An adaptive PCE-HDMR metamodeling approach for high-dimensional problems

Metamodel-based high-dimensional model representation (HDMR) has recently been developed as a promising tool for approximating high-dimensional and computationally expensive problems in engineering design and optimization. However, current stand-alone Cut-HDMRs usually come across the problem of pre...

Full description

Saved in:
Bibliographic Details
Published in:Structural and multidisciplinary optimization Vol. 64; no. 1; pp. 141 - 162
Main Authors: Yue, Xinxin, Zhang, Jian, Gong, Weijie, Luo, Min, Duan, Libin
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2021
Springer Nature B.V
Subjects:
ISSN:1615-147X, 1615-1488
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metamodel-based high-dimensional model representation (HDMR) has recently been developed as a promising tool for approximating high-dimensional and computationally expensive problems in engineering design and optimization. However, current stand-alone Cut-HDMRs usually come across the problem of prediction uncertainty while combining an ensemble of metamodels with Cut-HDMR results in an implicit and inefficient process in response approximation. To this end, a novel stand-alone Cut-HDMR is proposed in this article by taking advantage of the explicit polynomial chaos expansion (PCE) and hierarchical Cut-HDMR (named PCE-HDMR). An intelligent dividing rectangles (DIRECT) sampling method is adopted to adaptively refine the model. The novelty of the PCE-HDMR is that the proposed multi-hierarchical algorithm structure by integrating PCE with Cut-HDMR can efficiently and robustly provide simple and explicit approximations for a wide class of high-dimensional problems. An analytical function is first used to illustrate the modeling principles and procedures of the algorithm, and a comprehensive comparison between the proposed PCE-HDMR and other well-established Cut-HDMRs is then made on fourteen representative mathematical functions and five engineering examples with a wide scope of dimensionalities. The results show that the proposed PCE-HDMR has much superior accuracy and robustness in terms of both global and local error metrics while requiring fewer number of samples, and its superiority becomes more significant for polynomial-like functions, higher-dimensional problems, and relatively larger PCE degrees.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-021-02866-7