An ECG classification using DNN classifier with modified pigeon inspired optimizer

Arrhythmia is a form of heart disease in which the regularity of the pulse is changed.ECG data may be analyzed to detect heart-related illnesses or arrhythmias. This paper presents a wrapper feature selection strategy that employs a Pigeon-inspired optimizer(PIO). The modified Pigeon Inspired Optimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications Jg. 81; H. 7; S. 9131 - 9150
Hauptverfasser: Nainwal, Ashish, Kumar, Yatindra, Jha, Bhola
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.03.2022
Springer Nature B.V
Schlagworte:
ISSN:1380-7501, 1573-7721
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Arrhythmia is a form of heart disease in which the regularity of the pulse is changed.ECG data may be analyzed to detect heart-related illnesses or arrhythmias. This paper presents a wrapper feature selection strategy that employs a Pigeon-inspired optimizer(PIO). The modified Pigeon Inspired Optimizer (MPIO) is used to optimize ECG features and the Deep Neural Network (DNN) to classify the ECG signals. In MPIO, the new blood pigeons were introduced to improve the accuracy of the algorithm. Morphological features, wavelet transform coefficients, and R-R interval dynamic features are extracted for classification of ECG signals. After feature extraction, MPIO is used for feature optimization because optimizing the feature plays a key role in developing the model of machine learning, and irrelevant data features degrade model accuracy and enhance model training time. Using optimised features, the DNN classifier is utilised to classify ECG data. The proposed method achieves 99.10% accuracy, 98.90% specificity, and 98.50% sensitivity. Additionally, when compared with other state-of-the-art methodologies, our method of feature selection also exhibited better outcomes.
AbstractList Arrhythmia is a form of heart disease in which the regularity of the pulse is changed.ECG data may be analyzed to detect heart-related illnesses or arrhythmias. This paper presents a wrapper feature selection strategy that employs a Pigeon-inspired optimizer(PIO). The modified Pigeon Inspired Optimizer (MPIO) is used to optimize ECG features and the Deep Neural Network (DNN) to classify the ECG signals. In MPIO, the new blood pigeons were introduced to improve the accuracy of the algorithm. Morphological features, wavelet transform coefficients, and R-R interval dynamic features are extracted for classification of ECG signals. After feature extraction, MPIO is used for feature optimization because optimizing the feature plays a key role in developing the model of machine learning, and irrelevant data features degrade model accuracy and enhance model training time. Using optimised features, the DNN classifier is utilised to classify ECG data. The proposed method achieves 99.10% accuracy, 98.90% specificity, and 98.50% sensitivity. Additionally, when compared with other state-of-the-art methodologies, our method of feature selection also exhibited better outcomes.
Author Nainwal, Ashish
Jha, Bhola
Kumar, Yatindra
Author_xml – sequence: 1
  givenname: Ashish
  orcidid: 0000-0003-4857-4911
  surname: Nainwal
  fullname: Nainwal, Ashish
  email: ashish.nainwal@gkv.ac.in
  organization: Department of ECE, FET Gurukul Kangri University
– sequence: 2
  givenname: Yatindra
  surname: Kumar
  fullname: Kumar, Yatindra
  organization: Department of Electrical Engineering, GBPIET
– sequence: 3
  givenname: Bhola
  surname: Jha
  fullname: Jha, Bhola
  organization: Department of Electrical Engineering, GBPIET
BookMark eNp9kE1LAzEQhoNUsFb_gKcFz9FMPvbjWGqtQqkgeg7ZfNSUdndNtoj-etNWFDz0lBnmfTLDc44GTdtYhK6A3AAhxW0EIJxiQgEDiIpjcYKGIAqGi4LCINWsJLgQBM7QeYwrQiAXlA_R87jJppNZptcqRu-8Vr1vm2wbfbPM7haL34EN2Yfv37JNa3adyTq_tCnpm9j5kPq26_3Gf9lwgU6dWkd7-fOO0Ov99GXygOdPs8fJeI41g6rHRjuW564WNa_qShgDuVKlZrmxBlRJHHG0VqbWhlMNyhZlSbhgueBAXVUrNkLXh3-70L5vbezlqt2GJq2UNOcUgFJOUooeUjq0MQbrZBf8RoVPCUTu3MmDO5ncyb07KRJU_oO07_dm-qD8-jjKDmhMe5qlDX9XHaG-ASvihek
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3518776
crossref_primary_10_1109_ACCESS_2023_3282315
crossref_primary_10_1109_ACCESS_2025_3542435
crossref_primary_10_6000_1929_6029_2025_14_15
crossref_primary_10_1016_j_iswa_2023_200214
Cites_doi 10.1016/j.mehy.2019.109515
10.1016/j.cmpb.2015.12.024
10.1016/j.patrec.2019.02.016
10.1016/j.eswa.2020.113364
10.1016/j.eswa.2010.04.087
10.1109/TBME.2011.2112658
10.1016/j.compbiomed.2018.06.002
10.1016/j.neucom.2015.04.063
10.1108/IJICC-02-2014-0005
10.1016/j.jksuci.2018.02.005
10.1109/PROC.1981.12095
10.1007/s00034-015-0068-7
10.1016/j.cmpb.2013.12.002
10.1016/j.advengsoft.2016.01.008
10.1109/TBME.1985.325532
10.1016/j.bspc.2015.10.008
10.1016/j.ins.2018.06.062
10.1007/s10916-018-1083-6
10.1016/j.future.2018.03.057
10.1016/j.ins.2016.01.082
10.1007/s11760-012-0339-8
10.1038/s41598-016-0028-x
10.1016/j.compbiomed.2018.03.016
10.1016/j.artmed.2020.101843
10.1016/j.amc.2009.03.090
10.1016/j.ijcac.2015.12.001
10.1016/j.eswa.2011.08.025
10.1109/51.932724
10.1016/j.bspc.2018.08.007
10.1016/j.bspc.2011.07.001
10.1109/TBME.2009.2013934
10.1109/TBME.2013.2290800
10.1109/MCI.2006.329691
10.1109/TBME.2011.2113395
10.17678/beuscitech.344953
10.1016/j.jelectrocard.2019.11.046
10.1007/BF02637023
10.1016/j.dsp.2008.09.002
10.1016/j.neunet.2018.01.009
10.1016/j.eswax.2019.100003
10.1007/978-981-13-9263-4_1
10.5334/jors.bi
10.1145/3278576.3278598
10.1007/978-0-387-33532-2_16
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-021-11594-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 9150
ExternalDocumentID 10_1007_s11042_021_11594_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-dcf366fb5b49b95dd16aa8c36ded1a80f0f2badbcd42c1ae788045365412f9ba3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000740429700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Wed Nov 05 15:24:07 EST 2025
Sat Nov 29 06:20:14 EST 2025
Tue Nov 18 21:50:02 EST 2025
Fri Feb 21 02:47:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Deep neural network
Wavelet transform
Heartbeat classification
PIO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-dcf366fb5b49b95dd16aa8c36ded1a80f0f2badbcd42c1ae788045365412f9ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4857-4911
PQID 2642112240
PQPubID 54626
PageCount 20
ParticipantIDs proquest_journals_2642112240
crossref_primary_10_1007_s11042_021_11594_5
crossref_citationtrail_10_1007_s11042_021_11594_5
springer_journals_10_1007_s11042_021_11594_5
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Bhagyalakshmi, Pujeri, Devanagavi (CR6) 2021; 33
Ince, Kiranyaz, Gabbouj (CR21) 2009; 56
Elhaj, Salim, Harris, Swee, Ahmed (CR18) 2016; 127
CR19
Lake (CR28) 1981; 69
Choi, Seo, Lee, Kim (CR9) 2020; 105
Li, Feng, Cao, Li, Liang, Chen (CR29) 2016; 35
Moody, Mark (CR35) 2001; 20
CR12
Alonso-Atienza, Morgado, Fernandez-Martinez, García-Alberola, Rojo-Alvarez (CR4) 2013; 61
Karaboga, Akay (CR23) 2009; 214
Singh (CR42) 2015; 167
Pan, Tompkins (CR38) 1985; 3
Wang, Zhang, Liu, Yang, Fu, Wang, Zhang (CR44) 2019; 501
Chandrakar, Yadav, Chandra (CR8) 2013; 2
Deng, Wang, Tang, Zheng (CR13) 2018; 100
Homaeinezhad, Atyabi, Tavakkoli, Toosi, Ghaffari, Ebrahimpour (CR20) 2012; 39
Jiang, Zhang, Pi, Dai (CR22) 2019; 1
Mondéjar-Guerra, Novo, Rouco, Penedo, Ortega (CR34) 2019; 47
Al Rahhal, Bazi, AlHichri, Alajlan, Melgani, Yager (CR1) 2016; 345
Alajlan, Bazi, Melgani, Malek, Bencherif (CR2) 2014; 8
Oh, Ng, San Tan, Acharya (CR37) 2018; 102
Laguna, Jané, Olmos, Thakor, Rix, Caminal (CR27) 1996; 34
Mirjalili, Lewis (CR33) 2016; 95
Li, Zhou, Wan, Li, Mou (CR31) 2020; 58
Duan, Qiao (CR17) 2014; 7
Li, Yuan, Ma, Cui, Cao (CR30) 2017; 7
Übeyli (CR43) 2009; 19
Diker, Avci, Tanyildizi, Gedikpinar (CR15) 2020; 136
Korürek, Doğan (CR26) 2010; 37
CR24
Kora, Krishna (CR25) 2016; 2
Alcaraz, Sandberg, Sörnmo, Rieta (CR3) 2011; 58
Daqrouq, Alkhateeb, Ajour, Morfeq (CR11) 2014; 113
Celin, Vasanth (CR7) 2018; 42
Neggaz, Houssein, Hussain (CR36) 2020; 152
Sannino, De Pietro (CR39) 2018; 86
CR41
Shadmand, Mashoufi (CR40) 2016; 25
Baloglu, Talo, Yildirim, San Tan, Acharya (CR5) 2019; 122
Yildirim (CR45) 2018; 96
Diker, Cömert, Engin (CR14) 2017; 7
Daamouche, Hamami, Alajlan, Melgani (CR10) 2012; 7
Mar, Zaunseder, Martínez, Llamedo, Poll (CR32) 2011; 58
Dorigo, Birattari, Stutzle (CR16) 2006; 1
N Alajlan (11594_CR2) 2014; 8
V Bhagyalakshmi (11594_CR6) 2021; 33
P Kora (11594_CR25) 2016; 2
11594_CR41
V Mondéjar-Guerra (11594_CR34) 2019; 47
B Chandrakar (11594_CR8) 2013; 2
H Li (11594_CR29) 2016; 35
M Deng (11594_CR13) 2018; 100
UB Baloglu (11594_CR5) 2019; 122
N Neggaz (11594_CR36) 2020; 152
M Choi (11594_CR9) 2020; 105
S Celin (11594_CR7) 2018; 42
FA Elhaj (11594_CR18) 2016; 127
11594_CR19
R Lake (11594_CR28) 1981; 69
F Alonso-Atienza (11594_CR4) 2013; 61
T Ince (11594_CR21) 2009; 56
Z Li (11594_CR31) 2020; 58
MM Al Rahhal (11594_CR1) 2016; 345
11594_CR12
J Pan (11594_CR38) 1985; 3
H Li (11594_CR30) 2017; 7
T Mar (11594_CR32) 2011; 58
H Duan (11594_CR17) 2014; 7
S Shadmand (11594_CR40) 2016; 25
M Korürek (11594_CR26) 2010; 37
P Laguna (11594_CR27) 1996; 34
R Alcaraz (11594_CR3) 2011; 58
ED Übeyli (11594_CR43) 2009; 19
A Diker (11594_CR15) 2020; 136
M Dorigo (11594_CR16) 2006; 1
SL Oh (11594_CR37) 2018; 102
GB Moody (11594_CR35) 2001; 20
G Wang (11594_CR44) 2019; 501
MR Homaeinezhad (11594_CR20) 2012; 39
S Mirjalili (11594_CR33) 2016; 95
D Karaboga (11594_CR23) 2009; 214
YN Singh (11594_CR42) 2015; 167
A Daamouche (11594_CR10) 2012; 7
J Jiang (11594_CR22) 2019; 1
K Daqrouq (11594_CR11) 2014; 113
G Sannino (11594_CR39) 2018; 86
A Diker (11594_CR14) 2017; 7
11594_CR24
Ö Yildirim (11594_CR45) 2018; 96
References_xml – volume: 136
  start-page: 109515
  year: 2020
  ident: CR15
  article-title: A novel ecg signal classification method using dea-elm
  publication-title: Medical Hypotheses
  doi: 10.1016/j.mehy.2019.109515
– volume: 127
  start-page: 52
  year: 2016
  end-page: 63
  ident: CR18
  article-title: Arrhythmia recognition and classification using combined linear and nonlinear features of ecg signals
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2015.12.024
– volume: 122
  start-page: 23
  year: 2019
  end-page: 30
  ident: CR5
  article-title: Classification of myocardial infarction with multi-lead ecg signals and deep cnn
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.02.016
– volume: 152
  start-page: 113364
  year: 2020
  ident: CR36
  article-title: An efficient henry gas solubility optimization for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113364
– volume: 37
  start-page: 7563
  issue: 12
  year: 2010
  end-page: 7569
  ident: CR26
  article-title: Ecg beat classification using particle swarm optimization and radial basis function neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.04.087
– volume: 58
  start-page: 1441
  issue: 5
  year: 2011
  end-page: 1449
  ident: CR3
  article-title: Classification of paroxysmal and persistent atrial fibrillation in ambulatory ecg recordings
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2112658
– ident: CR12
– volume: 102
  start-page: 278
  year: 2018
  end-page: 287
  ident: CR37
  article-title: Automated diagnosis of arrhythmia using combination of cnn and lstm techniques with variable length heart beats
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.06.002
– volume: 167
  start-page: 322
  year: 2015
  end-page: 335
  ident: CR42
  article-title: Human recognition using fishers discriminant analysis of heartbeat interval features and ecg morphology
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.063
– volume: 7
  start-page: 24
  issue: 1
  year: 2014
  end-page: 37
  ident: CR17
  article-title: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning
  publication-title: International Journal of Intelligent Computing and Cybernetics
  doi: 10.1108/IJICC-02-2014-0005
– volume: 33
  start-page: 54
  issue: 1
  year: 2021
  end-page: 67
  ident: CR6
  article-title: Gb-svnn: genetic bat assisted support vector neural network for arrhythmia classification using ecg signals
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2018.02.005
– volume: 69
  start-page: 856
  issue: 7
  year: 1981
  end-page: 857
  ident: CR28
  article-title: Programs for digital signal processing
  publication-title: Proceedings of the IEEE
  doi: 10.1109/PROC.1981.12095
– volume: 35
  start-page: 339
  issue: 1
  year: 2016
  end-page: 352
  ident: CR29
  article-title: A new ecg signal classification based on wpd and apen feature extraction
  publication-title: Circuits, Systems, and Signal Processing
  doi: 10.1007/s00034-015-0068-7
– volume: 113
  start-page: 919
  issue: 3
  year: 2014
  end-page: 926
  ident: CR11
  article-title: Neural network and wavelet average framing percentage energy for atrial fibrillation classification
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2013.12.002
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR33
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 3
  start-page: 230
  year: 1985
  end-page: 236
  ident: CR38
  article-title: A real-time qrs detection algorithm
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.1985.325532
– volume: 25
  start-page: 12
  year: 2016
  end-page: 23
  ident: CR40
  article-title: A new personalized ecg signal classification algorithm using block-based neural network and particle swarm optimization
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2015.10.008
– volume: 501
  start-page: 523
  year: 2019
  end-page: 542
  ident: CR44
  article-title: A global and updatable ecg beat classification system based on recurrent neural networks and active learning
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.06.062
– volume: 42
  start-page: 1
  issue: 12
  year: 2018
  end-page: 11
  ident: CR7
  article-title: Ecg signal classification using various machine learning techniques
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-018-1083-6
– volume: 86
  start-page: 446
  year: 2018
  end-page: 455
  ident: CR39
  article-title: A deep learning approach for ecg-based heartbeat classification for arrhythmia detection
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.03.057
– volume: 345
  start-page: 340
  year: 2016
  end-page: 354
  ident: CR1
  article-title: Deep learning approach for active classification of electrocardiogram signals
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2016.01.082
– volume: 8
  start-page: 931
  issue: 5
  year: 2014
  end-page: 942
  ident: CR2
  article-title: Detection of premature ventricular contraction arrhythmias in electrocardiogram signals with kernel methods
  publication-title: Signal, Image and Video Processing
  doi: 10.1007/s11760-012-0339-8
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 12
  ident: CR30
  article-title: Genetic algorithm for the optimization of features and neural networks in ecg signals classification
  publication-title: Scientific Reports
  doi: 10.1038/s41598-016-0028-x
– volume: 96
  start-page: 189
  year: 2018
  end-page: 202
  ident: CR45
  article-title: A novel wavelet sequence based on deep bidirectional lstm network model for ecg signal classification
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.03.016
– volume: 105
  start-page: 101843
  year: 2020
  ident: CR9
  article-title: Fuzzy support vector machine-based personalizing method to address the inter-subject variance problem of physiological signals in a driver monitoring system
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2020.101843
– ident: CR19
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  end-page: 132
  ident: CR23
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.03.090
– volume: 2
  start-page: 44
  issue: 1
  year: 2016
  end-page: 48
  ident: CR25
  article-title: Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block
  publication-title: International Journal of the Cardiovascular Academy
  doi: 10.1016/j.ijcac.2015.12.001
– volume: 39
  start-page: 2047
  issue: 2
  year: 2012
  end-page: 2058
  ident: CR20
  article-title: Ecg arrhythmia recognition via a neuro-svm-knn hybrid classifier with virtual qrs image-based geometrical features
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.08.025
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  end-page: 50
  ident: CR35
  article-title: The impact of the mit-bih arrhythmia database
  publication-title: IEEE Engineering in Medicine and Biology Magazine
  doi: 10.1109/51.932724
– volume: 47
  start-page: 41
  year: 2019
  end-page: 48
  ident: CR34
  article-title: Heartbeat classification fusing temporal and morphological information of ecgs via ensemble of classifiers
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2018.08.007
– volume: 7
  start-page: 342
  issue: 4
  year: 2012
  end-page: 349
  ident: CR10
  article-title: A wavelet optimization approach for ecg signal classification
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2011.07.001
– volume: 56
  start-page: 1415
  issue: 5
  year: 2009
  end-page: 1426
  ident: CR21
  article-title: A generic and robust system for automated patient-specific classification of ecg signals
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2009.2013934
– volume: 61
  start-page: 832
  issue: 3
  year: 2013
  end-page: 840
  ident: CR4
  article-title: Detection of life-threatening arrhythmias using feature selection and support vector machines
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2290800
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  end-page: 39
  ident: CR16
  article-title: Ant colony optimization
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2006.329691
– volume: 58
  start-page: 2168
  issue: 8
  year: 2011
  end-page: 2177
  ident: CR32
  article-title: Optimization of ecg classification by means of feature selection
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2011.2113395
– volume: 7
  start-page: 132
  issue: 2
  year: 2017
  end-page: 139
  ident: CR14
  article-title: A diagnostic model for identification of myocardial infarction from electrocardiography signals
  publication-title: Bitlis Eren University Journal of Science and Technology
  doi: 10.17678/beuscitech.344953
– volume: 58
  start-page: 105
  year: 2020
  end-page: 112
  ident: CR31
  article-title: Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram
  publication-title: Journal of Electrocardiology
  doi: 10.1016/j.jelectrocard.2019.11.046
– volume: 34
  start-page: 58
  issue: 1
  year: 1996
  end-page: 68
  ident: CR27
  article-title: Adaptive estimation of qrs complex wave features of ecg signal by the hermite model
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/BF02637023
– volume: 19
  start-page: 320
  issue: 2
  year: 2009
  end-page: 329
  ident: CR43
  article-title: Combining recurrent neural networks with eigenvector methods for classification of ecg beats
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2008.09.002
– ident: CR41
– ident: CR24
– volume: 2
  start-page: 1354
  issue: 3
  year: 2013
  end-page: 1357
  ident: CR8
  article-title: A survey of noise removal techniques for ECG signals
  publication-title: International Journal of Advanced Research in Computer and Communication Engineering
– volume: 100
  start-page: 70
  year: 2018
  end-page: 83
  ident: CR13
  article-title: Extracting cardiac dynamics within ecg signal for human identification and cardiovascular diseases classification
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.01.009
– volume: 1
  start-page: 100003
  year: 2019
  ident: CR22
  article-title: A novel multi-module neural network system for imbalanced heartbeats classification
  publication-title: Expert Systems with Applications: X
  doi: 10.1016/j.eswax.2019.100003
– volume: 501
  start-page: 523
  year: 2019
  ident: 11594_CR44
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.06.062
– volume: 105
  start-page: 101843
  year: 2020
  ident: 11594_CR9
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2020.101843
– ident: 11594_CR24
  doi: 10.1007/978-981-13-9263-4_1
– volume: 1
  start-page: 100003
  year: 2019
  ident: 11594_CR22
  publication-title: Expert Systems with Applications: X
  doi: 10.1016/j.eswax.2019.100003
– volume: 7
  start-page: 24
  issue: 1
  year: 2014
  ident: 11594_CR17
  publication-title: International Journal of Intelligent Computing and Cybernetics
  doi: 10.1108/IJICC-02-2014-0005
– volume: 122
  start-page: 23
  year: 2019
  ident: 11594_CR5
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.02.016
– volume: 39
  start-page: 2047
  issue: 2
  year: 2012
  ident: 11594_CR20
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.08.025
– volume: 152
  start-page: 113364
  year: 2020
  ident: 11594_CR36
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113364
– volume: 113
  start-page: 919
  issue: 3
  year: 2014
  ident: 11594_CR11
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2013.12.002
– volume: 102
  start-page: 278
  year: 2018
  ident: 11594_CR37
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.06.002
– volume: 47
  start-page: 41
  year: 2019
  ident: 11594_CR34
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2018.08.007
– volume: 136
  start-page: 109515
  year: 2020
  ident: 11594_CR15
  publication-title: Medical Hypotheses
  doi: 10.1016/j.mehy.2019.109515
– volume: 7
  start-page: 342
  issue: 4
  year: 2012
  ident: 11594_CR10
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2011.07.001
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 11594_CR30
  publication-title: Scientific Reports
  doi: 10.1038/s41598-016-0028-x
– volume: 58
  start-page: 2168
  issue: 8
  year: 2011
  ident: 11594_CR32
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2011.2113395
– volume: 8
  start-page: 931
  issue: 5
  year: 2014
  ident: 11594_CR2
  publication-title: Signal, Image and Video Processing
  doi: 10.1007/s11760-012-0339-8
– volume: 7
  start-page: 132
  issue: 2
  year: 2017
  ident: 11594_CR14
  publication-title: Bitlis Eren University Journal of Science and Technology
  doi: 10.17678/beuscitech.344953
– volume: 42
  start-page: 1
  issue: 12
  year: 2018
  ident: 11594_CR7
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-018-1083-6
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 11594_CR16
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2006.329691
– volume: 2
  start-page: 44
  issue: 1
  year: 2016
  ident: 11594_CR25
  publication-title: International Journal of the Cardiovascular Academy
  doi: 10.1016/j.ijcac.2015.12.001
– volume: 100
  start-page: 70
  year: 2018
  ident: 11594_CR13
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.01.009
– volume: 96
  start-page: 189
  year: 2018
  ident: 11594_CR45
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.03.016
– volume: 33
  start-page: 54
  issue: 1
  year: 2021
  ident: 11594_CR6
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2018.02.005
– volume: 25
  start-page: 12
  year: 2016
  ident: 11594_CR40
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2015.10.008
– volume: 2
  start-page: 1354
  issue: 3
  year: 2013
  ident: 11594_CR8
  publication-title: International Journal of Advanced Research in Computer and Communication Engineering
– volume: 127
  start-page: 52
  year: 2016
  ident: 11594_CR18
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2015.12.024
– volume: 86
  start-page: 446
  year: 2018
  ident: 11594_CR39
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.03.057
– ident: 11594_CR41
  doi: 10.5334/jors.bi
– volume: 19
  start-page: 320
  issue: 2
  year: 2009
  ident: 11594_CR43
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2008.09.002
– volume: 69
  start-page: 856
  issue: 7
  year: 1981
  ident: 11594_CR28
  publication-title: Proceedings of the IEEE
  doi: 10.1109/PROC.1981.12095
– volume: 58
  start-page: 1441
  issue: 5
  year: 2011
  ident: 11594_CR3
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2112658
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 11594_CR35
  publication-title: IEEE Engineering in Medicine and Biology Magazine
  doi: 10.1109/51.932724
– volume: 345
  start-page: 340
  year: 2016
  ident: 11594_CR1
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2016.01.082
– ident: 11594_CR12
  doi: 10.1145/3278576.3278598
– volume: 167
  start-page: 322
  year: 2015
  ident: 11594_CR42
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.063
– volume: 37
  start-page: 7563
  issue: 12
  year: 2010
  ident: 11594_CR26
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.04.087
– volume: 58
  start-page: 105
  year: 2020
  ident: 11594_CR31
  publication-title: Journal of Electrocardiology
  doi: 10.1016/j.jelectrocard.2019.11.046
– volume: 61
  start-page: 832
  issue: 3
  year: 2013
  ident: 11594_CR4
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2290800
– volume: 3
  start-page: 230
  year: 1985
  ident: 11594_CR38
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.1985.325532
– volume: 56
  start-page: 1415
  issue: 5
  year: 2009
  ident: 11594_CR21
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2009.2013934
– ident: 11594_CR19
  doi: 10.1007/978-0-387-33532-2_16
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 11594_CR23
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.03.090
– volume: 34
  start-page: 58
  issue: 1
  year: 1996
  ident: 11594_CR27
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/BF02637023
– volume: 35
  start-page: 339
  issue: 1
  year: 2016
  ident: 11594_CR29
  publication-title: Circuits, Systems, and Signal Processing
  doi: 10.1007/s00034-015-0068-7
– volume: 95
  start-page: 51
  year: 2016
  ident: 11594_CR33
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
SSID ssj0016524
Score 2.3129947
Snippet Arrhythmia is a form of heart disease in which the regularity of the pulse is changed.ECG data may be analyzed to detect heart-related illnesses or...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9131
SubjectTerms 1197: Advances in Soft Computing Techniques for Visual Information-based Systems
Accuracy
Algorithms
Arrhythmia
Artificial neural networks
Classifiers
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Feature extraction
Feature selection
Heart diseases
Machine learning
Model accuracy
Multimedia Information Systems
Optimization
Signal classification
Special Purpose and Application-Based Systems
Wavelet transforms
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60etCD1apYrZKDNw3u-3GSUlsFYRFR6G3J5lEKdre21YO_3sw221VBLx7DJGHZL5NMMo8P4NxVoRdxrNyq713UE9ylcYZ3HuFH3PUC5QaiJJsIkyQaDuMH8-A2N2GV1Z5YbtSi4PhGfuVgRia6gazr6StF1ij0rhoKjXXY0KJSMe9DuvIiBL4htY0sqk9G2yTNLFPnbExMwQAFbRPFHvW_H0y1tfnDQVqeO4Pmf794F3aMxUm6yyWyB2syb0GzYnMgRrlbsP2lNOE-PHZz0u_dEo7WNYYTlQgSDJMfkZskWQn0FPiWSyaFwJYg0_FI6p7jHH34ul3oTWky_pCzA3ge9J96d9TwL1CuFXNBBddIBSrzMy_OYl8IO2BMIxgIKWwWWcpSTsZExoXncJtJfZvWBqKLzOKOijPmHkIjL3J5BERFTNuhsRJcKyXPvCiIsayQDIXLpFBeG-zq56fcFCdHjoyXtC6rjIClGrC0BCz123CxGjNdlub4s3enQik1ajpPa4jacFnhXIt_n-3479lOYMvBNIkyVq0DjcXsTZ7CJn9fjOezs3KRfgK7QOsH
  priority: 102
  providerName: ProQuest
Title An ECG classification using DNN classifier with modified pigeon inspired optimizer
URI https://link.springer.com/article/10.1007/s11042-021-11594-5
https://www.proquest.com/docview/2642112240
Volume 81
WOSCitedRecordID wos000740429700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M0C
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: K7-
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 7WY
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: P5Z
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M2O
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Link Journals
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ6IeNCDD9SID7IHb9qk78dRETQxVoIv9NK0-yAkUgigB3-9M6UFNWqil002u900Mzs7szuPD-DQUp7tc6rcivcuzRbc0oKE7jzC8bllu8pyRQY24YWh3-kErTwpbFxEuxcuyeyknie7GZRKQiEFaMUEtuaUoIzqziHAhvbN_cx34Do5lK2va6gPjTxV5vs1PqujuY35xS2aaZvm2v_-cx1Wc-uSnUy3wwYsyLQCawVyA8sFuQIrH8oQbkL7JGWN-jnjZElT6FDGLUYh8V12FoazAVyC3m1ZfyCoJ9iw15U4s5eSvx77AzyA-r03OdqCu2bjtn6h5VgLGkchnGiCI1dclTiJHSSBI4ThxjFyyxVSGLGvK12ZSSwSLmyTG7HEmzMagxahiJsqSGJrGxbTQSp3gCk_RpszUIKjAPLE9t2ASghJT1ixFMquglGQPOJ5IXLCw3iO5iWUiYQRkjDKSBg5VTiafTOcluH4dfZ-wckoF8lxZFJKL_kR9SocF5ybD_-82u7fpu_BskkpElmc2j4sTkYv8gCW-OukNx7VoOQ9PNagfNoIW23sXXoatld6nVrzGtuW81TLNvQ7LPPnrQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qFdSDj6pYrboHPWmweTY5iJTWF2oQqSBeYrKPUrBpbauiP8rf6EyatCrozYPHZZPNY7-dndl5fADbpqpYLqfKrWh3aZbgpuZFZPMI2-Wm5SjTEQnZRMX33dtb7yoH71kuDIVVZjIxEdSiw-mMfN-gjExyA5UPu48asUaRdzWj0BjC4ly-vqDJ1j84q-P87hjG8VGjdqqlrAIaR7gNNMHx-Y6K7MjyIs8WQnfCEN_LEVLooVtWZWVEoYi4sAyuhxJtRFR7TOLLNpQXhSaOOwGTCXUXrp8r-27ktXDslETXLWu4E-tpks4wVU-nRBgKiEAdzLM0--tGONZuvzlkk33ueP6__aEFmEs1alYdLoFFyMm4APMZWwVLhVcBZj-VXlyC62rMjmonjJP1QOFSCUIZpQE0Wd33Rx04BJ1Vs3ZHUEuwbqsp8cpWTDEK2O6g0G233mRvGW7-5DtXIB93YrkKTLkh6tmeEhyFDo8s1_GobJKsCDOUQllF0LPJDnhafJ04QB6CcdloAkiAAAkSgAR2EXZH93SHpUd-vbqUoSJIxVA_GEOiCHsZrsbdP4-29vtoWzB92ri8CC7O_PN1mDEoJSSJyytBftB7khswxZ8HrX5vM1kgDO7_Gm8fKRBLYA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bL8RAFD5ZlwgP7mJZzANPNLbttNs-iIi1CEqExFu1c5FN6K7dRfhpfp1zetlFwpsHj81MJ9PON2fOmXP5ANZtXeOeoMqtaHcZXArb8GOyeaTjCZu72nZlSjZRCwLv5sa_KMF7kQtDYZWFTEwFtWwJuiPftigjk9xA1W2dh0Vc1Bu77UeDGKTI01rQaWQQOVGvL2i-dXeO67jWG5bVOLjaPzJyhgFDIPR6hhQ4F1fHTsz92HekNN0owjm6Ukkz8qq6qq04krGQ3BJmpNBeRBXIJu5sS_txZOO4QzBS45k5d2ad9z0YrpMT6npVA09lM0_YydL2TEqKoeAI1Md8bjhfD8WBpvvNOZueeY2p__y3pmEy17TZXrY1ZqCkklmYKlgsWC7UZmHiU0nGObjcS9jB_iETZFVQGFWKXEbpAXesHgT9BhyC7rDZQ0vSk2Tt5p3Cns2EYhfwuYXC-KH5pjrzcP0n37kAw0krUYvAtBeh_u1rKVAYiZh7rk_llFRN2pGSmpfBLBY-FHlRduIGuQ8H5aQJLCGCJUzBEjpl2Oy_085Kkvzau1IgJMzFUzccwKMMWwXGBs0_j7b0-2hrMIYwC0-Pg5NlGLcoUyQN16vAcK_zpFZgVDz3mt3OarpXGNz-Ndw-AC8WU_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ECG+classification+using+DNN+classifier+with+modified+pigeon+inspired+optimizer&rft.jtitle=Multimedia+tools+and+applications&rft.au=Nainwal%2C+Ashish&rft.au=Kumar%2C+Yatindra&rft.au=Jha%2C+Bhola&rft.date=2022-03-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=7&rft.spage=9131&rft.epage=9150&rft_id=info:doi/10.1007%2Fs11042-021-11594-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_021_11594_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon