Scalable Online Convolutional Sparse Coding

Convolutional sparse coding (CSC) improves sparse coding by learning a shift-invariant dictionary from the data. However, most existing CSC algorithms operate in the batch mode and are computationally expensive. In this paper, we alleviate this problem by online learning. The key is a reformulation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 27; číslo 10; s. 4850 - 4859
Hlavní autoři: Yaqing Wang, Quanming Yao, Kwok, James T., Ni, Lionel M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.10.2018
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Convolutional sparse coding (CSC) improves sparse coding by learning a shift-invariant dictionary from the data. However, most existing CSC algorithms operate in the batch mode and are computationally expensive. In this paper, we alleviate this problem by online learning. The key is a reformulation of the CSC objective so that convolution can be handled easily in the frequency domain, and much smaller history matrices are needed. To solve the resultant optimization problem, we use the alternating direction method of multipliers (ADMMs), and its subproblems have efficient closed-form solutions. Theoretical analysis shows that the learned dictionary converges to a stationary point of the optimization problem. Extensive experiments are performed on both the standard CSC benchmark data sets and much larger data sets such as the ImageNet. Results show that the proposed algorithm outperforms the state-of-the-art batch and online CSC methods. It is more scalable, has faster convergence, and better reconstruction performance.
AbstractList Convolutional sparse coding (CSC) improves sparse coding by learning a shift-invariant dictionary from the data. However, most existing CSC algorithms operate in the batch mode and are computationally expensive. In this paper, we alleviate this problem by online learning. The key is a reformulation of the CSC objective so that convolution can be handled easily in the frequency domain, and much smaller history matrices are needed. To solve the resultant optimization problem, we use the alternating direction method of multipliers (ADMMs), and its subproblems have efficient closed-form solutions. Theoretical analysis shows that the learned dictionary converges to a stationary point of the optimization problem. Extensive experiments are performed on both the standard CSC benchmark data sets and much larger data sets such as the ImageNet. Results show that the proposed algorithm outperforms the state-of-the-art batch and online CSC methods. It is more scalable, has faster convergence, and better reconstruction performance.Convolutional sparse coding (CSC) improves sparse coding by learning a shift-invariant dictionary from the data. However, most existing CSC algorithms operate in the batch mode and are computationally expensive. In this paper, we alleviate this problem by online learning. The key is a reformulation of the CSC objective so that convolution can be handled easily in the frequency domain, and much smaller history matrices are needed. To solve the resultant optimization problem, we use the alternating direction method of multipliers (ADMMs), and its subproblems have efficient closed-form solutions. Theoretical analysis shows that the learned dictionary converges to a stationary point of the optimization problem. Extensive experiments are performed on both the standard CSC benchmark data sets and much larger data sets such as the ImageNet. Results show that the proposed algorithm outperforms the state-of-the-art batch and online CSC methods. It is more scalable, has faster convergence, and better reconstruction performance.
Convolutional sparse coding (CSC) improves sparse coding by learning a shift-invariant dictionary from the data. However, most existing CSC algorithms operate in the batch mode and are computationally expensive. In this paper, we alleviate this problem by online learning. The key is a reformulation of the CSC objective so that convolution can be handled easily in the frequency domain, and much smaller history matrices are needed. To solve the resultant optimization problem, we use the alternating direction method of multipliers (ADMMs), and its subproblems have efficient closed-form solutions. Theoretical analysis shows that the learned dictionary converges to a stationary point of the optimization problem. Extensive experiments are performed on both the standard CSC benchmark data sets and much larger data sets such as the ImageNet. Results show that the proposed algorithm outperforms the state-of-the-art batch and online CSC methods. It is more scalable, has faster convergence, and better reconstruction performance.
Author Yaqing Wang
Quanming Yao
Ni, Lionel M.
Kwok, James T.
Author_xml – sequence: 1
  surname: Yaqing Wang
  fullname: Yaqing Wang
  email: ywangcy@ust.hk
  organization: Dept. of Comput. Sci. & Eng., Hong Kong Univ. of Sci. & Technol. Univ., Hong Kong, China
– sequence: 2
  surname: Quanming Yao
  fullname: Quanming Yao
  organization: Dept. of Comput. Sci. & Eng., Hong Kong Univ. of Sci. & Technol. Univ., Hong Kong, China
– sequence: 3
  givenname: James T.
  surname: Kwok
  fullname: Kwok, James T.
  email: jamesk@cse.ust.hk
  organization: Dept. of Comput. Sci. & Eng., Hong Kong Univ. of Sci. & Technol. Univ., Hong Kong, China
– sequence: 4
  givenname: Lionel M.
  surname: Ni
  fullname: Ni, Lionel M.
  organization: Dept. of Comput. & Inf. Sci., Univ. of Macau, Macau, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29969396$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1Lw0AQxRep2A-9C4L0KEjqfmWTPUrxo1Co0HpeJpuprGw3NZsI_vcmtHrw4GmG4fce896YDEIVkJBLRmeMUX23WbzMOGX5jOeSs5SfkBHTkiWUSj7odppmScakHpJxjO-UMpkydUaGXGulhVYjcru24KHwOF0F7wJO51X4rHzbuCqAn673UMf-WLrwdk5Ot-AjXhznhLw-Pmzmz8ly9bSY3y8TK5hukrJAKIUoc5bqDBQVLC8xlwBlITDjGUUBOssBLdWFtMIWUnXfZALoVhbAxYTcHHz3dfXRYmzMzkWL3kPAqo2GUyV5yro0HXp9RNtih6XZ124H9Zf5CdgB6gDYuoqxxq2xroE-XVOD84ZR0zdpuiZN36Q5NtkJ6R_hj_c_kquDxCHiL54LpVkqxTeohHxW
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TCI_2018_2840334
crossref_primary_10_1016_j_jvcir_2023_103782
crossref_primary_10_1016_j_measurement_2023_112643
crossref_primary_10_1109_LSP_2021_3135196
crossref_primary_10_1109_TCYB_2019_2931914
crossref_primary_10_1016_j_engappai_2020_103758
crossref_primary_10_1007_s11042_023_17584_z
crossref_primary_10_1016_j_image_2025_117356
crossref_primary_10_1016_j_sigpro_2019_107379
crossref_primary_10_1007_s13369_023_07716_w
crossref_primary_10_1016_j_image_2024_117213
crossref_primary_10_1109_TIP_2024_3451693
crossref_primary_10_1007_s11042_023_15972_z
crossref_primary_10_1109_TNNLS_2021_3119278
crossref_primary_10_1007_s11042_022_12395_0
crossref_primary_10_1016_j_jappgeo_2024_105610
crossref_primary_10_1109_TIP_2022_3141251
crossref_primary_10_1109_TSP_2020_2964239
crossref_primary_10_1109_TCI_2023_3340612
crossref_primary_10_1109_TIP_2020_2980980
crossref_primary_10_1007_s12652_022_03822_z
crossref_primary_10_1016_j_apm_2021_02_023
crossref_primary_10_1016_j_bspc_2024_106859
crossref_primary_10_1145_3584860
crossref_primary_10_1016_j_image_2019_05_018
Cites_doi 10.1109/TSP.2006.881199
10.1109/TPAMI.2017.2656884
10.1561/2400000003
10.1017/CBO9780511546921
10.1109/TMI.2016.2570123
10.1111/cgf.12819
10.1137/1.9780898718881
10.1109/ICIP.2017.8296573
10.1016/j.dsp.2016.04.012
10.1109/CVPR.2010.5539957
10.1109/ICCV.2009.5459452
10.1137/110836936
10.1109/ICIP.2017.8296555
10.1561/2200000016
10.1561/2200000018
10.1109/CVPR.2015.7299149
10.1109/TIP.2015.2495260
10.1109/TSP.2004.830991
10.1109/ICVGIP.2008.47
10.1109/TASLP.2016.2598305
10.1109/CVPR.2013.57
10.1007/s00041-008-9045-x
10.1109/ICCV.2015.212
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2018.2842152
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore digital library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 4859
ExternalDocumentID 29969396
10_1109_TIP_2018_2842152
8369154
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Universidade de Macau
  grantid: SRG2015-00050-FST
  funderid: 10.13039/501100004733
– fundername: Research Grants Council, University Grants Committee
  grantid: 614513
  funderid: 10.13039/501100002920
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIG
Z5M
7X8
ID FETCH-LOGICAL-c319t-dbead33d81597a60318de84aadb3e7270e3a978aec09b4c3cb4669373a0f4ba23
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437412500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 05:22:17 EDT 2025
Wed Feb 19 02:40:50 EST 2025
Sat Nov 29 03:21:08 EST 2025
Tue Nov 18 21:00:59 EST 2025
Wed Aug 27 02:56:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-dbead33d81597a60318de84aadb3e7270e3a978aec09b4c3cb4669373a0f4ba23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8944-8618
0000-0002-4828-8248
0000-0003-1457-1114
0000-0002-2325-6215
PMID 29969396
PQID 2064251014
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2064251014
crossref_primary_10_1109_TIP_2018_2842152
pubmed_primary_29969396
crossref_citationtrail_10_1109_TIP_2018_2842152
ieee_primary_8369154
PublicationCentury 2000
PublicationDate 2018-Oct.
2018-10-00
2018-Oct
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref15
ref14
jennings (ref32) 1992
hoffman (ref27) 2010
ref33
ref11
lee (ref2) 2007
ref1
ref38
ref16
ref19
šorel (ref17) 2016; 55
ref18
feng (ref28) 2013
khosla (ref36) 2011
bordes (ref26) 2005; 6
chew (ref31) 1995; 522
mallat (ref30) 1999
ref24
ref23
yang (ref4) 2009
ref25
mensch (ref21) 2016
ref22
krizhevsky (ref37) 2009
ref8
andilla (ref10) 2014
ref7
mairal (ref20) 2010; 11
pachitariu (ref9) 2013
ref3
ref6
ref5
shen (ref29) 2016
References_xml – start-page: 64
  year: 2014
  ident: ref10
  article-title: Sparse space-time deconvolution for calcium image analysis
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref1
  doi: 10.1109/TSP.2006.881199
– volume: 6
  start-page: 1579
  year: 2005
  ident: ref26
  article-title: Fast kernel classifiers with online and active learning
  publication-title: J Mach Learn Res
– ident: ref12
  doi: 10.1109/TPAMI.2017.2656884
– year: 1999
  ident: ref30
  publication-title: A Wavelet Tour of Signal Processing
– volume: 11
  start-page: 19
  year: 2010
  ident: ref20
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J Mach Learn Res
– ident: ref33
  doi: 10.1561/2400000003
– ident: ref18
  doi: 10.1017/CBO9780511546921
– year: 1992
  ident: ref32
  publication-title: Matrix Computation
– start-page: 622
  year: 2016
  ident: ref29
  article-title: Online low-rank subspace clustering by basis dictionary pursuit
  publication-title: Proc Int Conf Mach Learn
– ident: ref11
  doi: 10.1109/TMI.2016.2570123
– ident: ref7
  doi: 10.1111/cgf.12819
– start-page: 404
  year: 2013
  ident: ref28
  article-title: Online robust PCA via stochastic optimization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref24
  doi: 10.1137/1.9780898718881
– ident: ref23
  doi: 10.1109/ICIP.2017.8296573
– volume: 55
  start-page: 44
  year: 2016
  ident: ref17
  article-title: Fast convolutional sparse coding using matrix inversion lemma
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2016.04.012
– ident: ref14
  doi: 10.1109/CVPR.2010.5539957
– start-page: 1794
  year: 2009
  ident: ref4
  article-title: Linear spatial pyramid matching using sparse coding for image classification
  publication-title: Proc Conf Comput Vis Pattern Recognit
– start-page: 1737
  year: 2016
  ident: ref21
  article-title: Dictionary learning for massive matrix factorization
  publication-title: Proc Int Conf Mach Learn
– volume: 522
  year: 1995
  ident: ref31
  publication-title: Waves and Fields in Inhomogeneous Media
– ident: ref3
  doi: 10.1109/ICCV.2009.5459452
– start-page: 801
  year: 2007
  ident: ref2
  article-title: Efficient sparse coding algorithms
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref34
  doi: 10.1137/110836936
– start-page: 1745
  year: 2013
  ident: ref9
  article-title: Extracting regions of interest from biological images with convolutional sparse block coding
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref22
  doi: 10.1109/ICIP.2017.8296555
– ident: ref15
  doi: 10.1561/2200000016
– year: 2009
  ident: ref37
  article-title: Learning multiple layers of features from tiny images
– ident: ref19
  doi: 10.1561/2200000018
– ident: ref8
  doi: 10.1109/CVPR.2015.7299149
– start-page: 1
  year: 2011
  ident: ref36
  article-title: Novel dataset for fine-grained image categorization: Stanford dogs
  publication-title: Proc 1st Workshop Fine-Grained Vis Categorization
– ident: ref16
  doi: 10.1109/TIP.2015.2495260
– ident: ref25
  doi: 10.1109/TSP.2004.830991
– ident: ref35
  doi: 10.1109/ICVGIP.2008.47
– ident: ref13
  doi: 10.1109/TASLP.2016.2598305
– ident: ref5
  doi: 10.1109/CVPR.2013.57
– ident: ref38
  doi: 10.1007/s00041-008-9045-x
– ident: ref6
  doi: 10.1109/ICCV.2015.212
– start-page: 856
  year: 2010
  ident: ref27
  article-title: Online learning for latent Dirichlet allocation
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0014516
Score 2.4722636
Snippet Convolutional sparse coding (CSC) improves sparse coding by learning a shift-invariant dictionary from the data. However, most existing CSC algorithms operate...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4850
SubjectTerms Convolution
Convolutional codes
convolutional sparse coding
Dictionaries
dictionary learning
Frequency-domain analysis
Image coding
Online learning
Optimization
Sparse matrices
Title Scalable Online Convolutional Sparse Coding
URI https://ieeexplore.ieee.org/document/8369154
https://www.ncbi.nlm.nih.gov/pubmed/29969396
https://www.proquest.com/docview/2064251014
Volume 27
WOSCitedRecordID wos000437412500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore digital library
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM-ON38mB-jgi-C3bqlTdpHGQ59GQMn7K2kyRWE0Y59_f1e0q4oqOBTS0nS9nLX-10vuR_AvQwHPAgkcz2tPQpQuHKjVDM3QcaFxkQJVpBNiMkknM-jaQ0eq70wiGgXn2HPnNpcvs7V1vwq64eMR-Ty61AXghd7taqMgSGctZnNQLiCYP8-JelF_dnr1KzhCnv0KTY0rt9ckOVU-R1eWjczbv7vAU_guISTzlMx_6dQw6wFzRJaOqXhrltw9KXuYBvIouXC7JlyikqjzijPdqUO0mhvS4p2zUXj187gffw8G724JWuCq8icNq5OSDkY0yEBFSEtibTG0JdSJwwJrXjIJIWOEpUXJb5iKvE5J5DCpJf6iRyyc2hkeYaX4PB0mAjUA5SB9rlvD0L7OiWUoFOJHejvBRmrsqS4YbZYxDa08KKYRB8b0cel6DvwUPVYFuU0_mjbNhKu2pXC7cDdfq5iMgWT35AZ5ts1daZgynxjqM1FMYlVZ_K69JIRv_p50Gs4NLcuVundQGOz2uItHKjd5mO96pK-zcOu1bdPKzjQdQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPTufX_Kzgi2C3uqRp-yjDseEcAyfsraTJFYTRDbf593tJu6Kggk8tJQnt5S73u15yP4AbGd4L35fM9bT2KEARyo1SzdwEmQg0JipgOdlEMBiE43E0rMBdeRYGEe3mM2yYW5vL11O1NL_KmiETEbn8NdjwOW95-WmtMmdgKGdtbtMP3ICA_yop6UXNUW9odnGFDVqMDZHrNydkWVV-B5jW0XSq_3vFPdgtAKXzkGvAPlQwq0G1AJdOYbrzGux8qTx4AGTTcmJOTTl5rVGnPc0-Ci2k0V5mFO-ah8azHcJr53HU7roFb4KryKAWrk5IPRjTIUGVQFoaaY0hl1InDAmveMgkBY8SlRclXDGVcCEIpjDppTyRLXYE69k0wxNwRNpKAtT3KH3NBbeXQHOdEk7QqcQ6NFeCjFVRVNxwW0xiG1x4UUyij43o40L0dbgte8zyghp_tD0wEi7bFcKtw_VqrmIyBpPhkBlOl3PqTOGUWWWozXE-iWVn8rv0kZE4_XnQK9jqjp77cb83eDqDbfMa-Z69c1hfvC_xAjbVx-Jt_n5pte4TQkPS1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Online+Convolutional+Sparse+Coding&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wang%2C+Yaqing&rft.au=Yao%2C+Quanming&rft.au=Kwok%2C+James+T&rft.au=Ni%2C+Lionel+M&rft.date=2018-10-01&rft.eissn=1941-0042&rft.volume=27&rft.issue=10&rft.spage=4850&rft_id=info:doi/10.1109%2FTIP.2018.2842152&rft_id=info%3Apmid%2F29969396&rft.externalDocID=29969396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon