A clustering algorithm for detecting differential deviations in the multivariate time-series IoT data based on sensor relationship

Internet-of-things (IoT) applications involve a large number of sensors reporting data as a set of time series. Often these data are related to each other based on the relationship of the sensors in the actual application. Any small deviations could indicate a change in the operation of the IoT syst...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge and information systems Vol. 67; no. 3; pp. 2641 - 2690
Main Authors: Idrees, Rabbia, Maiti, Ananda, Garg, Saurabh
Format: Journal Article
Language:English
Published: London Springer London 01.03.2025
Springer Nature B.V
Subjects:
ISSN:0219-1377, 0219-3116
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Internet-of-things (IoT) applications involve a large number of sensors reporting data as a set of time series. Often these data are related to each other based on the relationship of the sensors in the actual application. Any small deviations could indicate a change in the operation of the IoT system and potential problems with the IoT application’s goals. It is often difficult to detect such deviations with respect to the relationship between the sensors. This paper presents the clustering algorithm that can efficiently detect all the deviations small or large in the complex and evolving IoT data streams with the help of sensor relationships. We have demonstrated with the help of experiments that our algorithm can efficiently handle high-dimensional data and accurately detect all the deviations. In this paper, we have presented two more algorithms, anomaly detection and outlier detection, that can efficiently categorize the deviations detected by our proposed clustering algorithm into anomalous or normal deviations. We have evaluated the performance and accuracy of our proposed algorithms on synthetic and real-world datasets. Furthermore, to check the effectiveness of our algorithms in terms of efficiency, we have prepared synthetic datasets in which we have increased the complexity of the deviations to show that our algorithm can handle complex IoT data streams efficiently.
AbstractList Internet-of-things (IoT) applications involve a large number of sensors reporting data as a set of time series. Often these data are related to each other based on the relationship of the sensors in the actual application. Any small deviations could indicate a change in the operation of the IoT system and potential problems with the IoT application’s goals. It is often difficult to detect such deviations with respect to the relationship between the sensors. This paper presents the clustering algorithm that can efficiently detect all the deviations small or large in the complex and evolving IoT data streams with the help of sensor relationships. We have demonstrated with the help of experiments that our algorithm can efficiently handle high-dimensional data and accurately detect all the deviations. In this paper, we have presented two more algorithms, anomaly detection and outlier detection, that can efficiently categorize the deviations detected by our proposed clustering algorithm into anomalous or normal deviations. We have evaluated the performance and accuracy of our proposed algorithms on synthetic and real-world datasets. Furthermore, to check the effectiveness of our algorithms in terms of efficiency, we have prepared synthetic datasets in which we have increased the complexity of the deviations to show that our algorithm can handle complex IoT data streams efficiently.
Author Maiti, Ananda
Garg, Saurabh
Idrees, Rabbia
Author_xml – sequence: 1
  givenname: Rabbia
  surname: Idrees
  fullname: Idrees, Rabbia
  email: rabbia.idrees@utas.edu.au
  organization: School of Information and Communication Technology, University of Tasmania
– sequence: 2
  givenname: Ananda
  surname: Maiti
  fullname: Maiti, Ananda
  organization: School of Information Technology, Deakin University
– sequence: 3
  givenname: Saurabh
  surname: Garg
  fullname: Garg, Saurabh
  organization: School of Information and Communication Technology, University of Tasmania
BookMark eNp9kU1LAzEQhoMo-PkHPAU8r2Y2u9nmKOJHQfBSzyHdTNqUbVKTVPDqLzftCoKHHsKEl3neGd45J8c-eCTkGtgtMNbdJWAAbcXqpjzOeMWPyBmrQVYcQBz__oF33Sk5T2nFGHQC4Ix839N-2KaM0fkF1cMiRJeXa2pDpAYz9nmnG2ctRvTZ6aHIn05nF3yiztO8RLreDtl96lhkpNmtsUrFDxOdhhk1Oms61wkNDZ4m9KlYRxxGi6XbXJITq4eEV7_1grw_Pc4eXqrXt-fpw_1r1XOQuTLGQMOQ1Z2UbWuFNNryFrTBubDYsEZLK0CibAQzgttJa7lhzQSgh043Lb8gN6PvJoaPLaasVmEbfRmpOIhWdjUwUbomY1cfQ0oRrepd3u-ao3aDAqZ2iasxcVUSV_vEFS9o_Q_dRLfW8eswxEcobXYnwPi31QHqB1Osl3Y
CitedBy_id crossref_primary_10_35234_fumbd_1668498
Cites_doi 10.1145/3292500.3330871
10.1145/3534678.3539348
10.1007/s00158-017-1756-7
10.1109/ICEngTechnol.2017.8308186
10.1109/ACCESS.2022.3174713
10.1109/SmartIoT.2018.00-13.
10.1145/3219819.3220042
10.1007/s10115-004-0154-9
10.1145/3534678.3539339
10.1109/TFUZZ.2021.3076265
10.1145/3534678.3539097
10.1145/3580305.3599302
10.1016/j.jprocont.2015.06.007
10.1109/DSAA.2016.92
10.1109/ITAIC.2019.8785426
10.1109/TGRS.2020.3013022
10.3390/electronics12173543
10.3390/s20216076
10.1145/3292500.3330932
10.1109/TSG.2021.3084459
10.1109/ICCCNT56998.2023.10306417.
10.1145/3447548.3467417
10.1016/j.neucom.2017.04.070
10.1109/JIOT.2021.3128531
10.1109/LSP.2022.3193903
10.1109/SYSCON.2018.8369562
10.1109/JIOT.2022.3142103
10.1007/s10618-016-0490-x
10.1109/LGRS.2018.2853705
10.1007/978-3-031-10464-0_11
10.1109/PHM2022-London52454.2022.00042
10.1109/ACCESS.2022.3213038
10.1145/3447548.3467137
10.1145/3534678.3539117
10.1145/3534678.3539408
10.3390/electronics12061313
10.1109/TIM.2022.3194920
10.1109/DSAA53316.2021.9564117
10.1109/ICTC52510.2021.9620808
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Mar 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10115-024-02303-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0219-3116
EndPage 2690
ExternalDocumentID 10_1007_s10115_024_02303_3
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M0N
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-ddd140e0279955f69daf351adeb6fe404a9f619e9460d63f85f3d04811c17a453
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001378338600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0219-1377
IngestDate Sat Nov 08 14:44:00 EST 2025
Tue Nov 18 22:24:15 EST 2025
Sat Nov 29 02:29:28 EST 2025
Fri Feb 21 02:47:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Outlier detection
Multivariate time series
Sensor relationship
Clustering
Deviations
Anomaly detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ddd140e0279955f69daf351adeb6fe404a9f619e9460d63f85f3d04811c17a453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3165972106
PQPubID 43394
PageCount 50
ParticipantIDs proquest_journals_3165972106
crossref_citationtrail_10_1007_s10115_024_02303_3
crossref_primary_10_1007_s10115_024_02303_3
springer_journals_10_1007_s10115_024_02303_3
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle An International Journal
PublicationTitle Knowledge and information systems
PublicationTitleAbbrev Knowl Inf Syst
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 2303_CR40
R Krishnamurthi (2303_CR2) 2020; 20
Y Liu (2303_CR20) 2023; 12
J Zhong (2303_CR24) 2021; 59
2303_CR26
2303_CR22
2303_CR23
2303_CR21
C Huang (2303_CR1) 2022; 9
2303_CR6
K Zhang (2303_CR31) 2015; 33
2303_CR8
2303_CR9
2303_CR3
F Höppner (2303_CR7) 2017; 31
2303_CR28
2303_CR5
2303_CR29
S Li (2303_CR34) 2018; 15
2303_CR30
E Keogh (2303_CR41) 2005; 7
G Qian (2303_CR39) 2022; 10
S Ahmad (2303_CR27) 2017; 262
2303_CR15
2303_CR37
2303_CR16
SW Miller (2303_CR35) 2017
2303_CR38
2303_CR14
A Kiersztyn (2303_CR25) 2022; 30
2303_CR36
T Kim (2303_CR13) 2023; 12
J Luo (2303_CR19) 2022; 71
2303_CR33
2303_CR12
2303_CR10
L Zhu (2303_CR4) 2022; 9
2303_CR17
A Lundström (2303_CR18) 2022; 10
N LaRosa (2303_CR32) 2022; 29
L Zhu (2303_CR11) 2021; 12
References_xml – ident: 2303_CR23
  doi: 10.1145/3292500.3330871
– ident: 2303_CR5
  doi: 10.1145/3534678.3539348
– year: 2017
  ident: 2303_CR35
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-017-1756-7
– ident: 2303_CR8
  doi: 10.1109/ICEngTechnol.2017.8308186
– volume: 10
  start-page: 51447
  year: 2022
  ident: 2303_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3174713
– ident: 2303_CR29
  doi: 10.1109/SmartIoT.2018.00-13.
– ident: 2303_CR22
  doi: 10.1145/3219819.3220042
– volume: 7
  start-page: 358
  issue: 3
  year: 2005
  ident: 2303_CR41
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-004-0154-9
– ident: 2303_CR16
  doi: 10.1145/3534678.3539339
– volume: 30
  start-page: 2850
  issue: 8
  year: 2022
  ident: 2303_CR25
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2021.3076265
– ident: 2303_CR26
  doi: 10.1145/3534678.3539097
– ident: 2303_CR15
  doi: 10.1145/3580305.3599302
– volume: 33
  start-page: 112
  year: 2015
  ident: 2303_CR31
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2015.06.007
– ident: 2303_CR12
  doi: 10.1109/DSAA.2016.92
– ident: 2303_CR40
  doi: 10.1109/ITAIC.2019.8785426
– volume: 59
  start-page: 6017
  issue: 7
  year: 2021
  ident: 2303_CR24
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2020.3013022
– volume: 12
  start-page: 3543
  issue: 17
  year: 2023
  ident: 2303_CR13
  publication-title: Electronics
  doi: 10.3390/electronics12173543
– volume: 20
  start-page: 6076
  issue: 21
  year: 2020
  ident: 2303_CR2
  publication-title: Sensors
  doi: 10.3390/s20216076
– ident: 2303_CR36
  doi: 10.1145/3292500.3330932
– volume: 12
  start-page: 5472
  issue: 6
  year: 2021
  ident: 2303_CR11
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2021.3084459
– ident: 2303_CR10
  doi: 10.1109/ICCCNT56998.2023.10306417.
– ident: 2303_CR21
  doi: 10.1145/3447548.3467417
– volume: 262
  start-page: 134
  year: 2017
  ident: 2303_CR27
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.070
– volume: 9
  start-page: 17089
  issue: 18
  year: 2022
  ident: 2303_CR1
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3128531
– volume: 29
  start-page: 1704
  year: 2022
  ident: 2303_CR32
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2022.3193903
– ident: 2303_CR37
  doi: 10.1109/SYSCON.2018.8369562
– volume: 9
  start-page: 13651
  issue: 15
  year: 2022
  ident: 2303_CR4
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3142103
– volume: 31
  start-page: 851
  issue: 3
  year: 2017
  ident: 2303_CR7
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-016-0490-x
– volume: 15
  start-page: 1605
  issue: 10
  year: 2018
  ident: 2303_CR34
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2018.2853705
– ident: 2303_CR28
  doi: 10.1007/978-3-031-10464-0_11
– ident: 2303_CR9
  doi: 10.1109/PHM2022-London52454.2022.00042
– volume: 10
  start-page: 108194
  year: 2022
  ident: 2303_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3213038
– ident: 2303_CR30
  doi: 10.1145/3447548.3467137
– ident: 2303_CR6
  doi: 10.1145/3534678.3539117
– ident: 2303_CR38
– ident: 2303_CR14
  doi: 10.1145/3534678.3539408
– volume: 12
  start-page: 1313
  issue: 6
  year: 2023
  ident: 2303_CR20
  publication-title: Electronics
  doi: 10.3390/electronics12061313
– volume: 71
  start-page: 1
  year: 2022
  ident: 2303_CR19
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2022.3194920
– ident: 2303_CR3
  doi: 10.1109/DSAA53316.2021.9564117
– ident: 2303_CR17
– ident: 2303_CR33
  doi: 10.1109/ICTC52510.2021.9620808
SSID ssj0017611
Score 2.380703
Snippet Internet-of-things (IoT) applications involve a large number of sensors reporting data as a set of time series. Often these data are related to each other...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2641
SubjectTerms Algorithms
Anomalies
Clustering
Complexity
Computer Science
Data analysis
Data Mining and Knowledge Discovery
Data transmission
Database Management
Datasets
Deviation
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
Internet of Things
IT in Business
Multivariate analysis
Outliers (statistics)
Regular Paper
Sensors
Synthetic data
Time series
Title A clustering algorithm for detecting differential deviations in the multivariate time-series IoT data based on sensor relationship
URI https://link.springer.com/article/10.1007/s10115-024-02303-3
https://www.proquest.com/docview/3165972106
Volume 67
WOSCitedRecordID wos001378338600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: RSV
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQDlwg0hp06btcUJMcEEIBtqtSpuEVRrt1Hb7AfxynD42QIAEUk9palVxHH-WHX8InWvty1gJTjzq2RCgCEoCGVAieGRLXzAeyJpswru788fj4L65FFa01e5tSrI6qT9cdgP0QsCnEIObGWHraAPcnW8IGx4en5e5AwjMK548sEVi-uk1V2W-l_HZHa0w5pe0aOVtht3__ecO2m7QJR7U22EXral0D3Vb5gbcGPI-ehvgeDo3PRJAMhbTlyxPyskrBgSLpTJ5BTPekqfAITCF4UWtxQInKQbYiKtaxAXE2gBXseGoJ2Y7qwLfZiNsKk-xcZESZykuIFgG0XlbeTdJZgfoaXg9urohDRsDicFMSyKlhGBMQRgbBK6rQYlCM9cSUkVcK4c6ItAQjanA4VRypn1XM2m60Vix5QnHZYeok2apOkI4sjg8TqRdqgDOCSEp95XNmHSoL2K_h6xWKWHctCo3jBnTcNVk2SxyCIscVoscsh66WH4zqxt1_Dq73-o6bIy2CJnFXdPMiPIeumx1u3r9s7Tjv00_QVu2YRGuKtn6qFPmc3WKNuNFmRT5WbWZ3wHpNe7E
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4omuiL-DOiqH3wTZt0dCvbIzESiEqMouFtKWsrJDgIA_4A_3KvYwM1aqLJnrrusvR6ve9y1_sAzo3xVaSloFVWrWCAIhkNVMCoFN2K8iUXgZqTTVRbLb_TCe6zS2FJXu2epyTTk_rDZTdELxR9CrW4mVO-CmsueizbMf_h8XmRO8DAPOXJQ1uktp9edlXmexmf3dESY35Ji6bepl78339uw1aGLkltvh12YEXHu1DMmRtIZsh78FYj0WBqeySgZCIHL8Nxf9J7JYhgidI2r2DHc_IUPAQGODybazEh_ZggbCRpLeIMY22Eq8Ry1FO7nXVCmsM2sZWnxLpIRYYxSTBYRtHjvPKu1x_tw1P9un3VoBkbA43QTCdUKYXBmMYwNgg8z6ASpeGeI5XuCqNd5srAYDSmA1cwJbjxPcOV7UbjRE5Vuh4_gEI8jPUhkK4j8HG7xmMa4ZyUiglfVzhXLvNl5JfAyZUSRlmrcsuYMQiXTZbtIoe4yGG6yCEvwcXim9G8Ucevs8u5rsPMaJOQO8KzzYyYKMFlrtvl65-lHf1t-hlsNNp3t-Fts3VzDJsVyyicVrWVoTAZT_UJrEezST8Zn6Yb-x0iJPGo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4BixCX7fISZVnwgRtYOHXiJscKtloEqpB4iFvkxjatVNKqCf0B_HJm8qCAWCSElJPjOJHHk_lGM_MNwIFzoUmsVrwt2i10ULTgkYkE16rfMqGWKjJls4l2rxfe3UWXr6r4i2z3OiRZ1jQQS1OaH0-MO35V-IZIhqN94YShJZeL8MOnRHry169uX-II6KQXPfNQLzlx61VlMx-v8dY0zfHmuxBpYXm6je9_8y_4WaFO1imPyRos2HQdGnVHB1Yp-AY8dVgyeiTuBHwL06P78XSYDx4YIltmLMUbaLxuqoI_hxEOz0rpZmyYMoSTrMhRnKEPjjCWUe96TsfcZuxsfM0oI5WR6TRsnLIMnWhcelpn5A2Gk0246f69PvnHqy4NPEH1zbkxBp00i-5tFAWBQ-FqJwNPG9tXzvrC15FDL81GvhJGSRcGThpiqfESr639QG7BUjpO7Tawvqfw8vsuEBZhntZGqNC2pDS-CHUSNsGrBRQnFYU5ddIYxXPyZdrkGDc5LjY5lk04fHlmUhJ4fDp7t5Z7XClzFktPBURyJFQTjmo5z2__f7Wdr03fh5XL0258cdY7_w2rLWo0XCS77cJSPn20f2A5meXDbLpXnPFnS8L6jA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+clustering+algorithm+for+detecting+differential+deviations+in+the+multivariate+time-series+IoT+data+based+on+sensor+relationship&rft.jtitle=Knowledge+and+information+systems&rft.au=Idrees%2C+Rabbia&rft.au=Maiti%2C+Ananda&rft.au=Garg%2C+Saurabh&rft.date=2025-03-01&rft.pub=Springer+London&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=67&rft.issue=3&rft.spage=2641&rft.epage=2690&rft_id=info:doi/10.1007%2Fs10115-024-02303-3&rft.externalDocID=10_1007_s10115_024_02303_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon