An extended probabilistic demand model with optimal intensity measures for seismic performance characterization of isolated bridges under coupled horizontal and vertical motions

Intensity Measures (IMs) provide the relationship between Engineering Demand Parameters (EDPs) and seismic hazard characteristics for different structures and hence, their role in performance-based bridge design is significant. A few studies have investigated the optimal IMs for bridges under horizo...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of earthquake engineering Vol. 19; no. 5; pp. 2291 - 2323
Main Authors: Dehghanpoor, Ahmad, Thambiratnam, David, Zhang, Wenyang, Chan, Tommy, Taciroglu, Ertugrul
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.03.2021
Springer Nature B.V
Subjects:
ISSN:1570-761X, 1573-1456
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Intensity Measures (IMs) provide the relationship between Engineering Demand Parameters (EDPs) and seismic hazard characteristics for different structures and hence, their role in performance-based bridge design is significant. A few studies have investigated the optimal IMs for bridges under horizontal ground motions, however, detailed studies to explore the optimal IMs for isolated-bridges under the coupled vertical and horizontal records are very rare. This paper presents a procedure for the selection of optimal IMs for seismic-isolated bridges under the combined strong Horizontal Component (HC) and Vertical Component (VC) seismic excitations. Soil-Structure-Interaction (SSI) effects, the high level of uncertainties for soil properties, uncertainties for structural and geotechnical issues and advanced plasticity model for non-liquefied soil are included to explore the optimal vector-valued IMs. Four individual situations are considered to investigate the geometry effects on the selected optimal IMs. Optimal IMs criteria including efficiency, practicality, proficiency and sufficiency are investigated and developed to achieve a set of optimal vector-valued IMs for critical EDPs: drift ratio, pile-cap displacement and bearing displacement, which are affected by both HC and VC in isolated Soil-Pile-Bridge (SPB) systems. The results show that velocity-related IMs: peak ground velocity (PGV H ), Housner spectrum intensity (HI H ) and root mean square of velocity (V RMSH ) are optimal IMs as representative of HCs. In addition, structure-dependent spectral IMs: vertical spectral acceleration at T  = 0.2 s ( S a 0.2 V ) and square-root-of-the-sum-of-square of vertical spectral acceleration at the first and second vertical periods ( S a V T s ) are the appropriate optimal IMs as representative of VCs. However, the displacement-related IM, peak ground displacement of HCs (PGD H ), may be treated as optimal IMs for SPB system supported by inclined pile foundations to investigate pile-cap displacement. In addition, the sufficiency term is investigated extensively with respect to seismological parameters.
AbstractList Intensity Measures (IMs) provide the relationship between Engineering Demand Parameters (EDPs) and seismic hazard characteristics for different structures and hence, their role in performance-based bridge design is significant. A few studies have investigated the optimal IMs for bridges under horizontal ground motions, however, detailed studies to explore the optimal IMs for isolated-bridges under the coupled vertical and horizontal records are very rare. This paper presents a procedure for the selection of optimal IMs for seismic-isolated bridges under the combined strong Horizontal Component (HC) and Vertical Component (VC) seismic excitations. Soil-Structure-Interaction (SSI) effects, the high level of uncertainties for soil properties, uncertainties for structural and geotechnical issues and advanced plasticity model for non-liquefied soil are included to explore the optimal vector-valued IMs. Four individual situations are considered to investigate the geometry effects on the selected optimal IMs. Optimal IMs criteria including efficiency, practicality, proficiency and sufficiency are investigated and developed to achieve a set of optimal vector-valued IMs for critical EDPs: drift ratio, pile-cap displacement and bearing displacement, which are affected by both HC and VC in isolated Soil-Pile-Bridge (SPB) systems. The results show that velocity-related IMs: peak ground velocity (PGVH), Housner spectrum intensity (HIH) and root mean square of velocity (VRMSH) are optimal IMs as representative of HCs. In addition, structure-dependent spectral IMs: vertical spectral acceleration at T = 0.2 s (Sa0.2V) and square-root-of-the-sum-of-square of vertical spectral acceleration at the first and second vertical periods (SaVTs) are the appropriate optimal IMs as representative of VCs. However, the displacement-related IM, peak ground displacement of HCs (PGDH), may be treated as optimal IMs for SPB system supported by inclined pile foundations to investigate pile-cap displacement. In addition, the sufficiency term is investigated extensively with respect to seismological parameters.
Intensity Measures (IMs) provide the relationship between Engineering Demand Parameters (EDPs) and seismic hazard characteristics for different structures and hence, their role in performance-based bridge design is significant. A few studies have investigated the optimal IMs for bridges under horizontal ground motions, however, detailed studies to explore the optimal IMs for isolated-bridges under the coupled vertical and horizontal records are very rare. This paper presents a procedure for the selection of optimal IMs for seismic-isolated bridges under the combined strong Horizontal Component (HC) and Vertical Component (VC) seismic excitations. Soil-Structure-Interaction (SSI) effects, the high level of uncertainties for soil properties, uncertainties for structural and geotechnical issues and advanced plasticity model for non-liquefied soil are included to explore the optimal vector-valued IMs. Four individual situations are considered to investigate the geometry effects on the selected optimal IMs. Optimal IMs criteria including efficiency, practicality, proficiency and sufficiency are investigated and developed to achieve a set of optimal vector-valued IMs for critical EDPs: drift ratio, pile-cap displacement and bearing displacement, which are affected by both HC and VC in isolated Soil-Pile-Bridge (SPB) systems. The results show that velocity-related IMs: peak ground velocity (PGV H ), Housner spectrum intensity (HI H ) and root mean square of velocity (V RMSH ) are optimal IMs as representative of HCs. In addition, structure-dependent spectral IMs: vertical spectral acceleration at T  = 0.2 s ( S a 0.2 V ) and square-root-of-the-sum-of-square of vertical spectral acceleration at the first and second vertical periods ( S a V T s ) are the appropriate optimal IMs as representative of VCs. However, the displacement-related IM, peak ground displacement of HCs (PGD H ), may be treated as optimal IMs for SPB system supported by inclined pile foundations to investigate pile-cap displacement. In addition, the sufficiency term is investigated extensively with respect to seismological parameters.
Author Chan, Tommy
Zhang, Wenyang
Dehghanpoor, Ahmad
Thambiratnam, David
Taciroglu, Ertugrul
Author_xml – sequence: 1
  givenname: Ahmad
  orcidid: 0000-0001-8425-358X
  surname: Dehghanpoor
  fullname: Dehghanpoor, Ahmad
  email: ahmad.dehghanpoorsichani@hdr.qut.edu.au
  organization: School of Civil and Environmental Engineering, Queensland University of Technology
– sequence: 2
  givenname: David
  orcidid: 0000-0001-8486-5236
  surname: Thambiratnam
  fullname: Thambiratnam, David
  organization: School of Civil and Environmental Engineering, Queensland University of Technology
– sequence: 3
  givenname: Wenyang
  surname: Zhang
  fullname: Zhang, Wenyang
  organization: Department of Civil and Environmental Engineering, University of California
– sequence: 4
  givenname: Tommy
  orcidid: 0000-0002-5410-8362
  surname: Chan
  fullname: Chan, Tommy
  organization: School of Civil and Environmental Engineering, Queensland University of Technology
– sequence: 5
  givenname: Ertugrul
  orcidid: 0000-0001-9618-1210
  surname: Taciroglu
  fullname: Taciroglu, Ertugrul
  organization: Department of Civil and Environmental Engineering, University of California
BookMark eNp9kc9O3DAQxq2KSgXaF-jJUs-BsRMnmyNCFJCQeqFSb5bXnrBGiZ3aDgu8Vd-ws7uVKnHg5H_fb77xfCfsKMSAjH0VcCYAuvMsQIlVBVJUIKBpqu0HdixUV1eiUe3Rfg9V14pfn9hJzo8AUnU9HLM_F4Hjc8Hg0PE5xbVZ-9Hn4i13OJng-BQdjnzry4bHufjJjNwHArIvL3xCk5eEmQ8x8Yw-TwTOmOhIsEVuNyYZWzD5V1N8DDwO3Oc4mkJ-6-TdA8ELuSdu4zKPdLuJJI6hkNHO_wkTdUOHKe4K5M_s42DGjF_-rafs5_er-8ub6u7H9e3lxV1la9GXymHtrOqxM7a10iA0cpByhU2tsB66tnHK9Gt66qEVIDuBFkUrUSrVGeNEfcq-HerSVH4vmIt-jEsKZKmlAgVN29QtqVYHlU0x54SDtr7sf1qS8aMWoHcB6UNAmgLS-4D0llD5Bp0TjTe9vA_VByiTODxg-t_VO9RfHcCr-A
CitedBy_id crossref_primary_10_1016_j_cma_2024_116775
crossref_primary_10_1016_j_engstruct_2024_118020
crossref_primary_10_1177_13694332251348616
crossref_primary_10_1007_s10518_023_01827_3
crossref_primary_10_1002_stc_2838
crossref_primary_10_1016_j_engstruct_2025_121175
crossref_primary_10_1016_j_istruc_2025_108453
crossref_primary_10_3390_app112210745
crossref_primary_10_1016_j_soildyn_2022_107657
crossref_primary_10_1016_j_engstruct_2024_119128
crossref_primary_10_1016_j_istruc_2023_105029
crossref_primary_10_1016_j_soildyn_2023_108128
crossref_primary_10_1177_87552930241236762
crossref_primary_10_1007_s10518_024_01903_2
crossref_primary_10_1016_j_soildyn_2024_109106
crossref_primary_10_1016_j_soildyn_2021_107095
crossref_primary_10_1016_j_jlp_2025_105581
crossref_primary_10_1016_j_rcns_2023_08_002
crossref_primary_10_1080_13632469_2024_2308612
crossref_primary_10_1007_s40808_025_02421_z
crossref_primary_10_1016_j_engstruct_2023_115871
crossref_primary_10_1002_eqe_4068
crossref_primary_10_1007_s40030_022_00701_w
crossref_primary_10_1016_j_engstruct_2024_118063
Cites_doi 10.1193/053115EQS081M
10.1002/nag.2702
10.1002/eqe.782
10.1007/s10518-017-0199-2
10.1061/(ASCE)BE.1943-5592.0000565
10.1002/eqe.3027
10.1061/(ASCE)1090-0241(1999)125:9(750)
10.1016/j.soildyn.2019.02.012
10.1193/1.4000170
10.1080/13632469.2016.1264323
10.1016/j.strusafe.2015.12.001
10.1061/(ASCE)0733-9445(2002)128:4(526)
10.1016/j.engstruct.2017.08.033
10.1016/j.soildyn.2019.105753
10.1193/1.3675580
10.1002/eqe.506
10.1002/(SICI)1096-9845(199604)25:4<401::AID-EQE551>3.0.CO;2-B
10.1016/j.soildyn.2008.12.002
10.1080/13632469.2019.1625829
10.1785/gssrl.68.1.94
10.1016/j.engstruct.2011.03.013
10.1061/(ASCE)BE.1943-5592.0001266
10.1002/eqe.141
10.1002/eqe.1123
10.1002/eqe.474
10.1002/eqe.2226
10.1016/j.engstruct.2012.06.013
10.1139/t99-038
10.1002/eqe.696
10.1007/s10518-015-9755-9
10.1016/j.soildyn.2018.08.022
10.1016/j.engstruct.2013.02.036
10.1061/(ASCE)ST.1943-541X.0000231
10.1016/j.engstruct.2018.11.058
10.1061/(ASCE)1084-0702(2001)6:6(468)
10.1080/13632460109350404
10.1002/eqe.2774
10.1061/JSDEAG.0005161
10.1061/(ASCE)0733-9445(2008)134:7(1165)
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7ST
7TG
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M2P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
DOI 10.1007/s10518-021-01044-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central (subscription)
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1456
EndPage 2323
ExternalDocumentID 10_1007_s10518_021_01044_w
GrantInformation_xml – fundername: Queensland University of Technology
  funderid: http://dx.doi.org/10.13039/501100001793
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
23N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67M
67Z
6J9
6NX
7XC
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L6V
L8X
LAK
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z85
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7ST
7TG
7TN
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KL.
KR7
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
ID FETCH-LOGICAL-c319t-de3dc59e7ac6c2ae042f228e435e3f764d5a9b6c290610271ece162e2557aad13
IEDL.DBID RSV
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614667500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1570-761X
IngestDate Sat Nov 08 17:03:02 EST 2025
Sat Nov 29 02:59:26 EST 2025
Tue Nov 18 22:42:17 EST 2025
Fri Feb 21 02:49:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Combined horizontal and vertical components
Planar probabilistic seismic demand models
Soil-pile-bridge (SPB) system
Optimal intensity measures
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-de3dc59e7ac6c2ae042f228e435e3f764d5a9b6c290610271ece162e2557aad13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8425-358X
0000-0001-9618-1210
0000-0002-5410-8362
0000-0001-8486-5236
PQID 2505046436
PQPubID 55380
PageCount 33
ParticipantIDs proquest_journals_2505046436
crossref_citationtrail_10_1007_s10518_021_01044_w
crossref_primary_10_1007_s10518_021_01044_w
springer_journals_10_1007_s10518_021_01044_w
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle Official Publication of the European Association for Earthquake Engineering
PublicationTitle Bulletin of earthquake engineering
PublicationTitleAbbrev Bull Earthquake Eng
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References MirzaSAMacGregorJGHatzinikolasMStatistical descriptions of strength of concreteJ Struct Division1979105610211037
CollierCElnashaiAA procedure for combining vertical and horizontal seismic action effectsJ Earthquake Eng2001504521539
BarbatoMGuQConteJPProbabilistic push-over analysis of structural and soil-structure systemsJ Struct Eng20101361113301341
Standard B (2005) Eurocode 8: Design of structures for earthquake resistance—Part 1:1998–1991
KohrangiMBazzurroPVamvatsikosDVector and scalar IMs in structural response estimation, part II: building demand assessmentEarthq Spectra201632315251543
CelarecDDolšekMThe impact of modelling uncertainties on the seismic performance assessment of reinforced concrete frame buildingsEng Struct201352340354
Silva W (1997) Characteristics of Vertical Strong Ground Motions for Applications to Engineering Design. In: Friedland IM, Power MS, Mayes RL (eds) Proceedings of the FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion for New and Existing Highway Facilities, Technical Report NCEER-97-0010.
PhoonK-KKulhawyFHCharacterization of geotechnical variabilityCan Geotech J1999364612624
ElnashaiAPapazoglouAProcedure and spectra for analysis of RC structures subjected to strong vertical earthquake loadsJ Earthquake Eng1997101121155
WeiBZuoCHeXJiangLWangTEffects of vertical ground motions on seismic vulnerabilities of a continuous track-bridge system of high-speed railwaySoil Dyn Earthquake Eng2018115281290
ZhangWEsmaeilzadeh SeylabiETacirogluEValidation of a three-dimensional constitutive model for nonlinear site response and soil-structure interaction analyses using centrifuge test dataInt J Numer Anal Methods Geomech2017411818281847
Abaqus 6.14 (2018). Dassault systèmes SIMULIA Corporation, Minneapolis.
Hariri-ArdebiliMSaoumaVProbabilistic seismic demand model and optimal intensity measure for concrete damsStruct Safety2016596785
KostinakisKFontaraI-KAthanatopoulouAMScalar structure-specific ground motion intensity measures for assessing the seismic performance of structures: a reviewJ Earthquake Eng2016224630665
AbrahamsonNSilvaWJEmpirical response spectral attenuation relations for shallow crustal earthquakesSeismol Res Lett199768194127
Ayyub BM, Lai K-L (1989) Structural reliability assessment using latin hypercube sampling. Paper presented at the Struct Safety Reliability.
Lacasse S, Nadim F, (1996) Uncertainties in characterizing soilproperties. In: Shackleford CD, Nelson PP, Roth MJS (eds) Uncertainty in the geologic environment: from theory to practice. ASCE Geotechnical Special Publication, vol. 58, pp49–75.
KimSJHolubCJElnashaiASExperimental investigation of the behavior of RC bridge piers subjected to horizontal and vertical earthquake motionEng Struct201133722212235
WangZDueñas-OsorioLPadgettJESeismic response of a bridge–soil–foundation system under the combined effect of vertical and horizontal ground motionsEarthquake Eng Struct Dyn2013424545564
Matlab. The MathWorks, Inc., Matlab user's guide (2017).
PangYWuXShenGYuanWSeismic fragility analysis of cable-stayed bridges considering different sources of uncertaintiesJ Bridge Eng201319404013015
SakellariadisLAgalianosAAnastasopoulosISimplified method for real-time seismic damage assessment of motorway bridges: transverse direction—accounting for abutment stoppersEarthquake Eng Struct Dyn201847614961521
WangXShafieezadehAYeAOptimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefied and laterally spreading groundBull Earthquake Eng2018161229257
CornellCAJalayerFHamburgerROFoutchDAProbabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelinesJ Struct Eng2002128526533
DehghanpoorAThambiratnamDTacirogluEChanTSoil-pile-superstructure interaction effects in seismically isolated bridges under combined vertical and horizontal strong ground motionsSoil Dyn Earthquake Eng2019126105753
WangXYeAShafieezadehAPadgettJEFractional order optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefiable and laterally spreading groundSoil Dyn Earthquake Eng2019120301315
Dehghanpoor A, Thambiratnam D, Taciroglu E (2019b) Significance of vertical ground motions on soil-pile-superstructure systems. In: Paper presented at the Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions: Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering,(ICEGE 2019), June 17–20, 2019, Rome, Italy.
Nielson BG (2005) Analytical fragility curves for highway bridges in moderate seismic zones. Georgia Institute of Technology.
Jones AL, Kramer SL, Arduino P (2002) Estimation of uncertainty in geotechnical properties for performance-based earthquake engineering: Pacific Earthquake Engineering Research Center, College of Engineering.
ElgamalAHeLVertical earthquake ground motion records: an overviewJ Earthquake Eng2004805663697
EbrahimianHJalayerFLucchiniAMollaioliFManfrediGPreliminary ranking of alternative scalar and vector intensity measures of ground shakingBull Earthquake Eng2015131028052840
StefanidouSPKapposAJMethodology for the development of bridge-specific fragility curvesEarthquake Eng Struct Dyn20174617393
XieYZhengQYangC-SWZhangWDesRochesRPadgettJETacirogluEProbabilistic models of abutment backfills for regional seismic assessment of highway bridges in CaliforniaEng Struct2019180452467
XieYZhangJHuoYSimplified drift demand prediction of bridges under liquefaction-induced lateral spreadingJ Bridge Eng201823804018053
Dehghanpoor A, Thambiratnam D, Chan T, Taciroglu E, Kouretzis G, Li Z (2019a) Coupled horizontal and vertical component analysis of strong ground motions for soil–pile–superstructure systems: application to a bridge Pier with soil–structure interaction. J Earthquake Eng, 1–29.
Aki K, Richards PG (2002) Quantitative seismology: University Science Books.
BradleyBACubrinovskiMDhakalRMacRaeGIntensity measures for the seismic response of pile foundationsSoil Dyn Earthquake Eng200929610461058
Kaviani P, Zareian F, Taciroglu E (2014) Performance-based seismic assessment of skewed bridges: Pacific Earthquake Engineering Research Center.
BakerJWCornellCAA vector-valued ground motion intensity measure consisting of spectral acceleration and epsilonEarthquake Eng Struct Dyn2005341011931217
Shome N (1999) Probabilistic seismic demand analysis of nonlinear structures: Stanford University.
TothongPLucoNProbabilistic seismic demand analysis using advanced ground motions intensity measuresEarthquake Eng Struct Dyn2007361318371860
VamvatsikosDCornellCAIncremental dynamic analysisEarthquake Eng Struct Dyn2002313491514
AmbraseysNuSimpsonKPrediction of vertical response spectra in EuropeEarthquake Eng Struct Dyn1996254401412
PadgettJENielsonBGDesRochesRSelection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfoliosEarthquake Eng Struct Dyn2008375711725
BoulangerRWCurrasCJKutterBLWilsonDWAbghariASeismic soil-pile-structure interaction experiments and analysesJ Geotech Geoenviron Eng19991259750759
BozorgniaYCampbellKWThe vertical-to-horizontal response spectral ratio and tentative procedures for developing simplified V/H and vertical design spectraJ Earthquake Eng2004802175207
ElgamalAYanLYangZConteJPThree-dimensional seismic response of Humboldt Bay bridge-foundation-ground systemJ Structural Eng2008134711651176
BradleyBAEmpirical correlations between cumulative absolute velocity and amplitude-based ground motion intensity measuresEarthq Spectra2012283754
KavianiPZareianFTacirogluESeismic behavior of reinforced concrete bridges with skew-angled seat-type abutmentsEng Struct201245137150
WangZPadgettJDueñas-OsorioLInfluence of vertical ground motions on the seismic fragility modeling of a bridge-soil-foundation systemEarthquake Spectra2013293937962
GulerceZErduranEKunnathSKAbrahamsonNASeismic demand models for probabilistic risk analysis of near fault vertical ground motion effects on ordinary highway bridgesEarthquake Eng Struct Dyn2012412159175
LeeTHMosalamKMSeismic demand sensitivity of reinforced concrete shear-wall building using FOSM methodEarthquake Eng Struct Dyn2005341417191736
MackieKStojadinovićBProbabilistic seismic demand model for California highway bridgesJ Bridge Eng200166468481
StefanidouSPSextosAGKotsoglouANLesgidisNKapposAJSoil-structure interaction effects in analysis of seismic fragility of bridges using an intensity-based ground motion selection procedureEng Struct2017151366380
K Mackie (1044_CR32) 2001; 6
SJ Kim (1044_CR27) 2011; 33
W Zhang (1044_CR54) 2017; 41
K-K Phoon (1044_CR38) 1999; 36
D Celarec (1044_CR12) 2013; 52
1044_CR16
1044_CR15
1044_CR41
X Wang (1044_CR48) 2019; 120
1044_CR42
1044_CR40
A Dehghanpoor (1044_CR17) 2019; 126
TH Lee (1044_CR31) 2005; 34
H Ebrahimian (1044_CR18) 2015; 13
X Wang (1044_CR47) 2018; 16
RW Boulanger (1044_CR8) 1999; 125
Y Xie (1044_CR53) 2019; 180
A Elgamal (1044_CR19) 2004; 8
N Abrahamson (1044_CR2) 1997; 68
M Hariri-Ardebili (1044_CR23) 2016; 59
Y Xie (1044_CR52) 2018; 23
Z Wang (1044_CR50) 2013; 29
1044_CR30
SP Stefanidou (1044_CR43) 2017; 46
Y Bozorgnia (1044_CR9) 2004; 8
1044_CR33
JE Padgett (1044_CR36) 2008; 37
Z Wang (1044_CR49) 2013; 42
L Sakellariadis (1044_CR39) 2018; 47
1044_CR1
1044_CR3
1044_CR5
A Elgamal (1044_CR20) 2008; 134
CA Cornell (1044_CR14) 2002; 128
1044_CR35
SP Stefanidou (1044_CR44) 2017; 151
Y Pang (1044_CR37) 2013; 19
B Wei (1044_CR51) 2018; 115
Nu Ambraseys (1044_CR4) 1996; 25
BA Bradley (1044_CR10) 2009; 29
D Vamvatsikos (1044_CR46) 2002; 31
JW Baker (1044_CR6) 2005; 34
Z Gulerce (1044_CR22) 2012; 41
M Kohrangi (1044_CR28) 2016; 32
M Barbato (1044_CR7) 2010; 136
C Collier (1044_CR13) 2001; 5
P Kaviani (1044_CR25) 2012; 45
SA Mirza (1044_CR34) 1979; 105
A Elnashai (1044_CR21) 1997; 1
P Tothong (1044_CR45) 2007; 36
K Kostinakis (1044_CR29) 2016; 22
1044_CR24
BA Bradley (1044_CR11) 2012; 28
1044_CR26
References_xml – reference: ElnashaiAPapazoglouAProcedure and spectra for analysis of RC structures subjected to strong vertical earthquake loadsJ Earthquake Eng1997101121155
– reference: XieYZhengQYangC-SWZhangWDesRochesRPadgettJETacirogluEProbabilistic models of abutment backfills for regional seismic assessment of highway bridges in CaliforniaEng Struct2019180452467
– reference: MirzaSAMacGregorJGHatzinikolasMStatistical descriptions of strength of concreteJ Struct Division1979105610211037
– reference: PadgettJENielsonBGDesRochesRSelection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfoliosEarthquake Eng Struct Dyn2008375711725
– reference: CornellCAJalayerFHamburgerROFoutchDAProbabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelinesJ Struct Eng2002128526533
– reference: Jones AL, Kramer SL, Arduino P (2002) Estimation of uncertainty in geotechnical properties for performance-based earthquake engineering: Pacific Earthquake Engineering Research Center, College of Engineering.
– reference: WangXShafieezadehAYeAOptimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefied and laterally spreading groundBull Earthquake Eng2018161229257
– reference: WangZDueñas-OsorioLPadgettJESeismic response of a bridge–soil–foundation system under the combined effect of vertical and horizontal ground motionsEarthquake Eng Struct Dyn2013424545564
– reference: Abaqus 6.14 (2018). Dassault systèmes SIMULIA Corporation, Minneapolis.
– reference: Standard B (2005) Eurocode 8: Design of structures for earthquake resistance—Part 1:1998–1991
– reference: Lacasse S, Nadim F, (1996) Uncertainties in characterizing soilproperties. In: Shackleford CD, Nelson PP, Roth MJS (eds) Uncertainty in the geologic environment: from theory to practice. ASCE Geotechnical Special Publication, vol. 58, pp49–75.
– reference: ZhangWEsmaeilzadeh SeylabiETacirogluEValidation of a three-dimensional constitutive model for nonlinear site response and soil-structure interaction analyses using centrifuge test dataInt J Numer Anal Methods Geomech2017411818281847
– reference: StefanidouSPSextosAGKotsoglouANLesgidisNKapposAJSoil-structure interaction effects in analysis of seismic fragility of bridges using an intensity-based ground motion selection procedureEng Struct2017151366380
– reference: Kaviani P, Zareian F, Taciroglu E (2014) Performance-based seismic assessment of skewed bridges: Pacific Earthquake Engineering Research Center.
– reference: PangYWuXShenGYuanWSeismic fragility analysis of cable-stayed bridges considering different sources of uncertaintiesJ Bridge Eng201319404013015
– reference: AbrahamsonNSilvaWJEmpirical response spectral attenuation relations for shallow crustal earthquakesSeismol Res Lett199768194127
– reference: KimSJHolubCJElnashaiASExperimental investigation of the behavior of RC bridge piers subjected to horizontal and vertical earthquake motionEng Struct201133722212235
– reference: KohrangiMBazzurroPVamvatsikosDVector and scalar IMs in structural response estimation, part II: building demand assessmentEarthq Spectra201632315251543
– reference: GulerceZErduranEKunnathSKAbrahamsonNASeismic demand models for probabilistic risk analysis of near fault vertical ground motion effects on ordinary highway bridgesEarthquake Eng Struct Dyn2012412159175
– reference: MackieKStojadinovićBProbabilistic seismic demand model for California highway bridgesJ Bridge Eng200166468481
– reference: Aki K, Richards PG (2002) Quantitative seismology: University Science Books.
– reference: BarbatoMGuQConteJPProbabilistic push-over analysis of structural and soil-structure systemsJ Struct Eng20101361113301341
– reference: KavianiPZareianFTacirogluESeismic behavior of reinforced concrete bridges with skew-angled seat-type abutmentsEng Struct201245137150
– reference: TothongPLucoNProbabilistic seismic demand analysis using advanced ground motions intensity measuresEarthquake Eng Struct Dyn2007361318371860
– reference: Hariri-ArdebiliMSaoumaVProbabilistic seismic demand model and optimal intensity measure for concrete damsStruct Safety2016596785
– reference: BozorgniaYCampbellKWThe vertical-to-horizontal response spectral ratio and tentative procedures for developing simplified V/H and vertical design spectraJ Earthquake Eng2004802175207
– reference: BradleyBAEmpirical correlations between cumulative absolute velocity and amplitude-based ground motion intensity measuresEarthq Spectra2012283754
– reference: BradleyBACubrinovskiMDhakalRMacRaeGIntensity measures for the seismic response of pile foundationsSoil Dyn Earthquake Eng200929610461058
– reference: CelarecDDolšekMThe impact of modelling uncertainties on the seismic performance assessment of reinforced concrete frame buildingsEng Struct201352340354
– reference: Matlab. The MathWorks, Inc., Matlab user's guide (2017).
– reference: AmbraseysNuSimpsonKPrediction of vertical response spectra in EuropeEarthquake Eng Struct Dyn1996254401412
– reference: BakerJWCornellCAA vector-valued ground motion intensity measure consisting of spectral acceleration and epsilonEarthquake Eng Struct Dyn2005341011931217
– reference: DehghanpoorAThambiratnamDTacirogluEChanTSoil-pile-superstructure interaction effects in seismically isolated bridges under combined vertical and horizontal strong ground motionsSoil Dyn Earthquake Eng2019126105753
– reference: Silva W (1997) Characteristics of Vertical Strong Ground Motions for Applications to Engineering Design. In: Friedland IM, Power MS, Mayes RL (eds) Proceedings of the FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion for New and Existing Highway Facilities, Technical Report NCEER-97-0010.
– reference: Shome N (1999) Probabilistic seismic demand analysis of nonlinear structures: Stanford University.
– reference: KostinakisKFontaraI-KAthanatopoulouAMScalar structure-specific ground motion intensity measures for assessing the seismic performance of structures: a reviewJ Earthquake Eng2016224630665
– reference: LeeTHMosalamKMSeismic demand sensitivity of reinforced concrete shear-wall building using FOSM methodEarthquake Eng Struct Dyn2005341417191736
– reference: BoulangerRWCurrasCJKutterBLWilsonDWAbghariASeismic soil-pile-structure interaction experiments and analysesJ Geotech Geoenviron Eng19991259750759
– reference: WangXYeAShafieezadehAPadgettJEFractional order optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefiable and laterally spreading groundSoil Dyn Earthquake Eng2019120301315
– reference: XieYZhangJHuoYSimplified drift demand prediction of bridges under liquefaction-induced lateral spreadingJ Bridge Eng201823804018053
– reference: Dehghanpoor A, Thambiratnam D, Chan T, Taciroglu E, Kouretzis G, Li Z (2019a) Coupled horizontal and vertical component analysis of strong ground motions for soil–pile–superstructure systems: application to a bridge Pier with soil–structure interaction. J Earthquake Eng, 1–29.
– reference: ElgamalAYanLYangZConteJPThree-dimensional seismic response of Humboldt Bay bridge-foundation-ground systemJ Structural Eng2008134711651176
– reference: Nielson BG (2005) Analytical fragility curves for highway bridges in moderate seismic zones. Georgia Institute of Technology.
– reference: WangZPadgettJDueñas-OsorioLInfluence of vertical ground motions on the seismic fragility modeling of a bridge-soil-foundation systemEarthquake Spectra2013293937962
– reference: Dehghanpoor A, Thambiratnam D, Taciroglu E (2019b) Significance of vertical ground motions on soil-pile-superstructure systems. In: Paper presented at the Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions: Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering,(ICEGE 2019), June 17–20, 2019, Rome, Italy.
– reference: PhoonK-KKulhawyFHCharacterization of geotechnical variabilityCan Geotech J1999364612624
– reference: Ayyub BM, Lai K-L (1989) Structural reliability assessment using latin hypercube sampling. Paper presented at the Struct Safety Reliability.
– reference: ElgamalAHeLVertical earthquake ground motion records: an overviewJ Earthquake Eng2004805663697
– reference: SakellariadisLAgalianosAAnastasopoulosISimplified method for real-time seismic damage assessment of motorway bridges: transverse direction—accounting for abutment stoppersEarthquake Eng Struct Dyn201847614961521
– reference: EbrahimianHJalayerFLucchiniAMollaioliFManfrediGPreliminary ranking of alternative scalar and vector intensity measures of ground shakingBull Earthquake Eng2015131028052840
– reference: CollierCElnashaiAA procedure for combining vertical and horizontal seismic action effectsJ Earthquake Eng2001504521539
– reference: VamvatsikosDCornellCAIncremental dynamic analysisEarthquake Eng Struct Dyn2002313491514
– reference: StefanidouSPKapposAJMethodology for the development of bridge-specific fragility curvesEarthquake Eng Struct Dyn20174617393
– reference: WeiBZuoCHeXJiangLWangTEffects of vertical ground motions on seismic vulnerabilities of a continuous track-bridge system of high-speed railwaySoil Dyn Earthquake Eng2018115281290
– volume: 32
  start-page: 1525
  issue: 3
  year: 2016
  ident: 1044_CR28
  publication-title: Earthq Spectra
  doi: 10.1193/053115EQS081M
– ident: 1044_CR16
– ident: 1044_CR41
– volume: 41
  start-page: 1828
  issue: 18
  year: 2017
  ident: 1044_CR54
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2702
– volume: 8
  start-page: 663
  issue: 05
  year: 2004
  ident: 1044_CR19
  publication-title: J Earthquake Eng
– volume: 37
  start-page: 711
  issue: 5
  year: 2008
  ident: 1044_CR36
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.782
– volume: 16
  start-page: 229
  issue: 1
  year: 2018
  ident: 1044_CR47
  publication-title: Bull Earthquake Eng
  doi: 10.1007/s10518-017-0199-2
– volume: 19
  start-page: 04013015
  issue: 4
  year: 2013
  ident: 1044_CR37
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0000565
– ident: 1044_CR26
– volume: 8
  start-page: 175
  issue: 02
  year: 2004
  ident: 1044_CR9
  publication-title: J Earthquake Eng
– volume: 47
  start-page: 1496
  issue: 6
  year: 2018
  ident: 1044_CR39
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.3027
– volume: 125
  start-page: 750
  issue: 9
  year: 1999
  ident: 1044_CR8
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(1999)125:9(750)
– volume: 120
  start-page: 301
  year: 2019
  ident: 1044_CR48
  publication-title: Soil Dyn Earthquake Eng
  doi: 10.1016/j.soildyn.2019.02.012
– volume: 29
  start-page: 937
  issue: 3
  year: 2013
  ident: 1044_CR50
  publication-title: Earthquake Spectra
  doi: 10.1193/1.4000170
– volume: 22
  start-page: 630
  issue: 4
  year: 2016
  ident: 1044_CR29
  publication-title: J Earthquake Eng
  doi: 10.1080/13632469.2016.1264323
– ident: 1044_CR42
– volume: 59
  start-page: 67
  year: 2016
  ident: 1044_CR23
  publication-title: Struct Safety
  doi: 10.1016/j.strusafe.2015.12.001
– ident: 1044_CR3
– volume: 128
  start-page: 526
  year: 2002
  ident: 1044_CR14
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)
– volume: 151
  start-page: 366
  year: 2017
  ident: 1044_CR44
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.08.033
– volume: 126
  start-page: 105753
  year: 2019
  ident: 1044_CR17
  publication-title: Soil Dyn Earthquake Eng
  doi: 10.1016/j.soildyn.2019.105753
– volume: 28
  start-page: 37
  year: 2012
  ident: 1044_CR11
  publication-title: Earthq Spectra
  doi: 10.1193/1.3675580
– ident: 1044_CR35
– volume: 34
  start-page: 1719
  issue: 14
  year: 2005
  ident: 1044_CR31
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.506
– volume: 25
  start-page: 401
  issue: 4
  year: 1996
  ident: 1044_CR4
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/(SICI)1096-9845(199604)25:4<401::AID-EQE551>3.0.CO;2-B
– volume: 29
  start-page: 1046
  issue: 6
  year: 2009
  ident: 1044_CR10
  publication-title: Soil Dyn Earthquake Eng
  doi: 10.1016/j.soildyn.2008.12.002
– ident: 1044_CR15
  doi: 10.1080/13632469.2019.1625829
– volume: 68
  start-page: 94
  issue: 1
  year: 1997
  ident: 1044_CR2
  publication-title: Seismol Res Lett
  doi: 10.1785/gssrl.68.1.94
– volume: 33
  start-page: 2221
  issue: 7
  year: 2011
  ident: 1044_CR27
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.03.013
– ident: 1044_CR24
– ident: 1044_CR30
– volume: 23
  start-page: 04018053
  issue: 8
  year: 2018
  ident: 1044_CR52
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001266
– volume: 31
  start-page: 491
  issue: 3
  year: 2002
  ident: 1044_CR46
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.141
– volume: 41
  start-page: 159
  issue: 2
  year: 2012
  ident: 1044_CR22
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.1123
– volume: 1
  start-page: 121
  issue: 01
  year: 1997
  ident: 1044_CR21
  publication-title: J Earthquake Eng
– volume: 34
  start-page: 1193
  issue: 10
  year: 2005
  ident: 1044_CR6
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.474
– ident: 1044_CR40
– volume: 42
  start-page: 545
  issue: 4
  year: 2013
  ident: 1044_CR49
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.2226
– volume: 45
  start-page: 137
  year: 2012
  ident: 1044_CR25
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.06.013
– volume: 36
  start-page: 612
  issue: 4
  year: 1999
  ident: 1044_CR38
  publication-title: Can Geotech J
  doi: 10.1139/t99-038
– volume: 36
  start-page: 1837
  issue: 13
  year: 2007
  ident: 1044_CR45
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.696
– volume: 13
  start-page: 2805
  issue: 10
  year: 2015
  ident: 1044_CR18
  publication-title: Bull Earthquake Eng
  doi: 10.1007/s10518-015-9755-9
– volume: 115
  start-page: 281
  year: 2018
  ident: 1044_CR51
  publication-title: Soil Dyn Earthquake Eng
  doi: 10.1016/j.soildyn.2018.08.022
– ident: 1044_CR1
– volume: 52
  start-page: 340
  year: 2013
  ident: 1044_CR12
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2013.02.036
– volume: 136
  start-page: 1330
  issue: 11
  year: 2010
  ident: 1044_CR7
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000231
– volume: 180
  start-page: 452
  year: 2019
  ident: 1044_CR53
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.11.058
– volume: 6
  start-page: 468
  issue: 6
  year: 2001
  ident: 1044_CR32
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)1084-0702(2001)6:6(468)
– ident: 1044_CR33
– volume: 5
  start-page: 521
  issue: 04
  year: 2001
  ident: 1044_CR13
  publication-title: J Earthquake Eng
  doi: 10.1080/13632460109350404
– volume: 46
  start-page: 73
  issue: 1
  year: 2017
  ident: 1044_CR43
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.2774
– ident: 1044_CR5
– volume: 105
  start-page: 1021
  issue: 6
  year: 1979
  ident: 1044_CR34
  publication-title: J Struct Division
  doi: 10.1061/JSDEAG.0005161
– volume: 134
  start-page: 1165
  issue: 7
  year: 2008
  ident: 1044_CR20
  publication-title: J Structural Eng
  doi: 10.1061/(ASCE)0733-9445(2008)134:7(1165)
SSID ssj0025790
Score 2.3697264
Snippet Intensity Measures (IMs) provide the relationship between Engineering Demand Parameters (EDPs) and seismic hazard characteristics for different structures and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2291
SubjectTerms Acceleration
Bridge design
Bridges
Civil Engineering
Displacement
Earth and Environmental Science
Earth Sciences
Environmental Engineering/Biotechnology
Geological hazards
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Ground motion
Hydrogeology
Mathematical models
Original Article
Parameters
Pile foundations
Piles
Seismic activity
Seismic hazard
Seismic response
Seismology
Soil properties
Soil-structure interaction
Soils
Spectra
Structural Geology
Uncertainty
Velocity
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUo9NAeKP1SFyiaQ2-t1diJk_UJIVTUE6oElfYWObajrsQmy2Ypgn_Vf9gZx9m0SOXSS6TEiZNoxvbMeOY9xj4olbs8MZpLi4fMm4pXyqGzUpHLnNlEuCqQTRTn59PZTH-LAbcuplUOc2KYqF1rKUb-mZZq2oZL8-PlNSfWKNpdjRQaT9gOoSTIkLp3sXG4VBFiLEIVCUd3fRaLZmLpnBJTTgkK5JFk_PbvhWm0Nh9skIZ15-zF_37xHtuNFiec9Crykm355hV7_gcO4Wv266SBIRoORDETYHcJwRmcX5jGQSDMAQraQouTzAI7nPfJ7-s7WPRxxg7QAIbOz7sFPrgcKxLAblCh-6JPaGuYo9KjnesgAk0AVbOtwLY3yyu8-gP_5L6lUk2g9wfWaFQn6FmHujfs-9mXy9OvPHI5cIuDfM2dT51V2hfG5lYaj3NFLeXUo7Xm07rIM6eMrrBJo4GBrrLw1otcevR4CmOcSN-y7aZt_DsGRtZaZJVO66nJ0DvSSaU1nic6FbWSasLEIMjSRqBz4tu4KkeIZhJ-icIvg_DL2wn7uHlm2cN8PHr34SDxMg75rhzFPWGfBp0Zm__d2_7jvR2wZzKoKeW9HbLt9erGv2dP7c_1vFsdBYX_DeuECw8
  priority: 102
  providerName: ProQuest
Title An extended probabilistic demand model with optimal intensity measures for seismic performance characterization of isolated bridges under coupled horizontal and vertical motions
URI https://link.springer.com/article/10.1007/s10518-021-01044-w
https://www.proquest.com/docview/2505046436
Volume 19
WOSCitedRecordID wos000614667500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025790
  issn: 1570-761X
  databaseCode: RSV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tHQ_wMMaXKIzqHniDSLETJ_HjhjbxQlVtA_UtcmxHVGqTqumo9mftP-TsJO1AgMReLCX-SKS7s-93vg-A90IkJgmVDLimJraqCAphCKwUDjLHOmSm8MUm0skkm83ktAsKa3pv9_5K0u_U94LdBMsC51LgMEQcbAdwSMdd5sTx8urbDmaJ1FtWmEjDgED6rAuV-fMavx5Hex3zt2tRf9pcPH3Yfx7DUadd4mnLDs_gwFbP4cm9nIMv4O60wt7yja6cjE-x67I1o7FLVRn0xXHQGWixpg1lSQvOW0f3zS0uW5tig6TsYmPnzZImrvbRB6h3GaDbAE-sS5wTg5NOa7BLKoEucm2Nur5ZLejt95oG1y4sE933fYVoYh1sKww1L-Hrxfn1p89BV7ch0CTQm8DYyGghbap0ormytC-UnGeWNDMblWkSG6FkQV2SlAmCxcxqyxJuCd2kShkWvYJhVVf2NaDipWRxIaMyUzEhIRkWUtJzKCNWCi5GwHry5bpLau5qayzyfTpmR46cyJF7cuTbEXzYzVm1KT3-Ofqk54q8E-8md3qjuxOOkhF87Llg3_331d783_C38Jh7RnI-bycw3Kxv7Dt4pH9s5s16DIdn55Pp5RgGX_jUtenV2IvCTxAVBT4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQIO5a0uLTAHOEHU2ImT9QGhCqhatayQKNLegmM7YqVust1sWZUfVan_kBkn2QASvfXAJVJejuR8M54Zz8zH2EspE5uEWgXC4CF2Og9yadFZyclljk3Ibe7JJtLRaDgeq89r7KKrhaG0yk4nekVtK0Mx8h1aqmkbLkrezU4DYo2i3dWOQqOBxaE7X6LLVr89-ID_95UQex-P3-8HLatAYBBui8C6yBqpXKpNYoR2iNpCiKFDu8FFRZrEVmqV4y2FSx06bdwZxxPh0PZOtbY8wnFvsJsxaX-fKvhl5eDJ1Md0uEzDIE34uC3SaUv1JB8GlBBBHlAcLP9cCHvr9q8NWb_O7d3732boPttoLWrYbUTgAVtz5UN297c-i4_Y5W4JXbQfiELHtxWmDtVg3VSXFjwhEFBQGipUolMccNIk9y_OYdrEUWtAAx9qN6mn-OKsr7gAs-p63RS1QlXABIUa7XgLbSMNoGq9OZjqbHaCV7_jzP2sqBQV6PueFRvFBRpWpfox-3otc_aErZdV6TYZaFEoHucqKoY6Ru9PhblSeB6qiBdSyAHjHXAy0zZyJz6Rk6xvQU1gyxBsmQdbthyw16t3Zk0bkyuf3u4QlrUqrc56eA3Ymw6j_e1_j_b06tFesNv7x5-OsqOD0eEWuyO8iFCO3zZbX8zP3DN2y_xYTOr5cy9swL5dN3Z_ASGQaBg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwHMRhQXmACeINnbiJD4gVHapWC2qKgRSb8GxHVFpm5SmS7X8K678OsZ5NIDE3vbAJVLi2JGcb-yZ8cx8AM-EiEzkK-lxTZfQqszLhCFjJXMmc6h9ZrKabCKeTJLZTE534GeXC-PCKrs1sV6oTamdj_zAbdXuGC6IDvI2LGJ6NH69_Oo5Bil30trRaTQQObHnGzLfqlfHR_Svn3M-fvvx8J3XMgx4mqC39owNjBbSxkpHmitLCM45TyzpEDbI4yg0QsmMmiRte2TAMasti7glPTxWyrCAxr0Cu0lEcjOA3enhm9GHrbkn4trDw0Tse3HEZm3KTpu4J1jiufAIZw-F3ubPbbHXdf86nq13vfGt_3m-bsPNVtfGUSMcd2DHFnfhxm8VGO_Bj1GB3TkAOnKduuCwq12Nxi5UYbCmCkLnrsaSltcFDThvwv7X57hoPKwVkuqPlZ1XC-q47HMxUG_rYTfprljmOCdxJw3fYFtiA10e3wp1ebY8padfaOa-ly5JFd33a75sEiRs-JaqPfh0KXN2HwZFWdgHgIrnkoWZDPJEhWQXSj-Tku59GbBccDEE1oEo1W2Jd8c0cpr2xakd8FICXloDL90M4cW2z7IpcHLh2_sd2tJ2savSHmpDeNnhtW_-92gPLx7tKVwjyKbvjycnj-A6r6XFBf_tw2C9OrOP4ar-tp5Xqyet5CF8vmzw_gL8DXII
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extended+probabilistic+demand+model+with+optimal+intensity+measures+for+seismic+performance+characterization+of+isolated+bridges+under+coupled+horizontal+and+vertical+motions&rft.jtitle=Bulletin+of+earthquake+engineering&rft.au=Dehghanpoor%2C+Ahmad&rft.au=Thambiratnam%2C+David&rft.au=Zhang%2C+Wenyang&rft.au=Chan%2C+Tommy&rft.date=2021-03-01&rft.pub=Springer+Netherlands&rft.issn=1570-761X&rft.eissn=1573-1456&rft.volume=19&rft.issue=5&rft.spage=2291&rft.epage=2323&rft_id=info:doi/10.1007%2Fs10518-021-01044-w&rft.externalDocID=10_1007_s10518_021_01044_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-761X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-761X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-761X&client=summon