An adaptive PCE-HDMR metamodeling approach for high-dimensional problems
Metamodel-based high-dimensional model representation (HDMR) has recently been developed as a promising tool for approximating high-dimensional and computationally expensive problems in engineering design and optimization. However, current stand-alone Cut-HDMRs usually come across the problem of pre...
Gespeichert in:
| Veröffentlicht in: | Structural and multidisciplinary optimization Jg. 64; H. 1; S. 141 - 162 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1615-147X, 1615-1488 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Metamodel-based high-dimensional model representation (HDMR) has recently been developed as a promising tool for approximating high-dimensional and computationally expensive problems in engineering design and optimization. However, current stand-alone Cut-HDMRs usually come across the problem of prediction uncertainty while combining an ensemble of metamodels with Cut-HDMR results in an implicit and inefficient process in response approximation. To this end, a novel stand-alone Cut-HDMR is proposed in this article by taking advantage of the explicit polynomial chaos expansion (PCE) and hierarchical Cut-HDMR (named PCE-HDMR). An intelligent dividing rectangles (DIRECT) sampling method is adopted to adaptively refine the model. The novelty of the PCE-HDMR is that the proposed multi-hierarchical algorithm structure by integrating PCE with Cut-HDMR can efficiently and robustly provide simple and explicit approximations for a wide class of high-dimensional problems. An analytical function is first used to illustrate the modeling principles and procedures of the algorithm, and a comprehensive comparison between the proposed PCE-HDMR and other well-established Cut-HDMRs is then made on fourteen representative mathematical functions and five engineering examples with a wide scope of dimensionalities. The results show that the proposed PCE-HDMR has much superior accuracy and robustness in terms of both global and local error metrics while requiring fewer number of samples, and its superiority becomes more significant for polynomial-like functions, higher-dimensional problems, and relatively larger PCE degrees. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1615-147X 1615-1488 |
| DOI: | 10.1007/s00158-021-02866-7 |