A family of three-term conjugate gradient projection methods with a restart procedure and their relaxed-inertial extensions for the constrained nonlinear pseudo-monotone equations with applications

Al-Baali et al. ( Comput. Optim. Appl. 60:89–110, 2015) have proposed a three-term conjugate gradient method which satisfies a sufficient descent condition and global convergence. In this paper, we extend this method to a family of three-term conjugate gradient projection methods with a restart proc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical algorithms Ročník 94; číslo 3; s. 1055 - 1083
Hlavní autori: Liu, Pengjie, Shao, Hu, Yuan, Zihang, Wu, Xiaoyu, Zheng, Tianlei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.11.2023
Springer Nature B.V
Predmet:
ISSN:1017-1398, 1572-9265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Al-Baali et al. ( Comput. Optim. Appl. 60:89–110, 2015) have proposed a three-term conjugate gradient method which satisfies a sufficient descent condition and global convergence. In this paper, we extend this method to a family of three-term conjugate gradient projection methods with a restart procedure and their relaxed-inertial versions for constrained nonlinear pseudo-monotone equations. The accelerated gradient-descent method MSM and the relaxed-inertial strategy are incorporated into the proposed methods to obtain better computational performance. The global convergence of the extended methods are established theoretically without the Lipschitz continuity of the underlying mapping. Numerical results on constrained nonlinear equations show that the extended methods with different settings are efficient. The applicability and efficiency of the extended methods in the regularized decentralized logistic regression and sparse signal restoration problems are also presented and verified.
AbstractList Al-Baali et al. ( Comput. Optim. Appl. 60:89–110, 2015) have proposed a three-term conjugate gradient method which satisfies a sufficient descent condition and global convergence. In this paper, we extend this method to a family of three-term conjugate gradient projection methods with a restart procedure and their relaxed-inertial versions for constrained nonlinear pseudo-monotone equations. The accelerated gradient-descent method MSM and the relaxed-inertial strategy are incorporated into the proposed methods to obtain better computational performance. The global convergence of the extended methods are established theoretically without the Lipschitz continuity of the underlying mapping. Numerical results on constrained nonlinear equations show that the extended methods with different settings are efficient. The applicability and efficiency of the extended methods in the regularized decentralized logistic regression and sparse signal restoration problems are also presented and verified.
Al-Baali et al. (Comput. Optim. Appl. 60:89–110, 2015) have proposed a three-term conjugate gradient method which satisfies a sufficient descent condition and global convergence. In this paper, we extend this method to a family of three-term conjugate gradient projection methods with a restart procedure and their relaxed-inertial versions for constrained nonlinear pseudo-monotone equations. The accelerated gradient-descent method MSM and the relaxed-inertial strategy are incorporated into the proposed methods to obtain better computational performance. The global convergence of the extended methods are established theoretically without the Lipschitz continuity of the underlying mapping. Numerical results on constrained nonlinear equations show that the extended methods with different settings are efficient. The applicability and efficiency of the extended methods in the regularized decentralized logistic regression and sparse signal restoration problems are also presented and verified.
Author Liu, Pengjie
Wu, Xiaoyu
Shao, Hu
Zheng, Tianlei
Yuan, Zihang
Author_xml – sequence: 1
  givenname: Pengjie
  surname: Liu
  fullname: Liu, Pengjie
  organization: School of Mathematics, China University of Mining and Technology, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University
– sequence: 2
  givenname: Hu
  surname: Shao
  fullname: Shao, Hu
  email: shaohu@cumt.edu.cn
  organization: School of Mathematics, China University of Mining and Technology
– sequence: 3
  givenname: Zihang
  surname: Yuan
  fullname: Yuan, Zihang
  organization: School of Mathematics, China University of Mining and Technology
– sequence: 4
  givenname: Xiaoyu
  surname: Wu
  fullname: Wu, Xiaoyu
  organization: School of Mathematics, China University of Mining and Technology
– sequence: 5
  givenname: Tianlei
  surname: Zheng
  fullname: Zheng, Tianlei
  organization: Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, School of Information and Control Engineering, China University of Mining and Technology
BookMark eNp9UcFu3SAQRFEiNUnzAz0h5UwL2A7mGEVtUylSLunZIrC8x5MNDmA1-cD-V9fPlSr1kAMClpkdZueCnMYUgZBPgn8WnKsvRQiuOsZlw7jopGL9CTkXnZJMy5vuFM9cKCYa3X8gF6UcOEeaVOfk9y31ZgrjG02e1n0GYBXyRG2Kh2VnKtBdNi5ArHTO6QC2hhTpBHWfXKG_Qt1TQzOUavIRYcEtGaiJDrtByPg2mldwLETINZiRwmuFWLBLoT7lFbWKlZoNQhxFYyMeTKZzgcUlNqWYKrql8LKYeuRtsvM8BrtVPpIzb8YCV3_3S_Lz29enu3v28Pj9x93tA7ON0JW5Z9dw29pW9TilvuuavtVGOCfEjWs7r56l1EauN6yCxgXOS-WF89q1vrkk11tfdPqyoOvhkJYcUXKQWvSd0lIrRMkNZXMqJYMf5hwmk98GwYc1rmGLa8C4hmNcQ4-k_j-SDfXobp3M-D612agFdeIO8r9fvcP6A6HBssQ
CitedBy_id crossref_primary_10_1007_s12190_024_02209_x
crossref_primary_10_1007_s40314_024_02673_y
crossref_primary_10_1016_j_cam_2024_116327
crossref_primary_10_1007_s11075_025_02082_0
crossref_primary_10_1016_j_cam_2025_116886
crossref_primary_10_1016_j_cam_2025_116546
crossref_primary_10_1007_s12190_024_02062_y
crossref_primary_10_1002_nla_2589
crossref_primary_10_1007_s11067_024_09653_z
crossref_primary_10_1007_s10957_023_02265_6
crossref_primary_10_1007_s12190_025_02522_z
crossref_primary_10_1007_s12190_025_02525_w
crossref_primary_10_1080_0305215X_2025_2450683
crossref_primary_10_1016_j_rinam_2024_100531
crossref_primary_10_1007_s12190_025_02564_3
crossref_primary_10_1016_j_fraope_2025_100255
crossref_primary_10_1002_mma_70065
crossref_primary_10_3934_era_2025160
crossref_primary_10_1007_s11075_023_01736_1
crossref_primary_10_1016_j_cam_2024_116452
crossref_primary_10_1007_s12190_025_02466_4
crossref_primary_10_3934_math_2025614
crossref_primary_10_1016_j_cam_2025_116532
crossref_primary_10_1007_s10957_025_02711_7
crossref_primary_10_1051_ro_2025022
crossref_primary_10_1007_s11075_025_02034_8
crossref_primary_10_1016_j_aml_2025_109733
crossref_primary_10_1007_s11081_025_09970_3
crossref_primary_10_1080_02331934_2025_2526727
Cites_doi 10.1137/100813026
10.1007/s10589-019-00165-y
10.3934/jimo.2021125
10.1137/15100463X
10.1007/s12190-014-0774-5
10.1016/0041-5553(64)90137-5
10.1007/s11075-021-01157-y
10.1051/cocv/2022032
10.1016/j.jmaa.2013.04.017
10.1007/s002450010019
10.1007/s40314-022-02019-6
10.1007/s10898-019-00819-5
10.1007/s10589-014-9662-z
10.1109/ACCESS.2021.3091906
10.1016/j.apnum.2022.02.001
10.1080/00207160.2018.1494825
10.1016/j.na.2011.02.040
10.1109/JSTSP.2007.910281
10.1007/s11075-022-01356-1
10.1007/BF02591989
10.1145/78928.78930
10.1360/N012016-00134
10.3934/jimo.2021173
10.1016/j.cam.2022.115020
10.1007/s11075-018-0603-2
10.1016/j.apnum.2022.06.015
10.1080/10556788.2013.833199
10.1007/s11071-022-08013-1
10.1007/s11075-018-0541-z
10.1080/10556780310001610493
10.1007/s11075-009-9350-8
10.1080/10556788.2019.1653868
10.1145/1961189.1961199
10.1080/10556789508805619
10.1051/ro/2022213
10.1007/978-1-4757-6388-1_18
10.1051/ro/2019045
10.1007/s10898-022-01213-4
10.1007/s10092-015-0154-z
10.1007/s101070100263
10.1016/j.apm.2023.01.018
10.1016/j.apnum.2019.08.022
10.1016/j.ejor.2013.11.012
10.1007/s11075-022-01483-9
10.1007/s11075-020-01043-z
10.3934/jimo.2013.9.117
10.1007/s10092-018-0291-2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-023-01527-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1083
ExternalDocumentID 10_1007_s11075_023_01527_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 72071202
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: JSX220005
  funderid: http://dx.doi.org/10.13039/501100012226
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-dbd30c4c4780158553849a1dd116d45f7b229a2116da1de91deedf27f1df9d4f3
IEDL.DBID K7-
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000986804900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Wed Nov 05 03:07:28 EST 2025
Sat Nov 29 01:35:00 EST 2025
Tue Nov 18 22:25:29 EST 2025
Fri Feb 21 02:42:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Logistic regression
Global convergence
65K05
90C30
90C56
Nonlinear pseudo-monotone equations
Relaxed-inertial strategy
Conjugate gradient projection method
Compressed sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-dbd30c4c4780158553849a1dd116d45f7b229a2116da1de91deedf27f1df9d4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918579297
PQPubID 2043837
PageCount 29
ParticipantIDs proquest_journals_2918579297
crossref_primary_10_1007_s11075_023_01527_8
crossref_citationtrail_10_1007_s11075_023_01527_8
springer_journals_10_1007_s11075_023_01527_8
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References StanimirovićPSMiladinovićMBAccelerated gradient descent methods with line searchNumer. Algorithms20105450352026706661198.65104
AbubakarABKumanPA descent Dai-Liao conjugate gradient method for nonlinear equationsNumer. Algorithms201981119721039436301412.65042
GaoXCaiXJHanDRA Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problemsJ. Glob. Optim.202076486388740783821476.90256
CruzWLRaydanMNonmonotone spectral methods for large-scale nonlinear systemsOptim. Methods Softw.200318558359920153991069.65056
IbrahimAHKumamPRapajićSPappZAbubakarABApproximation methods with inertial term for large-scale nonlinear monotone equationsAppl. Numer. Math.202218141743544513861502.65026
FigueiredoMATNowakRDWrightSJGradient projection for sparse reconstruction, application to compressed sensing and other inverse problemsIEEE J. Sel. Top. Sign. Proces.200714586597
OuYGXuWJA unified derivative-free projection method model for large-scale nonlinear equations with convex constraintsJ. Ind. Manag. Optim.20221853539356044704951513.90131
LiuPJWuXYShaoHZhangYCaoSHThree adaptive hybrid derivative-free projection methods for constrained monotone nonlinear equations and their applicationsNumer. Linear Algebra Appl.2023302456021707675620
Al-BaaliMNarushimaYYabeHA family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimizationComput. Optim. Appl.2015608911032978901315.90051
YuanGLLiTTHuWJA conjugate gradient algorithm for large-scale nonlinear equations and image restoration problemsAppl. Numer. Math.202014712914140153051433.90165
YuanGLWangBPShengZThe Hager-Zhang conjugate gradient algorithm for large-scale nonlinear equationsInter. J. Comput. Math.20199681533154739474101499.90233
FacchineiFPangJSFinite-dimensional Variational Inequalities and Complementarity Problems2003BerlinVol-I. Springer1062.90001
PappZRapajićSFR type methods for systems of large-scale nonlinear monotone equationsAppl. Math. Comput.201526981682333968241410.65196
LiuJKFengYMA derivative-free iterative method for nonlinear monotone equations with convex constraintsNumer. Algorithms20198224526239960161431.65073
IbrahimAHKumamPSunMChaipunyaPProjection method with inertial step for nonlinear equations: application to signal recoveryJ. Ind. Manag. Optim.2023191305544896801513.65073
SunMLiuJNew hybrid conjugate gradient projection method for the convex constrained equationsCalcolo20185339941135411611357.65078
SolodovMVSvaiterBFFukushimaMQiLA globally convergent inexact Newton method for systems of monotone equationsReformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods1998DordrechtKluwer355369
LiuJKSunYZhaoYXA derivative-free projection algorithm for solving pseudo-monotone equations with convex constraints (in Chinese)Math. Numer. Sin.202143338840044844491513.65150
YinJHJianJBJiangXZLiuMXWangLZA hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applicationsNumer. Algorithms20218838941842979241484.65131
AminifardZBabaie-KafakiSDai-Liao extensions of a descent hybrid nonlinear conjugate gradient method with application in signal processingNumer. Algorithms2022891369138743766901484.65132
Ma, G.D., Jin, J.C., Jian, J.B., Yin, J.H., Han, D.L.: A modified inertial three-term conjugate gradient projection method for constrained nonlinear equations with applications in compressed sensing. Numer. Algorithms 2023, 92(3), 1621-1653 (2023)
YuGHNiuSZMaJHMultivariate spectral gradient projection method for nonlinear monotone equations with convex constraintsJ. Ind. Manag. Optim.20139111712930030191264.49037
Babaie-KafakiSA survey on the Dai-Liao family of nonlinear conjugate gradient methodsRAIRO-Oper. Res.2023571435845327871514.90251
SunMLiuJThree derivative-free projection methods for nonlinear equations with convex constraintsJ. Appl. Math. Comput.201547126527633040951348.90630
YinJHJianJBJiangXZA generalized hybrid CGPM-based algorithm for solving large-scale convex constrained equations with applications to image restorationJ. Comput. Appl. Math.202139142097311464.65069
PangJSInexact Newton methods for the nonlinear complementary problemMath. Program.198636154718656060613.90097
ChenCHChanRHMaSQYangJFInertial proximal ADMM for linearly constrained separable convex optimizationSIAM J. Imaging Sci.2015842239226734046821328.65134
ZhouWJLiDHLimited memory BFGS method for nonlinear monotone equationsJ. Comput. Math.20072589962292430
IvanovBMilovanovićGVStanimirovićPSAccelerated Dai-Liao projection method for solving systems of monotone nonlinear equations with application to image deblurringJ. Glob. Optim.20238537742045437861515.65153
JiangXZZhuYHJianJBTwo efficient nonlinear conjugate gradient methods with restart procedures and their applications in image restorationNonlinear Dyn.202311154695498
IbrahimAHKumamPAbubakarABAdamuAAccelerated derivative-free method for nonlinear monotone equations with an applicationNumer. Linear Algebra Appl.2022293446255507511605
DouMYLiHYLiuXWAn inertial proximal Peaceman-Rachford splitting method (in Chinese)Sci. Sin. Math.20174723333481499.90157
JianJBYinJHTangCMHanDLA family of inertial derivative-free projection methods for constrained nonlinear pseudo-monotone equations with applicationsComput. Appl. Math.20224130944813151513.65149
WangSGuanHBA scaled conjugate gradient method for solving monotone nonlinear equations with convex constraintsJ. Appl. Math.2013201331389341397.90365
AbubakarABKumamPA descent Dai-Liao conjugate gradient method for nonlinear equationsNumer. Algorithms20198119721039436301412.65042
DaiYHKouCXA nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line searchSIAM J. Optim.201323129632030331091266.49065
HoyerPONon-negative matrix factorization with sparseness constraintsJ. Mach. Learn. Res.200451457146922480241222.68218
GaoPTHeCJAn efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraintsCalcolo2018555338788021405.65043
Babaie-KafakiSGhanbariRThe Dai-Liao nonlinear conjugate gradient method with optimal parameter choicesEur. J. Oper. Res.2014234362563031513231304.90216
XiaoYHWangQYHuQJNon-smooth equations based method for l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-norm problems with applications to compressed sensingNonlinear Anal. Theor.20117411357035771217.65069
Babaie-KafakiSGambariRA descent family of Dai-Liao conjugate gradient methodsOptim. Meth. Softw.201429358359131755041285.90063
ChangCCLinCJLIBSVM: a library for support vector machinesACM Trans. Intell. Syst. Technol.201123127
ShaoHGuoHWuXYLiuPJTwo families of self-adjusting spectral hybrid DL conjugate gradient methods and applications in image denoisingAppl. Math. Model.202311839341145451271510.90215
IvanovBStanimirovićPSMilovanovićGVDjordjevićSBrajevićIAccelerated multiple step-size methods for solving unconstrained optimization problemsOptim. Methods Softw.202136998102944329291489.65085
WuXYShaoHLiuPJZhangYZhuoYAn efficient conjugate gradient-based algorithm for unconstrained optimization and its projection extension to large-scale constrained nonlinear equations with application in signal recovery and image denoising problemsJ. Comput. Appl. Math.2023422450546507630774
DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.200291220121318755151049.90004
LiuJKLuZLXuJLWuSTuZWAn efficient projection-based algorithm without Lipschitz continuity for large-scale nonlinear pseudo-monotone equationsJ. Comput. Appl. Math.202240343216261484.65125
AlvesMMEcksteinJGeremiaMMeloJGRelative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithmsComput. Optim. Appl.202075238942240645951432.90107
PolyakBTSome methods of speeding up the convergence of iteration methodsUSSR Comput. Math. Math. Phys.196445117
XiaoYHZhuHA conjugate gradient method to sovle convex constrained monotone equations with applications in compressive sensingJ. Math. Anal. Appl.2013405131031930535101316.90050
OuYGLiLA unified convergence analysis of the derivative-free projection-based method for constrained nonlinear monotone equationsNumer. Algorithms202210.1007/s11075-022-01483-907720460
AbubakarABKumamPIbrahimAHInertial derivative-free projection method for nonlinear monotone operator equations with convex constraintsIEEE Access202199215792167
JiangXZYangHHYinJHLiaoWA three-term conjugate gradient algorithm with restart procedure to solve image restoration problemsJ. Comput. Appl. Math.2023424452653807697429
MeintjesKMorganAPChemical equilibrium systems as numerical test problemsACM Trans. Math. Software19901621431510900.65153
Luo, H.: Accelerated primal-dual methods for linearly constrained convex optimization problems. arXiv: 2109.12604 (2022)
Babaie-KafakiSAminifardZImproving the Dai-Liao parameter choices using a fixed point equationJ. Math. Model.2022101112043768551499.90215
YinJHJianJBJiangXZWuXDA family of inertial-relaxed DFPM-based algorithms for solving large-scale monotone nonlinear equations with application to sparse signal restorationJ. Comput. Appl. Math.202341944748341505.65199
DaiYHLiaoLZNew conjugacy conditions and related nonlinear conjugate gradient methodsAppl. Math. Optim.2001438710118043960973.65050
WangXQShaoHLiuPJWuTAn inertial proximal partially symmetric ADMM-based algorithm for linearly constrained multi-block nonconvex optimization problems with applicationsJ. Comput. Appl. Math.202342044833361504.90103
YinJHJianJBJiangXZA spectral gradient projection algorithm for convex constrained nonsmooth equations based on an adaptive line search (in Chinese)Math. Numer. Sin.202042445747144693521474.90454
DirkseSPFerrisMCMCPLIB: A collection of nonlinear mixed complementarity problemsOptim. Methods Softw.199554319345
Po
1527_CR55
YG Ou (1527_CR25) 2022; 18
SP Dirkse (1527_CR3) 1995; 5
MAT Figueiredo (1527_CR62) 2007; 1
1527_CR59
JS Pang (1527_CR63) 1986; 36
B Ivanov (1527_CR19) 2021; 36
YH Dai (1527_CR9) 2013; 23
ED Dolan (1527_CR56) 2002; 91
M Sun (1527_CR28) 2018; 53
MM Alves (1527_CR54) 2020; 75
XQ Wang (1527_CR38) 2023; 420
YH Xiao (1527_CR4) 2013; 405
1527_CR43
WL Cruz (1527_CR58) 2003; 18
JH Yin (1527_CR5) 2021; 88
S Babaie-Kafaki (1527_CR16) 2023; 57
M Sun (1527_CR29) 2015; 47
JH Yin (1527_CR53) 2020; 42
YH Xiao (1527_CR61) 2011; 74
CH Chen (1527_CR39) 2015; 8
Z Aminifard (1527_CR13) 2022; 89
GL Yuan (1527_CR22) 2020; 147
MV Solodov (1527_CR17) 1998
GH Yu (1527_CR31) 2013; 9
PJ Liu (1527_CR7) 2022; 175
XY Wu (1527_CR27) 2023; 422
K Meintjes (1527_CR2) 1990; 16
F Facchinei (1527_CR1) 2003
JK Liu (1527_CR21) 2022; 403
JB Jian (1527_CR47) 2022; 41
XZ Jiang (1527_CR51) 2023; 111
JK Liu (1527_CR34) 2019; 82
PJ Liu (1527_CR26) 2023; 30
PT Gao (1527_CR33) 2018; 55
S Babaie-Kafaki (1527_CR15) 2014; 29
AB Abubakar (1527_CR32) 2019; 81
YG Ou (1527_CR24) 2022
CC Chang (1527_CR60) 2011; 2
S Babaie-Kafaki (1527_CR14) 2022; 10
XZ Jiang (1527_CR52) 2023; 424
MY Dou (1527_CR40) 2017; 47
BT Polyak (1527_CR37) 1964; 4
Z Aminifard (1527_CR12) 2020; 54
JH Yin (1527_CR48) 2023; 419
Z Papp (1527_CR36) 2015; 269
H Shao (1527_CR10) 2023; 118
YH Dai (1527_CR8) 2001; 43
B Ivanov (1527_CR20) 2023; 85
GL Yuan (1527_CR23) 2019; 96
X Gao (1527_CR41) 2020; 76
JH Yin (1527_CR6) 2021; 391
S Wang (1527_CR30) 2013; 2013
M Al-Baali (1527_CR49) 2015; 60
AH Ibrahim (1527_CR46) 2022; 181
AB Abubakar (1527_CR18) 2019; 81
AH Ibrahim (1527_CR45) 2023; 19
JK Liu (1527_CR35) 2021; 43
S Babaie-Kafaki (1527_CR11) 2014; 234
PO Hoyer (1527_CR64) 2004; 5
AH Ibrahim (1527_CR44) 2022; 29
AB Abubakar (1527_CR42) 2021; 9
WJ Zhou (1527_CR57) 2007; 25
PS Stanimirović (1527_CR50) 2010; 54
References_xml – reference: YinJHJianJBJiangXZA generalized hybrid CGPM-based algorithm for solving large-scale convex constrained equations with applications to image restorationJ. Comput. Appl. Math.202139142097311464.65069
– reference: YuanGLWangBPShengZThe Hager-Zhang conjugate gradient algorithm for large-scale nonlinear equationsInter. J. Comput. Math.20199681533154739474101499.90233
– reference: WangSGuanHBA scaled conjugate gradient method for solving monotone nonlinear equations with convex constraintsJ. Appl. Math.2013201331389341397.90365
– reference: PappZRapajićSFR type methods for systems of large-scale nonlinear monotone equationsAppl. Math. Comput.201526981682333968241410.65196
– reference: Ma, G.D., Jin, J.C., Jian, J.B., Yin, J.H., Han, D.L.: A modified inertial three-term conjugate gradient projection method for constrained nonlinear equations with applications in compressed sensing. Numer. Algorithms 2023, 92(3), 1621-1653 (2023)
– reference: Babaie-KafakiSGhanbariRThe Dai-Liao nonlinear conjugate gradient method with optimal parameter choicesEur. J. Oper. Res.2014234362563031513231304.90216
– reference: JiangXZZhuYHJianJBTwo efficient nonlinear conjugate gradient methods with restart procedures and their applications in image restorationNonlinear Dyn.202311154695498
– reference: GaoPTHeCJAn efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraintsCalcolo2018555338788021405.65043
– reference: IbrahimAHKumamPAbubakarABAdamuAAccelerated derivative-free method for nonlinear monotone equations with an applicationNumer. Linear Algebra Appl.2022293446255507511605
– reference: Babaie-KafakiSA survey on the Dai-Liao family of nonlinear conjugate gradient methodsRAIRO-Oper. Res.2023571435845327871514.90251
– reference: SolodovMVSvaiterBFFukushimaMQiLA globally convergent inexact Newton method for systems of monotone equationsReformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods1998DordrechtKluwer355369
– reference: DirkseSPFerrisMCMCPLIB: A collection of nonlinear mixed complementarity problemsOptim. Methods Softw.199554319345
– reference: LiuPJWuXYShaoHZhangYCaoSHThree adaptive hybrid derivative-free projection methods for constrained monotone nonlinear equations and their applicationsNumer. Linear Algebra Appl.2023302456021707675620
– reference: ShaoHGuoHWuXYLiuPJTwo families of self-adjusting spectral hybrid DL conjugate gradient methods and applications in image denoisingAppl. Math. Model.202311839341145451271510.90215
– reference: Babaie-KafakiSAminifardZImproving the Dai-Liao parameter choices using a fixed point equationJ. Math. Model.2022101112043768551499.90215
– reference: MeintjesKMorganAPChemical equilibrium systems as numerical test problemsACM Trans. Math. Software19901621431510900.65153
– reference: DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.200291220121318755151049.90004
– reference: FigueiredoMATNowakRDWrightSJGradient projection for sparse reconstruction, application to compressed sensing and other inverse problemsIEEE J. Sel. Top. Sign. Proces.200714586597
– reference: WangXQShaoHLiuPJWuTAn inertial proximal partially symmetric ADMM-based algorithm for linearly constrained multi-block nonconvex optimization problems with applicationsJ. Comput. Appl. Math.202342044833361504.90103
– reference: PangJSInexact Newton methods for the nonlinear complementary problemMath. Program.198636154718656060613.90097
– reference: AminifardZBabaie-KafakiSA restart scheme for the Dai-Liao conjugate gradient method by ignoring a direction of maximum magnification by the search direction matrixRAIRO-Oper. Res.202054498199140918561443.90330
– reference: AbubakarABKumanPA descent Dai-Liao conjugate gradient method for nonlinear equationsNumer. Algorithms201981119721039436301412.65042
– reference: IbrahimAHKumamPRapajićSPappZAbubakarABApproximation methods with inertial term for large-scale nonlinear monotone equationsAppl. Numer. Math.202218141743544513861502.65026
– reference: WuXYShaoHLiuPJZhangYZhuoYAn efficient conjugate gradient-based algorithm for unconstrained optimization and its projection extension to large-scale constrained nonlinear equations with application in signal recovery and image denoising problemsJ. Comput. Appl. Math.2023422450546507630774
– reference: ZhouWJLiDHLimited memory BFGS method for nonlinear monotone equationsJ. Comput. Math.20072589962292430
– reference: Luo, H.: Accelerated primal-dual methods for linearly constrained convex optimization problems. arXiv: 2109.12604 (2022)
– reference: DouMYLiHYLiuXWAn inertial proximal Peaceman-Rachford splitting method (in Chinese)Sci. Sin. Math.20174723333481499.90157
– reference: SunMLiuJThree derivative-free projection methods for nonlinear equations with convex constraintsJ. Appl. Math. Comput.201547126527633040951348.90630
– reference: YinJHJianJBJiangXZWuXDA family of inertial-relaxed DFPM-based algorithms for solving large-scale monotone nonlinear equations with application to sparse signal restorationJ. Comput. Appl. Math.202341944748341505.65199
– reference: HoyerPONon-negative matrix factorization with sparseness constraintsJ. Mach. Learn. Res.200451457146922480241222.68218
– reference: IvanovBStanimirovićPSMilovanovićGVDjordjevićSBrajevićIAccelerated multiple step-size methods for solving unconstrained optimization problemsOptim. Methods Softw.202136998102944329291489.65085
– reference: XiaoYHWangQYHuQJNon-smooth equations based method for l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-norm problems with applications to compressed sensingNonlinear Anal. Theor.20117411357035771217.65069
– reference: SunMLiuJNew hybrid conjugate gradient projection method for the convex constrained equationsCalcolo20185339941135411611357.65078
– reference: PolyakBTSome methods of speeding up the convergence of iteration methodsUSSR Comput. Math. Math. Phys.196445117
– reference: IvanovBMilovanovićGVStanimirovićPSAccelerated Dai-Liao projection method for solving systems of monotone nonlinear equations with application to image deblurringJ. Glob. Optim.20238537742045437861515.65153
– reference: CruzWLRaydanMNonmonotone spectral methods for large-scale nonlinear systemsOptim. Methods Softw.200318558359920153991069.65056
– reference: YuGHNiuSZMaJHMultivariate spectral gradient projection method for nonlinear monotone equations with convex constraintsJ. Ind. Manag. Optim.20139111712930030191264.49037
– reference: IbrahimAHKumamPSunMChaipunyaPProjection method with inertial step for nonlinear equations: application to signal recoveryJ. Ind. Manag. Optim.2023191305544896801513.65073
– reference: LiuPJShaoHWangYWuXYA three-term CGPM-based algorithm without Lipschitz continuity for constrained nonlinear monotone equations with applicationsAppl. Numer. Math.20221759810743797641484.65109
– reference: GaoXCaiXJHanDRA Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problemsJ. Glob. Optim.202076486388740783821476.90256
– reference: Polyak, B.T.: Introduction to Optimization, Optimization Software, pp. 49. Inc. Publications Division, New York (1987)
– reference: YuanGLLiTTHuWJA conjugate gradient algorithm for large-scale nonlinear equations and image restoration problemsAppl. Numer. Math.202014712914140153051433.90165
– reference: LiuJKLuZLXuJLWuSTuZWAn efficient projection-based algorithm without Lipschitz continuity for large-scale nonlinear pseudo-monotone equationsJ. Comput. Appl. Math.202240343216261484.65125
– reference: XiaoYHZhuHA conjugate gradient method to sovle convex constrained monotone equations with applications in compressive sensingJ. Math. Anal. Appl.2013405131031930535101316.90050
– reference: LiuJKSunYZhaoYXA derivative-free projection algorithm for solving pseudo-monotone equations with convex constraints (in Chinese)Math. Numer. Sin.202143338840044844491513.65150
– reference: AbubakarABKumamPIbrahimAHInertial derivative-free projection method for nonlinear monotone operator equations with convex constraintsIEEE Access202199215792167
– reference: OuYGLiLA unified convergence analysis of the derivative-free projection-based method for constrained nonlinear monotone equationsNumer. Algorithms202210.1007/s11075-022-01483-907720460
– reference: YinJHJianJBJiangXZA spectral gradient projection algorithm for convex constrained nonsmooth equations based on an adaptive line search (in Chinese)Math. Numer. Sin.202042445747144693521474.90454
– reference: JianJBYinJHTangCMHanDLA family of inertial derivative-free projection methods for constrained nonlinear pseudo-monotone equations with applicationsComput. Appl. Math.20224130944813151513.65149
– reference: DaiYHLiaoLZNew conjugacy conditions and related nonlinear conjugate gradient methodsAppl. Math. Optim.2001438710118043960973.65050
– reference: ChangCCLinCJLIBSVM: a library for support vector machinesACM Trans. Intell. Syst. Technol.201123127
– reference: DaiYHKouCXA nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line searchSIAM J. Optim.201323129632030331091266.49065
– reference: Babaie-KafakiSGambariRA descent family of Dai-Liao conjugate gradient methodsOptim. Meth. Softw.201429358359131755041285.90063
– reference: StanimirovićPSMiladinovićMBAccelerated gradient descent methods with line searchNumer. Algorithms20105450352026706661198.65104
– reference: AbubakarABKumamPA descent Dai-Liao conjugate gradient method for nonlinear equationsNumer. Algorithms20198119721039436301412.65042
– reference: AlvesMMEcksteinJGeremiaMMeloJGRelative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithmsComput. Optim. Appl.202075238942240645951432.90107
– reference: LiuJKFengYMA derivative-free iterative method for nonlinear monotone equations with convex constraintsNumer. Algorithms20198224526239960161431.65073
– reference: ChenCHChanRHMaSQYangJFInertial proximal ADMM for linearly constrained separable convex optimizationSIAM J. Imaging Sci.2015842239226734046821328.65134
– reference: FacchineiFPangJSFinite-dimensional Variational Inequalities and Complementarity Problems2003BerlinVol-I. Springer1062.90001
– reference: JiangXZYangHHYinJHLiaoWA three-term conjugate gradient algorithm with restart procedure to solve image restoration problemsJ. Comput. Appl. Math.2023424452653807697429
– reference: YinJHJianJBJiangXZLiuMXWangLZA hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applicationsNumer. Algorithms20218838941842979241484.65131
– reference: Al-BaaliMNarushimaYYabeHA family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimizationComput. Optim. Appl.2015608911032978901315.90051
– reference: OuYGXuWJA unified derivative-free projection method model for large-scale nonlinear equations with convex constraintsJ. Ind. Manag. Optim.20221853539356044704951513.90131
– reference: AminifardZBabaie-KafakiSDai-Liao extensions of a descent hybrid nonlinear conjugate gradient method with application in signal processingNumer. Algorithms2022891369138743766901484.65132
– volume: 23
  start-page: 296
  issue: 1
  year: 2013
  ident: 1527_CR9
  publication-title: SIAM J. Optim.
  doi: 10.1137/100813026
– volume: 422
  year: 2023
  ident: 1527_CR27
  publication-title: J. Comput. Appl. Math.
– volume: 75
  start-page: 389
  issue: 2
  year: 2020
  ident: 1527_CR54
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00165-y
– volume: 18
  start-page: 3539
  issue: 5
  year: 2022
  ident: 1527_CR25
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2021125
– volume: 8
  start-page: 2239
  issue: 4
  year: 2015
  ident: 1527_CR39
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/15100463X
– volume: 47
  start-page: 265
  issue: 1
  year: 2015
  ident: 1527_CR29
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-014-0774-5
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  ident: 1527_CR37
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 89
  start-page: 1369
  year: 2022
  ident: 1527_CR13
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-021-01157-y
– ident: 1527_CR59
  doi: 10.1051/cocv/2022032
– volume: 405
  start-page: 310
  issue: 1
  year: 2013
  ident: 1527_CR4
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.04.017
– volume: 43
  start-page: 87
  year: 2001
  ident: 1527_CR8
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s002450010019
– volume: 41
  start-page: 309
  year: 2022
  ident: 1527_CR47
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-022-02019-6
– volume: 76
  start-page: 863
  issue: 4
  year: 2020
  ident: 1527_CR41
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-019-00819-5
– volume: 60
  start-page: 89
  year: 2015
  ident: 1527_CR49
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-014-9662-z
– volume: 9
  start-page: 92157
  year: 2021
  ident: 1527_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3091906
– volume: 10
  start-page: 11
  issue: 1
  year: 2022
  ident: 1527_CR14
  publication-title: J. Math. Model.
– volume: 175
  start-page: 98
  year: 2022
  ident: 1527_CR7
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2022.02.001
– volume: 269
  start-page: 816
  year: 2015
  ident: 1527_CR36
  publication-title: Appl. Math. Comput.
– volume: 25
  start-page: 89
  year: 2007
  ident: 1527_CR57
  publication-title: J. Comput. Math.
– volume: 96
  start-page: 1533
  issue: 8
  year: 2019
  ident: 1527_CR23
  publication-title: Inter. J. Comput. Math.
  doi: 10.1080/00207160.2018.1494825
– volume: 74
  start-page: 3570
  issue: 11
  year: 2011
  ident: 1527_CR61
  publication-title: Nonlinear Anal. Theor.
  doi: 10.1016/j.na.2011.02.040
– volume-title: Finite-dimensional Variational Inequalities and Complementarity Problems
  year: 2003
  ident: 1527_CR1
– volume: 1
  start-page: 586
  issue: 4
  year: 2007
  ident: 1527_CR62
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2007.910281
– ident: 1527_CR43
  doi: 10.1007/s11075-022-01356-1
– volume: 36
  start-page: 54
  issue: 1
  year: 1986
  ident: 1527_CR63
  publication-title: Math. Program.
  doi: 10.1007/BF02591989
– volume: 403
  year: 2022
  ident: 1527_CR21
  publication-title: J. Comput. Appl. Math.
– volume: 16
  start-page: 143
  issue: 2
  year: 1990
  ident: 1527_CR2
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/78928.78930
– volume: 420
  year: 2023
  ident: 1527_CR38
  publication-title: J. Comput. Appl. Math.
– volume: 47
  start-page: 333
  issue: 2
  year: 2017
  ident: 1527_CR40
  publication-title: Sci. Sin. Math.
  doi: 10.1360/N012016-00134
– volume: 29
  issue: 3
  year: 2022
  ident: 1527_CR44
  publication-title: Numer. Linear Algebra Appl.
– volume: 19
  start-page: 30
  issue: 1
  year: 2023
  ident: 1527_CR45
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2021173
– volume: 424
  year: 2023
  ident: 1527_CR52
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2022.115020
– volume: 82
  start-page: 245
  year: 2019
  ident: 1527_CR34
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0603-2
– volume: 181
  start-page: 417
  year: 2022
  ident: 1527_CR46
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2022.06.015
– volume: 29
  start-page: 583
  issue: 3
  year: 2014
  ident: 1527_CR15
  publication-title: Optim. Meth. Softw.
  doi: 10.1080/10556788.2013.833199
– volume: 111
  start-page: 5469
  year: 2023
  ident: 1527_CR51
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-08013-1
– volume: 81
  start-page: 197
  year: 2019
  ident: 1527_CR18
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0541-z
– volume: 18
  start-page: 583
  issue: 5
  year: 2003
  ident: 1527_CR58
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780310001610493
– volume: 5
  start-page: 1457
  year: 2004
  ident: 1527_CR64
  publication-title: J. Mach. Learn. Res.
– volume: 54
  start-page: 503
  year: 2010
  ident: 1527_CR50
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-009-9350-8
– volume: 36
  start-page: 998
  year: 2021
  ident: 1527_CR19
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2019.1653868
– volume: 419
  year: 2023
  ident: 1527_CR48
  publication-title: J. Comput. Appl. Math.
– volume: 81
  start-page: 197
  issue: 1
  year: 2019
  ident: 1527_CR32
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0541-z
– ident: 1527_CR55
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 1527_CR60
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 5
  start-page: 319
  issue: 4
  year: 1995
  ident: 1527_CR3
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789508805619
– volume: 30
  issue: 2
  year: 2023
  ident: 1527_CR26
  publication-title: Numer. Linear Algebra Appl.
– volume: 57
  start-page: 43
  issue: 1
  year: 2023
  ident: 1527_CR16
  publication-title: RAIRO-Oper. Res.
  doi: 10.1051/ro/2022213
– start-page: 355
  volume-title: Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods
  year: 1998
  ident: 1527_CR17
  doi: 10.1007/978-1-4757-6388-1_18
– volume: 2013
  year: 2013
  ident: 1527_CR30
  publication-title: J. Appl. Math.
– volume: 54
  start-page: 981
  issue: 4
  year: 2020
  ident: 1527_CR12
  publication-title: RAIRO-Oper. Res.
  doi: 10.1051/ro/2019045
– volume: 85
  start-page: 377
  year: 2023
  ident: 1527_CR20
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-022-01213-4
– volume: 43
  start-page: 388
  issue: 3
  year: 2021
  ident: 1527_CR35
  publication-title: Math. Numer. Sin.
– volume: 53
  start-page: 399
  year: 2018
  ident: 1527_CR28
  publication-title: Calcolo
  doi: 10.1007/s10092-015-0154-z
– volume: 91
  start-page: 201
  issue: 2
  year: 2002
  ident: 1527_CR56
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– volume: 118
  start-page: 393
  year: 2023
  ident: 1527_CR10
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2023.01.018
– volume: 147
  start-page: 129
  year: 2020
  ident: 1527_CR22
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2019.08.022
– volume: 234
  start-page: 625
  issue: 3
  year: 2014
  ident: 1527_CR11
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2013.11.012
– year: 2022
  ident: 1527_CR24
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-022-01483-9
– volume: 88
  start-page: 389
  year: 2021
  ident: 1527_CR5
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-020-01043-z
– volume: 391
  year: 2021
  ident: 1527_CR6
  publication-title: J. Comput. Appl. Math.
– volume: 42
  start-page: 457
  issue: 4
  year: 2020
  ident: 1527_CR53
  publication-title: Math. Numer. Sin.
– volume: 9
  start-page: 117
  issue: 1
  year: 2013
  ident: 1527_CR31
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2013.9.117
– volume: 55
  start-page: 53
  year: 2018
  ident: 1527_CR33
  publication-title: Calcolo
  doi: 10.1007/s10092-018-0291-2
SSID ssj0010027
Score 2.502872
Snippet Al-Baali et al. ( Comput. Optim. Appl. 60:89–110, 2015) have proposed a three-term conjugate gradient method which satisfies a sufficient descent condition and...
Al-Baali et al. (Comput. Optim. Appl. 60:89–110, 2015) have proposed a three-term conjugate gradient method which satisfies a sufficient descent condition and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1055
SubjectTerms Algebra
Algorithms
Computer Science
Conjugate gradient method
Continuity (mathematics)
Convergence
Iterative methods
Mathematical analysis
Methods
Nonlinear equations
Numeric Computing
Numerical Analysis
Optimization
Original Paper
Regression analysis
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbKlgMcKJRWFAqaAzewtPEmG_u4QlS9tEK0oN4i12MjULXbxtmqL8h7MeM4u1AVpHLIIV4n8WrG3_x5ZoR4y921bbATWbmaDJRQK2msctJ5PdVBW43OpWYT9fGxPjszn3JSWBxOuw8hyYTU62Q3slQ4m5jP_1SKsPWB2CRxp3k7fj75uoodsKWVYpyEv6Tf6Jwqc_c7_hRHax3zVlg0SZuDrf9b51PxJGuXMOvZ4ZnY8PNtsZU1Tcj7ONLQ0MxhGNsWj49WBVzjc_FzBr3rAxYBOqK3l4zhQNbzjyV73uBbmw6LdZB9OURf6NtRR2DnLljgth_EmZCEJC5bD3aOkEITwDk0Nx4l5x4SyFxA8saz6y4C6dE8iz8WUwsLWvu8L-lhW7iMfokLSdtnwYXEwV_11cqHz_4Wkd8RXw4-nn44lLnjg3QEBZ3Ec5yMXenKmgQnGTKExqWxBWJRTLGsQn2uFLES39GoN3R5DKoOBQaDZZjsihGtx78Q4NRYozXaICFOQNLDzLiy02qirJlipfdEMRC-cbkcOv-li2ZdyJkJ2RAhm0TIhp55t3rmsi8G8s_Z-wM_NRkYYqMMF98inbTeE-8H_ln__Pe3vbzf9FfikWIWTFmT-2LUtUv_Wjx019332L5JG-YXdbUU4g
  priority: 102
  providerName: Springer Nature
Title A family of three-term conjugate gradient projection methods with a restart procedure and their relaxed-inertial extensions for the constrained nonlinear pseudo-monotone equations with applications
URI https://link.springer.com/article/10.1007/s11075-023-01527-8
https://www.proquest.com/docview/2918579297
Volume 94
WOSCitedRecordID wos000986804900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAHCgVEoazmwA0sNt5kY59QQa2QEKuqBdRb5HpsBKp2t3G26h_kfzHjOLuARC8cslKyeTjyl29enhkhXnJ3bRvsRFauJgMl1Eoaq5x0Xk910Fajc6nZRD2b6bMzc5wdbjEvqxw4MRE1Lhz7yN8ow1WLSJjXb5eXkrtGcXQ1t9C4LbYLpQrG-cdarqMIbHOlaCcxMWk6OifN9KlzZPdwbjKvJqoUMfWfgmmjbf4VIE1y52jnf0f8QNzPGicc9BB5KG75-a7Yydon5G877op7n9YVXOMj8fMAet8HLAJ0NOFeMokDmc8_Vux6g29tWi3WQXbm0ARD3486Ant3wQL3_SBoQpKSuGo92DlCik0AJ9Fce5ScfEgscwHJHc--uwikSPNZ_LCYeljQQOd9TQ_bwjL6FS4kvd6CK4mDv-zLlQ-P_S0k_1h8OTr8_P6DzC0fpCMu6CSe42TsSlfWJDnJkiE6Lo0tEItiimUV6nOlCEu8R0e9oc1jUHUoMBgsw-SJ2KLx-KcCnBprtEYbJMoJSIqYGVd2Wk2UNVOs9J4ohvluXK6Hzq900WwqOTNGGsJIkzDS0DWv1tcs-2ogN569PwCjycwQmw0q9sTrAVqbv_99t2c33-25uKsYzSlNcl9sde3KvxB33FX3PbYjsf3ucHZ8Mkrfx4gXuJ7S78np119OlRw1
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQcKBQQhQJzgBOsGm_sePeAUAVUrdpGSBSpN7PdBwJVcWo7QP9U_0X_V2fWdgJI9NYDhxyS2OvN5pv3C-AFT9c2wQxFZnMyUEIuhTbSCuvVSAVllLM2DpvIx2N1eKg_LsFZXwvDaZU9T4yM2pWWfeQbUnPXIhLm-dvpieCpURxd7UdotLDY9ac_yWSr3-y8p__3pZRbHw7ebYtuqoCwBLdGuCM3HNjUpjkxZ1KWieJTbRLnkmTk0izkR1LSdvkdfeo1vbwLMg-JC9qlYUjrXoPrKXP_mCr4aR61YBsvRleJ85NmpboinbZUj-wsroXm7KVMkmT4UxAutNu_ArJRzm2t_G8ndBfudBo1brYkcA-W_GQVVjrtGjveVa_C7f15h9r6PpxvYuvbwTJgQ4D2goUU2nLyfcauRfxaxWy4BjtnFQEY23nbNbL3Gg3yXBMiPYxagJtVHs3EYYy9IBcJ_fJOcHElcdFjjOEG9k3WSIYCX8UPq-OMDtropO1ZYiqc1n7mSkHHWXKndPQnbTv2_rG_pRw8gM9XcrQPYZn24x8BWjlQzmilHbHU4EjR1IPMjLKhNHrkMrUGSY-vwnb93vknHReLTtWMyYIwWURMFnTPq_k907bbyaVXr_dALDrOVxcLFK7B6x7Ki6__vdrjy1d7Dje3D_b3ir2d8e4TuCWZkmJJ6DosN9XMP4Ub9kfzra6eRZpE-HLVEL8ADZJ2jQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQagcKBQQhQJz4AZWN95kYx8rYAUCVpV4qLfI9dgVqNrdJlnEH-R_MeMkuwUBEuKQQxy_Io_H8_B8A_BEsmu76Maq8CUrKLHUyjrtlQ9mYqJxhrxPySbK2cwcH9ujC1H86bb74JLsYhoEpWneHiwpHmwC31hrkchiuQtUaOazl-FKLkmDRF9__2ntRxCtK_k7mRezrGP6sJnf9_Hz0bSRN39xkaaTZ7rz_3O-CTd6qRMPOzK5BZfCfBd2egkU-_3dcNGQ5GEo24Xr79bArs1t-H6InUkEFxFbpoOghLcjT-XLSixyeFqnS2Qt9jYeXnfs0lQ3KEZfdCjpQJhiMR2etKoDujlhclmgxNZ8C6QkJpGZzxkmK72Y9Bpk-VpqyWBNSm3Bc593UB-uxmUTVrRQvK0WAjCO4bxDMR-GveCpvwMfpy8_PH-l-kwQyjOLaBWd0Hjkc5-XfKCygsNcOrcuI8qyCeVFLE-0ZhKTNy4Nlp9AUZcxo2gpj-O7sMXzCfcAvR4ZctZYYk4UieUzOyrcpBhrZydUmD3IBiKofA-TLr90Vm0AnmUhK17IKi1kxW2ertssO5CQv9beH2ir6hlGU2kroFwsq5Z78Gygpc3nP_d2_9-qP4ZrRy-m1dvXszcPYFsLNabAyn3YautVeAhX_df2c1M_SvvoBxz3IKo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+family+of+three-term+conjugate+gradient+projection+methods+with+a+restart+procedure+and+their+relaxed-inertial+extensions+for+the+constrained+nonlinear+pseudo-monotone+equations+with+applications&rft.jtitle=Numerical+algorithms&rft.au=Liu%2C+Pengjie&rft.au=Shao%2C+Hu&rft.au=Yuan%2C+Zihang&rft.au=Wu%2C+Xiaoyu&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=94&rft.issue=3&rft.spage=1055&rft.epage=1083&rft_id=info:doi/10.1007%2Fs11075-023-01527-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon