title: A distinctive approach in brain tumor detection and classification using MRI
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2017.10.036
– volume: 11
  start-page: 1
  issue: 4
  year: 2020
  end-page: 8
  ident: CR6
  article-title: Brain tumor detection and classification model using optimal kapur’s thresholding based segmentation with deep neural networks
  publication-title: IIOABJ
– volume: 376
  start-page: 113609
  year: 2021
  ident: CR1
  article-title: The arithmetic optimization algorithm
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– ident: CR12
– volume: 21
  start-page: 2852
  issue: 8
  year: 2021
  ident: CR22
  article-title: Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM
  publication-title: Sensors
  doi: 10.3390/s21082852
– ident: CR10
– ident: CR9
– volume: 1
  start-page: 1
  issue: 12
  year: 2019
  end-page: 11
  ident: CR15
  article-title: Convolutional neural networks performance comparison for handwritten Bengali numerals recognition
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-019-1682-y
– volume: 94
  start-page: 87
  year: 2017
  end-page: 95
  ident: CR17
  article-title: Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2017.05.028
– ident: CR7
– volume: 11
  start-page: 2017
  issue: 11
  year: 2021
  ident: CR5
  article-title: A hybrid method to enhance thick and thin vessels for blood vessel segmentation
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11112017
– volume: 84
  start-page: 1296
  issue: 6
  year: 2021
  end-page: 1308
  ident: CR18
  article-title: Brain tumor detection and multi-classification using advanced deep learning techniques
  publication-title: Microsc Res Tech
  doi: 10.1002/jemt.23688
– ident: CR24
– volume: 87
  start-page: 290
  year: 2018
  end-page: 297
  ident: CR2
  article-title: Big data analysis for brain tumor detection: deep convolutional neural networks
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2018.04.065
– ident: CR23
– ident: CR20
– volume: 69
  start-page: 3303
  issue: 3
  year: 2021
  end-page: 3319
  ident: CR21
  article-title: An AW-HARIS based automated segmentation of human liver using CT images
  publication-title: Comput Mater Contin
– volume: 139
  start-page: 118
  year: 2020
  ident: 14164_CR3
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2017.10.036
– ident: 14164_CR12
  doi: 10.1007/s12652-021-03612-z
– volume: 33
  start-page: 5543
  issue: 11
  year: 2021
  ident: 14164_CR16
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05332-5
– ident: 14164_CR23
– volume: 11
  start-page: 1
  issue: 4
  year: 2020
  ident: 14164_CR6
  publication-title: IIOABJ
– ident: 14164_CR19
  doi: 10.1007/s40747-021-00321-0
– volume: 11
  start-page: 2017
  issue: 11
  year: 2021
  ident: 14164_CR5
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11112017
– volume: 22
  start-page: 323
  issue: 1
  year: 2022
  ident: 14164_CR11
  publication-title: Hum Activity Recognit via Hybrid Deep Learn Based Model Sens
– volume: 1
  start-page: 1
  issue: 12
  year: 2019
  ident: 14164_CR15
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-019-1682-y
– volume: 87
  start-page: 290
  year: 2018
  ident: 14164_CR2
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2018.04.065
– volume: 20
  start-page: 2809
  issue: 10
  year: 2020
  ident: 14164_CR8
  publication-title: Sensors
  doi: 10.3390/s20102809
– ident: 14164_CR14
  doi: 10.1016/j.measurement.2019.07.058
– volume: 69
  start-page: 3303
  issue: 3
  year: 2021
  ident: 14164_CR21
  publication-title: Comput Mater Contin
– volume: 94
  start-page: 87
  year: 2017
  ident: 14164_CR17
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2017.05.028
– ident: 14164_CR9
  doi: 10.1109/ACCESS.2020.3016319
– ident: 14164_CR10
  doi: 10.1002/jemt.23694
– ident: 14164_CR4
  doi: 10.1109/ICSSE50014.2020.9219319
– ident: 14164_CR24
  doi: 10.1007/s00521-021-05841-x
– volume: 84
  start-page: 1296
  issue: 6
  year: 2021
  ident: 14164_CR18
  publication-title: Microsc Res Tech
  doi: 10.1002/jemt.23688
– ident: 14164_CR7
  doi: 10.3390/healthcare9020153
– volume: 21
  start-page: 5571
  issue: 16
  year: 2021
  ident: 14164_CR13
  publication-title: Sensors
  doi: 10.3390/s21165571
– volume: 21
  start-page: 2852
  issue: 8
  year: 2021
  ident: 14164_CR22
  publication-title: Sensors
  doi: 10.3390/s21082852
– volume: 376
  start-page: 113609
  year: 2021
  ident: 14164_CR1
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– ident: 14164_CR20
  doi: 10.1016/B978-0-12-819061-6.00004-5
SSID ssj0016524
Score 2.3805306
Snippet Earlier identification of brain tumors (BT) is essential to increase the survival rate. Magnetic Resonance Imaging (MRI) is a commonly employed method that...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16985
SubjectTerms Abnormalities
Algorithms
Brain
Brain cancer
Classification
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Deep learning
Diagnosis
Entropy (Information theory)
Feature extraction
Image contrast
Image enhancement
Image processing
Image segmentation
Machine learning
Magnetic resonance imaging
Medical imaging
Multimedia Information Systems
Multiple objective analysis
Optimization
Optimization algorithms
Special Purpose and Application-Based Systems
Tumors
SummonAdditionalLinks – databaseName: Computer Science Database (ProQuest)
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-L6IgdvGmz6zJ5E1EVQ1IOCt9KkiQ_ch9uuv8Af7kybuiroxUOh0CYtzGRmMpn5PoC90DPGU8ZwG2rF8bJcRSLm6KxzGRjrezVryWVydSXv7zs3LuFWuLLKxiZWhjofaMqRH_oEc-IFScc_Gr5yYo2i01VHoTENM8L3Ben5RcI_TxHiyJHaSo-jZxSuaaZunRPUmEK17AJjkpBH3x3TJNr8cUBa-Z3u4n__eAkWXMTJjmsVWYYp01-BxYbNgbnFvQLzX6AJV-G96szlA_VcW0RWQdSi6zQFu0Yz03P9m-z45QE_Wj72GKV0WXdM6TdOzjFnp8YMmUNwfWAV6Q7DIJkp4qVg5biH93ld6_dUsKyfM03BPFUvVZOvwV337PbknDvGBq5xKZc8txiPySAQufJMhuIXoVWZCrS2sVRZR6LDtLhpCi1uK6VUBKWDIWKkEy1D1JhgHVr9Qd9sAItyX2SJUiZGixHFOhNWhzgu0KHvxZlpg2jElWoHZ06sGi_pBIiZRJyiiNNKxGnUhv3PMcMazOPPt7cbuaZuYRfpRKhtOGg0Y_L499k2_55tC-aIyL4updyGVjkamx2Y1W_lUzHardT6A_Nd_so
  priority: 102
  providerName: ProQuest
Title Multi-objective Archimedes Optimization Algorithm with Fusion-based Deep Learning model for brain tumor diagnosis and classification
URI https://link.springer.com/article/10.1007/s11042-022-14164-5
https://www.proquest.com/docview/2801403792
Volume 82
WOSCitedRecordID wos000878962500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD6Cdg_wMBgX0QGVH_bGLMW5uo8dUCEBbdXdgJcoduyuU29q0v2C_fAdJ07LEENiD7ESxbEiHx9_x_Y55wP44DtKOUIpqn0pKF6aioCFFME65Z7SrlOyltxE3S6_u2v1bVBYVnm7V0eSxUy9DnZjJpTEeJ8ztCJ8GmxCHeGOG3UcfP62OjsIA0tlyx2KeMhsqMzzbfwNR2sb88mxaIE2nZ3_-89deGutS9Iuh8M72FDTPdipmBuIVeQ92H6UhnAffhdRuHQmfpazHynS0SJMqoz0cEqZ2FhN0h4PZ4tR_mNCzPYt6SzNVhs1QJiSC6XmxGZrHZKCYIegQUyE4aAg-XKC92np1zfKSDJNiTSGu_FUKho_gK-dyy_nV9SyM1CJapvTVKPtxT2PpcJRCYqa-VokwpNSh1wkLY7gqHGB5GtcQnIuTNocNAcDGUnu4-jwDqE2nU3VEZAgdVkSCaFCnB2CUCZMSx-_86TvOmGiGsAqIcXSpi43DBrjeJ102XR6jJ0eF50eBw04W30zLxN3vFj7pJJ9bJU4i12TWcfxopbbgI-VrNev_93a-9dVP4YtQ2JfulGeQC1fLNUpvJG_8lG2aMJm9P2-CfVPl93-AJ-uI4rlrXNuSreHZT94aBYq8AdlQftF
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgkQ5UCggFgrMAU5gESdO1ntAqGpZtep24VCk3kLs2KVV94MmC-LO7-E3MpM4XUCitx44RIqU2MrH85uxPTMP4LmKnIuMc8IrawQdXphUZoKMdakT5-OoVS0Z9cdjfXQ0-LACP7tcGA6r7DixIepyZnmN_HXMZU6ipD-I386_CFaN4t3VTkKjhcW--_6NpmzVm70d-r8v4nj47nB7VwRVAWEJbrUoPfkMOklkaSJX0CNK5U1hEmt9pk0x0ETqnhx75Wnqo7Xhci_kxqS2b7Wit0qo32twXdHDMBEcRNsXuxZZGkR0dSTIEsuQpNOm6klOhOHYeUk-kBLpn4Zw6d3-tSHb2Lnh-v_2he7A7eBR41Y7BO7CiptuwHqnVoGBvDbg1m-lF-_BjybzWMzMacv42JTgJdfAVfieaHQS8lNx6-yYXrL-PEFessbhgpcXBRv_Enecm2OoUHuMjagQ0iQADetuYL2Y0HnZxjKeVFhMS7Q8WeHorKbz-_DxSr7MA1idzqbuIWBaxrLoG-MyYsQ0s4X0VlG7xKo4ygrXA9nBI7ehXDurhpzly0LTDKmcIJU3kMrTHry8aDNvi5Vcevdmh6M8EFeVL0HUg1cdEpeX_93bo8t7ewY3dw8PRvlob7z_GNZichXbsNFNWK3PF-4J3LBf65Pq_GkzpBA-XTVCfwFV-FxR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VglA5tFBasdDCHOAEVuN8eg-oqrqsqLZaegCptxA7dinqftBkQdz5Vfw6ZhKnC0j01gOHSJGSWHHyPPNsz8wDeB4H1gbaWuFiowUdTuhEpoKcdaki68KgVS05zsZjdXraP1mBn10uDIdVdjaxMdTlzPAa-V7IZU6CKOuHe86HRZwMhvvzL4IVpHintZPTaCEyst-_0fSten00oH_9IgyHb94fvhVeYUAYgl4tSkf8QUWRLHVgC3pdGTtd6MgYlypd9BUZeEckP3Y0DVJKc-kXojSJyYyKqYcRtXsLbpMXTniMjTJxtYORJl5QVwWCvLL0CTtt2p7kpBiOo5fEh2KR_OkUl0z3r83ZxucNN_7nr3Uf1j3TxoN2aDyAFTvdhI1OxQK9UduEe7-VZHwIP5qMZDHTn1tPgE1pXqIMtsJ3ZF4nPm8VDy7OqJP1pwnyUjYOF7zsKJgUlDiwdo6-cu0ZNmJDSJMD1KzHgfViQudlG-N4XmExLdHwJIajtprGt-DDjXyZbVidzqb2EWBShrLItLYpWcokNYV0JqbnIhOHQVrYHsgOKrnxZdxZTeQiXxagZnjlBK-8gVee9ODl1TPztojJtXfvdJjKvUGr8iWgevCqQ-Xy8r9be3x9a8_gLgEzPz4aj57AWkgMso0m3YHV-nJhd-GO-VqfV5dPm9GF8PGmAfoLUE9k9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+Archimedes+Optimization+Algorithm+with+Fusion-based+Deep+Learning+model+for+brain+tumor+diagnosis+and+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Devanathan%2C+B.&rft.au=Kamarasan%2C+M.&rft.date=2023-05-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=11&rft.spage=16985&rft.epage=17007&rft_id=info:doi/10.1007%2Fs11042-022-14164-5&rft.externalDocID=10_1007_s11042_022_14164_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon