A clustering algorithm for detecting differential deviations in the multivariate time-series IoT data based on sensor relationship
Internet-of-things (IoT) applications involve a large number of sensors reporting data as a set of time series. Often these data are related to each other based on the relationship of the sensors in the actual application. Any small deviations could indicate a change in the operation of the IoT syst...
Saved in:
| Published in: | Knowledge and information systems Vol. 67; no. 3; pp. 2641 - 2690 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.03.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0219-1377, 0219-3116 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Internet-of-things (IoT) applications involve a large number of sensors reporting data as a set of time series. Often these data are related to each other based on the relationship of the sensors in the actual application. Any small deviations could indicate a change in the operation of the IoT system and potential problems with the IoT application’s goals. It is often difficult to detect such deviations with respect to the relationship between the sensors. This paper presents the clustering algorithm that can efficiently detect all the deviations small or large in the complex and evolving IoT data streams with the help of sensor relationships. We have demonstrated with the help of experiments that our algorithm can efficiently handle high-dimensional data and accurately detect all the deviations. In this paper, we have presented two more algorithms, anomaly detection and outlier detection, that can efficiently categorize the deviations detected by our proposed clustering algorithm into anomalous or normal deviations. We have evaluated the performance and accuracy of our proposed algorithms on synthetic and real-world datasets. Furthermore, to check the effectiveness of our algorithms in terms of efficiency, we have prepared synthetic datasets in which we have increased the complexity of the deviations to show that our algorithm can handle complex IoT data streams efficiently. |
|---|---|
| AbstractList | Internet-of-things (IoT) applications involve a large number of sensors reporting data as a set of time series. Often these data are related to each other based on the relationship of the sensors in the actual application. Any small deviations could indicate a change in the operation of the IoT system and potential problems with the IoT application’s goals. It is often difficult to detect such deviations with respect to the relationship between the sensors. This paper presents the clustering algorithm that can efficiently detect all the deviations small or large in the complex and evolving IoT data streams with the help of sensor relationships. We have demonstrated with the help of experiments that our algorithm can efficiently handle high-dimensional data and accurately detect all the deviations. In this paper, we have presented two more algorithms, anomaly detection and outlier detection, that can efficiently categorize the deviations detected by our proposed clustering algorithm into anomalous or normal deviations. We have evaluated the performance and accuracy of our proposed algorithms on synthetic and real-world datasets. Furthermore, to check the effectiveness of our algorithms in terms of efficiency, we have prepared synthetic datasets in which we have increased the complexity of the deviations to show that our algorithm can handle complex IoT data streams efficiently. |
| Author | Maiti, Ananda Garg, Saurabh Idrees, Rabbia |
| Author_xml | – sequence: 1 givenname: Rabbia surname: Idrees fullname: Idrees, Rabbia email: rabbia.idrees@utas.edu.au organization: School of Information and Communication Technology, University of Tasmania – sequence: 2 givenname: Ananda surname: Maiti fullname: Maiti, Ananda organization: School of Information Technology, Deakin University – sequence: 3 givenname: Saurabh surname: Garg fullname: Garg, Saurabh organization: School of Information and Communication Technology, University of Tasmania |
| BookMark | eNp9kU1LAzEQhoMo-PkHPAU8r2Y2u9nmKOJHQfBSzyHdTNqUbVKTVPDqLzftCoKHHsKEl3neGd45J8c-eCTkGtgtMNbdJWAAbcXqpjzOeMWPyBmrQVYcQBz__oF33Sk5T2nFGHQC4Ix839N-2KaM0fkF1cMiRJeXa2pDpAYz9nmnG2ctRvTZ6aHIn05nF3yiztO8RLreDtl96lhkpNmtsUrFDxOdhhk1Oms61wkNDZ4m9KlYRxxGi6XbXJITq4eEV7_1grw_Pc4eXqrXt-fpw_1r1XOQuTLGQMOQ1Z2UbWuFNNryFrTBubDYsEZLK0CibAQzgttJa7lhzQSgh043Lb8gN6PvJoaPLaasVmEbfRmpOIhWdjUwUbomY1cfQ0oRrepd3u-ao3aDAqZ2iasxcVUSV_vEFS9o_Q_dRLfW8eswxEcobXYnwPi31QHqB1Osl3Y |
| CitedBy_id | crossref_primary_10_35234_fumbd_1668498 |
| Cites_doi | 10.1145/3292500.3330871 10.1145/3534678.3539348 10.1007/s00158-017-1756-7 10.1109/ICEngTechnol.2017.8308186 10.1109/ACCESS.2022.3174713 10.1109/SmartIoT.2018.00-13. 10.1145/3219819.3220042 10.1007/s10115-004-0154-9 10.1145/3534678.3539339 10.1109/TFUZZ.2021.3076265 10.1145/3534678.3539097 10.1145/3580305.3599302 10.1016/j.jprocont.2015.06.007 10.1109/DSAA.2016.92 10.1109/ITAIC.2019.8785426 10.1109/TGRS.2020.3013022 10.3390/electronics12173543 10.3390/s20216076 10.1145/3292500.3330932 10.1109/TSG.2021.3084459 10.1109/ICCCNT56998.2023.10306417. 10.1145/3447548.3467417 10.1016/j.neucom.2017.04.070 10.1109/JIOT.2021.3128531 10.1109/LSP.2022.3193903 10.1109/SYSCON.2018.8369562 10.1109/JIOT.2022.3142103 10.1007/s10618-016-0490-x 10.1109/LGRS.2018.2853705 10.1007/978-3-031-10464-0_11 10.1109/PHM2022-London52454.2022.00042 10.1109/ACCESS.2022.3213038 10.1145/3447548.3467137 10.1145/3534678.3539117 10.1145/3534678.3539408 10.3390/electronics12061313 10.1109/TIM.2022.3194920 10.1109/DSAA53316.2021.9564117 10.1109/ICTC52510.2021.9620808 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Mar 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Mar 2025 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10115-024-02303-3 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 0219-3116 |
| EndPage | 2690 |
| ExternalDocumentID | 10_1007_s10115_024_02303_3 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6KP 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAS LLZTM M0C M0N M4Y MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c319t-ddd140e0279955f69daf351adeb6fe404a9f619e9460d63f85f3d04811c17a453 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001378338600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0219-1377 |
| IngestDate | Sat Nov 08 14:44:00 EST 2025 Tue Nov 18 22:24:15 EST 2025 Sat Nov 29 02:29:28 EST 2025 Fri Feb 21 02:47:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Outlier detection Multivariate time series Sensor relationship Clustering Deviations Anomaly detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ddd140e0279955f69daf351adeb6fe404a9f619e9460d63f85f3d04811c17a453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3165972106 |
| PQPubID | 43394 |
| PageCount | 50 |
| ParticipantIDs | proquest_journals_3165972106 crossref_citationtrail_10_1007_s10115_024_02303_3 crossref_primary_10_1007_s10115_024_02303_3 springer_journals_10_1007_s10115_024_02303_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Knowledge and information systems |
| PublicationTitleAbbrev | Knowl Inf Syst |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | 2303_CR40 R Krishnamurthi (2303_CR2) 2020; 20 Y Liu (2303_CR20) 2023; 12 J Zhong (2303_CR24) 2021; 59 2303_CR26 2303_CR22 2303_CR23 2303_CR21 C Huang (2303_CR1) 2022; 9 2303_CR6 K Zhang (2303_CR31) 2015; 33 2303_CR8 2303_CR9 2303_CR3 F Höppner (2303_CR7) 2017; 31 2303_CR28 2303_CR5 2303_CR29 S Li (2303_CR34) 2018; 15 2303_CR30 E Keogh (2303_CR41) 2005; 7 G Qian (2303_CR39) 2022; 10 S Ahmad (2303_CR27) 2017; 262 2303_CR15 2303_CR37 2303_CR16 SW Miller (2303_CR35) 2017 2303_CR38 2303_CR14 A Kiersztyn (2303_CR25) 2022; 30 2303_CR36 T Kim (2303_CR13) 2023; 12 J Luo (2303_CR19) 2022; 71 2303_CR33 2303_CR12 2303_CR10 L Zhu (2303_CR4) 2022; 9 2303_CR17 A Lundström (2303_CR18) 2022; 10 N LaRosa (2303_CR32) 2022; 29 L Zhu (2303_CR11) 2021; 12 |
| References_xml | – ident: 2303_CR23 doi: 10.1145/3292500.3330871 – ident: 2303_CR5 doi: 10.1145/3534678.3539348 – year: 2017 ident: 2303_CR35 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-017-1756-7 – ident: 2303_CR8 doi: 10.1109/ICEngTechnol.2017.8308186 – volume: 10 start-page: 51447 year: 2022 ident: 2303_CR39 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3174713 – ident: 2303_CR29 doi: 10.1109/SmartIoT.2018.00-13. – ident: 2303_CR22 doi: 10.1145/3219819.3220042 – volume: 7 start-page: 358 issue: 3 year: 2005 ident: 2303_CR41 publication-title: Knowl Inf Syst doi: 10.1007/s10115-004-0154-9 – ident: 2303_CR16 doi: 10.1145/3534678.3539339 – volume: 30 start-page: 2850 issue: 8 year: 2022 ident: 2303_CR25 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2021.3076265 – ident: 2303_CR26 doi: 10.1145/3534678.3539097 – ident: 2303_CR15 doi: 10.1145/3580305.3599302 – volume: 33 start-page: 112 year: 2015 ident: 2303_CR31 publication-title: J Process Control doi: 10.1016/j.jprocont.2015.06.007 – ident: 2303_CR12 doi: 10.1109/DSAA.2016.92 – ident: 2303_CR40 doi: 10.1109/ITAIC.2019.8785426 – volume: 59 start-page: 6017 issue: 7 year: 2021 ident: 2303_CR24 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2020.3013022 – volume: 12 start-page: 3543 issue: 17 year: 2023 ident: 2303_CR13 publication-title: Electronics doi: 10.3390/electronics12173543 – volume: 20 start-page: 6076 issue: 21 year: 2020 ident: 2303_CR2 publication-title: Sensors doi: 10.3390/s20216076 – ident: 2303_CR36 doi: 10.1145/3292500.3330932 – volume: 12 start-page: 5472 issue: 6 year: 2021 ident: 2303_CR11 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2021.3084459 – ident: 2303_CR10 doi: 10.1109/ICCCNT56998.2023.10306417. – ident: 2303_CR21 doi: 10.1145/3447548.3467417 – volume: 262 start-page: 134 year: 2017 ident: 2303_CR27 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.070 – volume: 9 start-page: 17089 issue: 18 year: 2022 ident: 2303_CR1 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2021.3128531 – volume: 29 start-page: 1704 year: 2022 ident: 2303_CR32 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2022.3193903 – ident: 2303_CR37 doi: 10.1109/SYSCON.2018.8369562 – volume: 9 start-page: 13651 issue: 15 year: 2022 ident: 2303_CR4 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3142103 – volume: 31 start-page: 851 issue: 3 year: 2017 ident: 2303_CR7 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-016-0490-x – volume: 15 start-page: 1605 issue: 10 year: 2018 ident: 2303_CR34 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2018.2853705 – ident: 2303_CR28 doi: 10.1007/978-3-031-10464-0_11 – ident: 2303_CR9 doi: 10.1109/PHM2022-London52454.2022.00042 – volume: 10 start-page: 108194 year: 2022 ident: 2303_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3213038 – ident: 2303_CR30 doi: 10.1145/3447548.3467137 – ident: 2303_CR6 doi: 10.1145/3534678.3539117 – ident: 2303_CR38 – ident: 2303_CR14 doi: 10.1145/3534678.3539408 – volume: 12 start-page: 1313 issue: 6 year: 2023 ident: 2303_CR20 publication-title: Electronics doi: 10.3390/electronics12061313 – volume: 71 start-page: 1 year: 2022 ident: 2303_CR19 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2022.3194920 – ident: 2303_CR3 doi: 10.1109/DSAA53316.2021.9564117 – ident: 2303_CR17 – ident: 2303_CR33 doi: 10.1109/ICTC52510.2021.9620808 |
| SSID | ssj0017611 |
| Score | 2.380703 |
| Snippet | Internet-of-things (IoT) applications involve a large number of sensors reporting data as a set of time series. Often these data are related to each other... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2641 |
| SubjectTerms | Algorithms Anomalies Clustering Complexity Computer Science Data analysis Data Mining and Knowledge Discovery Data transmission Database Management Datasets Deviation Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) Internet of Things IT in Business Multivariate analysis Outliers (statistics) Regular Paper Sensors Synthetic data Time series |
| Title | A clustering algorithm for detecting differential deviations in the multivariate time-series IoT data based on sensor relationship |
| URI | https://link.springer.com/article/10.1007/s10115-024-02303-3 https://www.proquest.com/docview/3165972106 |
| Volume | 67 |
| WOSCitedRecordID | wos001378338600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Link [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 0219-3116 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017611 issn: 0219-1377 databaseCode: RSV dateStart: 19990201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgMLBQPkX5kgc2sJTUTmKPFaKCBSEoiC1yY5tWKmnVtP0B_HLu3KQFBEiwJs4psn2-d7rze4ScSZM0tQnQv23GhIwE0zLDIq_STgDgTjLpxSaS21v5_KzuykthRdXtXpUk_Un94bIboBcGMYUhbuaMr5I1CHcSBRvuH54WtQNIzL1OHvgiQz698qrM9zY-h6MlxvxSFvXRpl3_339ukc0SXdLWfDtskxWb75B6pdxAS0feJW8tmg2myJEAlqkevAzH_UnvlQKCpcZiXQGfV-IpcAgM4PFsvooF7ecUYCP1vYgzyLUBrlLUqGe4nW1Bb4Ydip2nFEOkocOcFpAsg-lx1XnX64_2yGP7qnN5zUo1BpaBm06YMQaSMQtprFJR5GJltONRqI3txs6KQGjlIBuzSsSBibmTkeMG2WjCLEy0iPg-qeXD3B4QymUsZShM1OwGwiVxF3IuT0QnnVVa2QYJq0VJs5KqHBUzBumSZBknOYVJTv0kp7xBzhffjOZEHb-OPq7WOi2dtkh5GEdIZhTEDXJRre3y9c_WDv82_IhsNFFF2HeyHZPaZDy1J2Q9m036xfjUb-Z3hjXtpg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB2xsNLuZflY0Hb58oHbrqWkdhL7iBAIBFQIyopb5MY2VCopakp_AL-cGTehgGAluCbOKLI9njea8XsAO8pmbWMj8m9XcKkSyY0qqMirjZcIuLNCBbGJrNNRV1f6rL4UVjXd7k1JMpzUzy67IXrhGFM44WbBxRdYkBixiDH__OLfU-0AE_Ogk4e-yIlPr74q87aNl-FohjFflUVDtDlY_Nx_LsGPGl2y3el2WIY5V67AYqPcwGpH_gkPu6wY3BNHAlpmZnA9HPXHN7cMESyzjuoK9LwRT8FDYICPJ9NVrFi_ZAgbWehFnGCujXCVkUY9p-3sKnY07DLqPGUUIi0blqzCZBlNj5rOu5v-3SpcHux39w55rcbAC3TTMbfWYjLmMI3VOkl8qq3xIomNdb3UOxlJoz1mY07LNLKp8CrxwhIbTVzEmZGJWIP5cli6X8CESpWKpU3avUj6LO1hzhWI6JR32mjXgrhZlLyoqcpJMWOQz0iWaZJznOQ8THIuWvDn6Zu7KVHHf0dvNGud105b5SJOEyIzitIW_G3Wdvb6fWu_PzZ8G74ddk9P8pOjzvE6fG-TonDoatuA-fHo3m3C12Iy7lejrbCxHwGxrfCK |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4BQ2gv68aY6MaYH_YGFkntJPZjBauGmCqksYm3yI3ttVJJqyb0B-yX785NKENsEuLVSZzI58vdpzt_H8BnZbOesRH5tyu4VInkRhVU5NXGS0y4s0IFsYlsOFTX1_ry3in-0O3eliRXZxqIpamsT-bWn9w7-IaZDMf4wimHFlxswgtJjfSE17__vKsjIEgPmnnol5y49ZpjM4_P8XdoWuebD0qkIfIMOs__5tfwqsk6WX-1Td7Ahit3odMqOrDGwd_C7z4rprfEnYBvYWb6a7aY1OMbhpkts47qDTTeiqrgz2GKw8uVdSs2KRmmkyz0KC4Rg2May0i7ntM2dxU7n10x6khlFDotm5WsQhCNUy_ajrzxZL4HPwZfrk6_8kalgRfovjW31iJIcwhvtU4Sn2prvEhiY90o9U5G0miPKM1pmUY2FV4lXlhiqYmLODMyEe9gq5yVbh-YUKlSsbRJbxRJn6UjxGKBoE55p412XYhbA-VFQ2FOShrTfE2-TIuc4yLnYZFz0YWju2fmKwKP_9590No9b5y5ykWcJkRyFKVdOG7tvL7879neP-32T7BzeTbIv50PLz7Ayx4JDYdmtwPYqhe37iNsF8t6Ui0Owx7_A895-W4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+clustering+algorithm+for+detecting+differential+deviations+in+the+multivariate+time-series+IoT+data+based+on+sensor+relationship&rft.jtitle=Knowledge+and+information+systems&rft.au=Idrees%2C+Rabbia&rft.au=Maiti%2C+Ananda&rft.au=Garg%2C+Saurabh&rft.date=2025-03-01&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007%2Fs10115-024-02303-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10115_024_02303_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon |