A deep learning approach for anomaly detection in large-scale Hajj crowds
Hajj is an annual Islamic event attended by millions of pilgrims every year from around the globe. It is considered to be the biggest religious event that includes large human crowds in the world. Managing such crowds and detecting abnormal behaviors is one of the most significant challenges for the...
Gespeichert in:
| Veröffentlicht in: | The Visual computer Jg. 40; H. 8; S. 5589 - 5603 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0178-2789, 1432-2315 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hajj is an annual Islamic event attended by millions of pilgrims every year from around the globe. It is considered to be the biggest religious event that includes large human crowds in the world. Managing such crowds and detecting abnormal behaviors is one of the most significant challenges for the host country, particularly the crowds of pilgrims. Most of the current solutions can only handle small-scale crowd management issues, that involve simple and clear abnormal behaviors. Therefore, there is a need to have a human abnormal behavior detection approach that can deal with large-scale crowd situations. This study aims to propose a computer vision-based framework that automatically analyzes video sequences and detects human abnormal behaviors. The Convolutional LSTM Autoencoder is used for analyzing video scenes and extracting valuable spatial and temporal features. The proposed approach has achieved a good loss reduction of 0.176587 in detecting abnormal pilgrims’ behavior. The results demonstrate a promising picture of the effectiveness of computer vision technologies to detect abnormal behavior in large-scale crowds. |
|---|---|
| AbstractList | Hajj is an annual Islamic event attended by millions of pilgrims every year from around the globe. It is considered to be the biggest religious event that includes large human crowds in the world. Managing such crowds and detecting abnormal behaviors is one of the most significant challenges for the host country, particularly the crowds of pilgrims. Most of the current solutions can only handle small-scale crowd management issues, that involve simple and clear abnormal behaviors. Therefore, there is a need to have a human abnormal behavior detection approach that can deal with large-scale crowd situations. This study aims to propose a computer vision-based framework that automatically analyzes video sequences and detects human abnormal behaviors. The Convolutional LSTM Autoencoder is used for analyzing video scenes and extracting valuable spatial and temporal features. The proposed approach has achieved a good loss reduction of 0.176587 in detecting abnormal pilgrims’ behavior. The results demonstrate a promising picture of the effectiveness of computer vision technologies to detect abnormal behavior in large-scale crowds. |
| Author | Albattah, Waleed Aldayri, Amnah |
| Author_xml | – sequence: 1 givenname: Amnah surname: Aldayri fullname: Aldayri, Amnah organization: Department of Information Technology, College of Computer, Qassim University – sequence: 2 givenname: Waleed orcidid: 0000-0003-0292-7304 surname: Albattah fullname: Albattah, Waleed email: w.albattah@qu.edu.sa organization: Department of Information Technology, College of Computer, Qassim University |
| BookMark | eNp9kEFLAzEQhYNUsK3-AU8Bz9FMku5mj6WoLRQ86D1ks0ndZZtdky3Sf2_aFQQPhYFh4H0zb94MTXznLUL3QB-B0vwpUspzIJRxQjkwQeAKTUFwRhiHxQRNKeSSsFwWN2gWY0PTnItiijZLXFnb49bq4Gu_w7rvQ6fNJ3ZdwNp3e90ek2SwZqg7j2uPWx12lkSjW4vXummwCd13FW_RtdNttHe_fY7eX54_VmuyfXvdrJZbYjgUA6nKMuPW2GzBhCiEKUvuZJ4BQCZcJhnXJltUthSSQcm1dTyThlENjldO8jl6GLcml18HGwfVdIfg00HFqRQAqSCp2KhK1mIM1qk-1HsdjgqoOgWmxsBUCkydA1MnSP6DTD3o09dD0HV7GeUjGtMdv7Phz9UF6gecnIDd |
| CitedBy_id | crossref_primary_10_1007_s40747_024_01422_2 crossref_primary_10_1109_ACCESS_2025_3532385 crossref_primary_10_1016_j_eswa_2024_125504 crossref_primary_10_3390_electronics13244925 |
| Cites_doi | 10.1109/ACCESS.2020.2982906 10.1007/978-981-33-4673-4_18 10.1109/ACCESS.2017.2762418 10.1007/s11760-020-01740-1 10.1109/Confluence51648.2021.9377055 10.3390/s18051308 10.1109/SMC42975.2020.9282971 10.1016/j.neucom.2020.07.058 10.1007/s11227-020-03391-y 10.1051/itmconf/20203203040 10.1016/j.neucom.2021.01.031 10.11591/eei.v10i5.2361 10.1109/INDIACom51348.2021.00067 10.1109/ACCESS.2019.2906275 10.1109/ICCV.2019.00179 10.1007/s11042-021-10667-9 10.1016/j.patcog.2020.107355 10.1016/j.ins.2019.05.023 10.1016/j.media.2019.01.010 10.1016/j.neucom.2019.07.034 10.3390/app11136153 10.1007/978-3-319-30927-9_2 10.3390/s18103573 10.3390/ijgi11030205 10.1007/978-981-13-2622-6_4 10.1016/j.cviu.2018.02.006 10.1016/j.aei.2020.101105 10.1016/j.neucom.2020.08.087 10.1109/JIOT.2020.3009180 10.1109/WACV51458.2022.00306 10.1177/1475921718757405 10.4218/etrij.2020-0052 10.1109/ICIMIA48430.2020.9074920 10.1016/j.patcog.2019.107112 10.1007/978-3-030-73100-7_60 10.22937/IJCSNS.2021.21.4.18 10.3390/s21082811 10.1007/s11263-020-01427-7 10.1007/s12652-021-03323-5 10.1016/j.engappai.2017.10.001 10.3390/electronics12051165 10.3390/aerospace6110117 10.1109/TNNLS.2023.3274926 10.1109/IJCNN.2018.8489068 10.1016/j.procs.2022.01.057 10.1007/s41870-017-0029-4 10.1109/INMIC50486.2020.9318140 10.3390/s19112472 10.1145/3357254.3357273 10.3390/s21248291 10.24818/issn14531305/25.1.2021.06 10.1016/j.ssci.2011.10.011 10.1016/j.ins.2019.10.069 10.1109/ACCESS.2020.2990355 10.1007/978-981-15-0135-7_46 10.1016/j.imavis.2021.104229 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00371-023-03124-1 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1432-2315 |
| EndPage | 5603 |
| ExternalDocumentID | 10_1007_s00371_023_03124_1 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-dbb63ece6524494cbb3f87611164f6823ac65deb4821b3aef368c20a1f3df83 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090630400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-2789 |
| IngestDate | Wed Nov 05 04:18:03 EST 2025 Tue Nov 18 22:12:27 EST 2025 Sat Nov 29 02:23:32 EST 2025 Fri Feb 21 02:40:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Surveillance system Human crowd Abnormal behavior Mass gathering Anomaly detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-dbb63ece6524494cbb3f87611164f6823ac65deb4821b3aef368c20a1f3df83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0292-7304 |
| PQID | 3084114111 |
| PQPubID | 2043737 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3084114111 crossref_primary_10_1007_s00371_023_03124_1 crossref_citationtrail_10_1007_s00371_023_03124_1 springer_journals_10_1007_s00371_023_03124_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20240800 2024-08-00 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | International Journal of Computer Graphics |
| PublicationTitle | The Visual computer |
| PublicationTitleAbbrev | Vis Comput |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | ZhangXHanYXuWWangQHOBA: a novel feature engineering methodology for credit card fraud detection with a deep learning architectureInf. Sci. (NY)202155730231610.1016/j.ins.2019.05.023 SonkarRRathodSJadhavRPatilDCrowd abnormal behaviour detection using deep learningITM Web Conf.2020320304010.1051/itmconf/20203203040 Abi Sen, A.A., Alsaawy, Y., Alkhodre, A., Bahbouh, N.M., and Alhaboob, M.: Smart street design for managing crowds in Hajj. In: Proceedings of the 2021 8th International Conference on Computing for Sustainable Global Development, INDIACom 2021, pp. 385–389 (2021). https://doi.org/10.1109/INDIACom51348.2021.00067 Shaukat, K. et al.: A review of time-series anomaly detection techniques: a step to future perspectives, pp. 865–877 (2021). https://doi.org/10.1007/978-3-030-73100-7_60 SiddiquiAAGwynneSMVEmploying pedestrian observations in engineering analysisSaf. Sci.201250347849310.1016/j.ssci.2011.10.011 LiAMiaoZCenYZhangX-PZhangLChenSAbnormal event detection in surveillance videos based on low-rank and compact coefficient dictionary learningPattern Recognit.202010810735510.1016/j.patcog.2020.107355 Nguyen, D.T. et al.: Anomaly detection with multiple-hypotheses predictions. International Conference on Machine Learning. PMLR (2019) YangJBridge health anomaly detection using deep support vector data descriptionNeurocomputing202144417017810.1016/j.neucom.2020.08.087 Gong, D. et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (2019) SainiDKAhirDGanatraATechniques and challenges in building intelligent systems: anomaly detection in camera surveillanceSmart Innov. Syst. Technol.201651112110.1007/978-3-319-30927-9_2 Gudi, A., Büttner, F., and van Gemert, J.: Proximally sensitive error for anomaly detection and feature learning, Jun. (2022) [Online]. Available: http://arxiv.org/abs/2206.00506 GuanYHuWHuXAbnormal behavior recognition using 3D-CNN combined with LSTMMultimed. Tools Appl.20218012187871880110.1007/s11042-021-10667-9 UllahFUMUllahAMuhammadKHaqIUBaikSWViolence detection using spatiotemporal features with 3D convolutional neural networkSensors (Switzerland)20191911247210.3390/s19112472 SongWZhangDZhaoXYuJZhengRWangAA novel violent video detection scheme based on modified 3D convolutional neural networksIEEE Access20197391723917910.1109/ACCESS.2019.2906275 Madhuri, G.S., and Usha Rani, M.: Statistical approaches to detect anomalies, pp. 499–509 (2020). https://doi.org/10.1007/978-981-15-0135-7_46 YinCZhuYFeiJHeXA deep learning approach for intrusion detection using recurrent neural networksIEEE Access20175219542196110.1109/ACCESS.2017.2762418 Aytekin, C. et al.: Clustering and unsupervised anomaly detection with l 2 normalized deep auto encoder representations. 2018 International Joint Conference on Neural Networks (IJCNN). IEEE (2018) General Authority for statistics, Hajj and Umrah Statistics (2022). https://www.stats.gov.sa/ar (Accessed 25 Sep 2022) Park, Y.H.: Concise logarithmic loss function for robust training of anomaly detection model. arXiv preprint: arXiv:2201.05748 (2022) BasahelAYaminMMeasuring success of e-government of Saudi ArabiaInt. J. Inf. Technol. (Singapore)20179328729310.1007/s41870-017-0029-4 Owaidah, A., Olaru, D., Bennamoun, M., Sohel, F.-D., and Khan, N.: Review of Modelling and Simulating Crowds at Mass Gathering Events: Hajj as a Case Study LiuHTangXShenSDepth-map completion for large indoor scene reconstructionPattern Recognit.20209910711210.1016/j.patcog.2019.107112 Lee, S.-W.: Detection of abnormal behavior with self-supervised gaze estimation, Jul. (2021) [Online]. Available: http://arxiv.org/abs/2107.06530 DirekogluCAbnormal crowd behavior detection using motion information images and convolutional neural networksIEEE Access20208804088041610.1109/ACCESS.2020.2990355 Aqeel, M., Khan, K.B., Azam, M.A., Ghouri, M.H., Khalid, H.-R., and Jaskani, F.H.: Detection of anomaly in videos using convolutional autoencoder and generative adversarial network model. In: 2020 IEEE 23rd International Multitopic Conference (INMIC), pp. 1–6 (2020). https://doi.org/10.1109/INMIC50486.2020.9318140 Basora, L., Olive, X., and Dubot, T.: Recent advances in anomaly detection methods applied to aviation. Aerospace 6(11), 117 (2019). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/aerospace6110117 VoicanOCredit card fraud detection using deep learning techniquesInform. Econ.2021251/2021708510.24818/issn14531305/25.1.2021.06 BhuiyanRHajj pilgrimage video analytics using CNNBull. Electr. Eng. Inform.20211052598260610.11591/eei.v10i5.2361 HabibSAbnormal activity recognition from surveillance videos using convolutional neural networkSensors20212124829110.3390/s21248291 KimDKimHMokYPaikJReal-time surveillance system for analyzing abnormal behavior of pedestriansAppl. Sci. (Switzerland)20211113615310.3390/app11136153 UsmanIAlbesherAAAbnormal crowd behavior detection using heuristic search and motion awarenessInt. J. Comput. Sci. Netw. Secur.202121413113910.22937/IJCSNS.2021.21.4.18 KoKESimKBDeep convolutional framework for abnormal behavior detection in a smart surveillance systemEng. Appl. Artif. Intell.20186722623410.1016/j.engappai.2017.10.001 UllahWUllahAHussainTKhanZABaikSWAn efficient anomaly recognition framework using an attention residual LSTM in surveillance videosSensors2021218281110.3390/s21082811 GaoJOmni SCADA intrusion detection using deep learning algorithmsIEEE Internet Things J.20218295196110.1109/JIOT.2020.3009180 AlafifTAlzahraniBCaoYAlotaibiRBarnawiAChenMGenerative adversarial network based abnormal behavior detection in massive crowd videos: a Hajj case studyJ. Ambient Intell. Humaniz Comput.20211310.1007/s12652-021-03323-5 OhDYYunIDResidual error based anomaly detection using auto-encoder in SMD machine soundSensors2018185130810.3390/s18051308 XiaLLiZA new method of abnormal behavior detection using LSTM network with temporal attention mechanismJ. Supercomput.20217743223324110.1007/s11227-020-03391-y DeepakKChandrakalaSMohanCKResidual spatiotemporal autoencoder for unsupervised video anomaly detectionSignal Image Video Process.202115121522210.1007/s11760-020-01740-1 SikdarAChowdhuryASAn adaptive training-less framework for anomaly detection in crowd scenesNeurocomputing202041531733110.1016/j.neucom.2020.07.058 Ma, J., Xu, Y., Zhang, Y., and Jiang, Y.: An abnormal behavior detection method of video crowds and vehicles based on deep learning. In: ACM International Conference Proceeding Series, pp. 10–12 (2019). https://doi.org/10.1145/3357254.3357273 Doshi, K., and Yilmaz, Y.: A Modular and Unified Framework for Detecting and Localizing Video Anomalies (2021) [Online]. Available: http://arxiv.org/abs/2103.11299 CanizoMTrigueroICondeAOnievaEMulti-head CNN–RNN for multi-time series anomaly detection: an industrial case studyNeurocomputing201936324626010.1016/j.neucom.2019.07.034 Brownlee, J. (2020) How to choose loss functions when Training Deep Learning Neural Networks, MachineLearningMastery.com. Available at: https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/ (Accessed: 08 September 2023) TraoreAAkhloufiMAViolence detection in videos using deep recurrent and convolutional neural networksIEEE Trans. Syst. Man Cybern. Syst.2020202015415910.1109/SMC42975.2020.9282971 Yang, J., Xu, R., Qi, Z., Shi, Y.: Visual anomaly detection for images: a survey. (2021). arXiv preprint arXiv:2109.13157 SchleglTf-AnoGAN: fast unsupervised anomaly detection with generative adversarial networksMed. Image Anal.201954304410.1016/j.media.2019.01.010 SabokrouMFayyazMFathyMMoayedZKletteRDeep-anomaly: fully convolutional neural network for fast anomaly detection in crowded scenesComput. Vis. Image Underst.2018172889710.1016/j.cviu.2018.02.006 Al-DhamariASudirmanRMahmoodNHTransfer deep learning along with binary support vector machine for abnormal behavior detectionIEEE Access20208610856109510.1109/ACCESS.2020.2982906 BaoYTangZLiHZhangYComputer vision and deep learning–based data anomaly detection method for structural health monitoringStruct. Health Monit.201918240142110.1177/1475921718757405 MansourRFEscorcia-GutierrezJGamarraMVillanuevaJALealNIntelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning modelImage Vis. Comput.202111210422910.1016/j.imavis.2021.104229 Tahura, S., Hasnat Samiul, S.M., Shamim Kaiser, M., and Mahmud, M.: Anomaly Detection in Electroencephalography Signal Using Deep Learning Model, pp. 205–217 (2021). https://doi.org/10.1007/978-981-33-4673-4_18 ChowJKAnomaly detection of defects on concrete structures with the convolutional autoencoderAdv. Eng. Inform.20204510110510.1016/j.aei.2020.101105 ParkYHWonSPYeongBKAnomaly detection in particulate matter sensor using hypothesis pruning generative adversarial networkETRI J.20204351152310.4218/etrij.2020-0052 WangQMaYZhaoKTianYA comprehensive survey of loss functions in machine learningAnn. Data Sci.202092126 Liu, H., Jin, F., Zeng, H., Pu, H., Fan, B.: Image enhancement guided object detection in visually degraded scenes. In: IEEE Transactions on Neural Networks and Learning Systems (2023) Saudi Press Agency, Hajj Crowd (2019). https://www.spa.gov.sa (Accessed 24 Sep 2022). Alafif, T., Hadi, A., Allahyani, M., Alzahrani, B., Alhothali, A., Alotaibi, R., Barnawi, A.: Hybrid classifiers for spatio-temporal real-time abnormal behaviors detection, tracking, and recognition in massive hajj crowds (2022). arXiv preprint arXiv:2207.11931 LinWGaoJWangQLiXLearning to detect anomaly events in crowd scenes from synthetic dataNeurocomputing202143624825910.1016/j.neucom.2021.01.031 Amrutha, C.V., Jyotsna, C., and Amudha, J.: Deep learning approach for suspicious activity detection from surveillance video. In: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), pp. 335–339. IEEE (2020) FengJCrowd anoma M Canizo (3124_CR12) 2019; 363 DY Oh (3124_CR44) 2018; 18 MM Hassan (3124_CR21) 2020; 513 A Li (3124_CR18) 2020; 108 DK Saini (3124_CR2) 2016; 51 K Deepak (3124_CR28) 2021; 15 O Voican (3124_CR23) 2021; 25 A Al-Dhamari (3124_CR59) 2020; 8 3124_CR35 3124_CR38 J Gao (3124_CR20) 2021; 8 T Alafif (3124_CR19) 2021; 1 L Xia (3124_CR56) 2021; 77 3124_CR41 I Usman (3124_CR16) 2021; 21 3124_CR40 3124_CR43 JK Chow (3124_CR48) 2020; 45 M Sabokrou (3124_CR65) 2018; 172 R Sonkar (3124_CR34) 2020; 32 X Zhang (3124_CR24) 2021; 557 AA Siddiqui (3124_CR4) 2012; 50 Y Guan (3124_CR33) 2021; 80 YH Park (3124_CR45) 2018; 18 W Song (3124_CR62) 2019; 7 3124_CR46 D Kim (3124_CR53) 2021; 11 T Schlegl (3124_CR47) 2019; 54 FUM Ullah (3124_CR10) 2019; 19 S Habib (3124_CR31) 2021; 21 A Basahel (3124_CR9) 2017; 9 3124_CR6 3124_CR50 3124_CR7 3124_CR8 3124_CR52 3124_CR51 3124_CR54 3124_CR11 W Lin (3124_CR15) 2021; 436 3124_CR1 H Liu (3124_CR37) 2020; 99 A Sikdar (3124_CR64) 2020; 415 3124_CR3 3124_CR5 C Direkoglu (3124_CR60) 2020; 8 3124_CR14 3124_CR13 3124_CR57 3124_CR17 C Yin (3124_CR22) 2017; 5 3124_CR61 A Traore (3124_CR58) 2020; 2020 KE Ko (3124_CR63) 2018; 67 X Gao (3124_CR36) 2021; 129 RF Mansour (3124_CR39) 2021; 112 Q Wang (3124_CR42) 2020; 9 R Bhuiyan (3124_CR32) 2021; 10 J Feng (3124_CR30) 2022; 11 3124_CR25 J Yang (3124_CR26) 2021; 444 Y Bao (3124_CR27) 2019; 18 YH Park (3124_CR49) 2020; 43 3124_CR29 W Ullah (3124_CR55) 2021; 21 |
| References_xml | – reference: MansourRFEscorcia-GutierrezJGamarraMVillanuevaJALealNIntelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning modelImage Vis. Comput.202111210422910.1016/j.imavis.2021.104229 – reference: Tay, N.C., Connie, T., Ong, T. S., Goh, K. O. M., Teh, P.S.: A robust abnormal behavior detection method using convolutional neural network. In: Computational Science and Technology: 5th ICCST 2018, Kota Kinabalu, Malaysia, 29-30 August 2018, pp. 37–47. Springer Singapore (2019) – reference: SongWZhangDZhaoXYuJZhengRWangAA novel violent video detection scheme based on modified 3D convolutional neural networksIEEE Access20197391723917910.1109/ACCESS.2019.2906275 – reference: UllahWUllahAHussainTKhanZABaikSWAn efficient anomaly recognition framework using an attention residual LSTM in surveillance videosSensors2021218281110.3390/s21082811 – reference: DirekogluCAbnormal crowd behavior detection using motion information images and convolutional neural networksIEEE Access20208804088041610.1109/ACCESS.2020.2990355 – reference: SonkarRRathodSJadhavRPatilDCrowd abnormal behaviour detection using deep learningITM Web Conf.2020320304010.1051/itmconf/20203203040 – reference: HassanMMGumaeiAAlsanadAAlrubaianMFortinoGA hybrid deep learning model for efficient intrusion detection in big data environmentInf. Sci. (NY)202051338639610.1016/j.ins.2019.10.069 – reference: Doshi, K., and Yilmaz, Y.: A Modular and Unified Framework for Detecting and Localizing Video Anomalies (2021) [Online]. Available: http://arxiv.org/abs/2103.11299 – reference: BaoYTangZLiHZhangYComputer vision and deep learning–based data anomaly detection method for structural health monitoringStruct. Health Monit.201918240142110.1177/1475921718757405 – reference: Basora, L., Olive, X., and Dubot, T.: Recent advances in anomaly detection methods applied to aviation. Aerospace 6(11), 117 (2019). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/aerospace6110117 – reference: Gong, D. et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (2019) – reference: XiaLLiZA new method of abnormal behavior detection using LSTM network with temporal attention mechanismJ. Supercomput.20217743223324110.1007/s11227-020-03391-y – reference: YinCZhuYFeiJHeXA deep learning approach for intrusion detection using recurrent neural networksIEEE Access20175219542196110.1109/ACCESS.2017.2762418 – reference: Tahura, S., Hasnat Samiul, S.M., Shamim Kaiser, M., and Mahmud, M.: Anomaly Detection in Electroencephalography Signal Using Deep Learning Model, pp. 205–217 (2021). https://doi.org/10.1007/978-981-33-4673-4_18 – reference: Lee, S.-W.: Detection of abnormal behavior with self-supervised gaze estimation, Jul. (2021) [Online]. Available: http://arxiv.org/abs/2107.06530 – reference: ZhangXHanYXuWWangQHOBA: a novel feature engineering methodology for credit card fraud detection with a deep learning architectureInf. Sci. (NY)202155730231610.1016/j.ins.2019.05.023 – reference: GaoJOmni SCADA intrusion detection using deep learning algorithmsIEEE Internet Things J.20218295196110.1109/JIOT.2020.3009180 – reference: Ma, J., Xu, Y., Zhang, Y., and Jiang, Y.: An abnormal behavior detection method of video crowds and vehicles based on deep learning. In: ACM International Conference Proceeding Series, pp. 10–12 (2019). https://doi.org/10.1145/3357254.3357273 – reference: OhDYYunIDResidual error based anomaly detection using auto-encoder in SMD machine soundSensors2018185130810.3390/s18051308 – reference: Owaidah, A., Olaru, D., Bennamoun, M., Sohel, F.-D., and Khan, N.: Review of Modelling and Simulating Crowds at Mass Gathering Events: Hajj as a Case Study – reference: SainiDKAhirDGanatraATechniques and challenges in building intelligent systems: anomaly detection in camera surveillanceSmart Innov. Syst. Technol.201651112110.1007/978-3-319-30927-9_2 – reference: GaoXIncremental rotation averagingInt. J. Comput. Vis.20211291202121610.1007/s11263-020-01427-7 – reference: Al-DhamariASudirmanRMahmoodNHTransfer deep learning along with binary support vector machine for abnormal behavior detectionIEEE Access20208610856109510.1109/ACCESS.2020.2982906 – reference: YangJBridge health anomaly detection using deep support vector data descriptionNeurocomputing202144417017810.1016/j.neucom.2020.08.087 – reference: VoicanOCredit card fraud detection using deep learning techniquesInform. Econ.2021251/2021708510.24818/issn14531305/25.1.2021.06 – reference: KimDKimHMokYPaikJReal-time surveillance system for analyzing abnormal behavior of pedestriansAppl. Sci. (Switzerland)20211113615310.3390/app11136153 – reference: Abi Sen, A.A., Alsaawy, Y., Alkhodre, A., Bahbouh, N.M., and Alhaboob, M.: Smart street design for managing crowds in Hajj. In: Proceedings of the 2021 8th International Conference on Computing for Sustainable Global Development, INDIACom 2021, pp. 385–389 (2021). https://doi.org/10.1109/INDIACom51348.2021.00067 – reference: CanizoMTrigueroICondeAOnievaEMulti-head CNN–RNN for multi-time series anomaly detection: an industrial case studyNeurocomputing201936324626010.1016/j.neucom.2019.07.034 – reference: UllahFUMUllahAMuhammadKHaqIUBaikSWViolence detection using spatiotemporal features with 3D convolutional neural networkSensors (Switzerland)20191911247210.3390/s19112472 – reference: Aqeel, M., Khan, K.B., Azam, M.A., Ghouri, M.H., Khalid, H.-R., and Jaskani, F.H.: Detection of anomaly in videos using convolutional autoencoder and generative adversarial network model. In: 2020 IEEE 23rd International Multitopic Conference (INMIC), pp. 1–6 (2020). https://doi.org/10.1109/INMIC50486.2020.9318140 – reference: WangQMaYZhaoKTianYA comprehensive survey of loss functions in machine learningAnn. Data Sci.202092126 – reference: Amrutha, C.V., Jyotsna, C., and Amudha, J.: Deep learning approach for suspicious activity detection from surveillance video. In: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), pp. 335–339. IEEE (2020) – reference: AlafifTAlzahraniBCaoYAlotaibiRBarnawiAChenMGenerative adversarial network based abnormal behavior detection in massive crowd videos: a Hajj case studyJ. Ambient Intell. Humaniz Comput.20211310.1007/s12652-021-03323-5 – reference: Yang, J., Xu, R., Qi, Z., Shi, Y.: Visual anomaly detection for images: a survey. (2021). arXiv preprint arXiv:2109.13157 – reference: FengJCrowd anomaly detection via spatial constraints and meaningful perturbationISPRS Int. J. Geo-Inf.20221120510.3390/ijgi11030205 – reference: ParkYHYunIDFast adaptive RNN encoder–decoder for anomaly detection in SMD assembly machineSensors20181810357310.3390/s18103573 – reference: Brownlee, J. (2020) How to choose loss functions when Training Deep Learning Neural Networks, MachineLearningMastery.com. Available at: https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/ (Accessed: 08 September 2023) – reference: BhuiyanRHajj pilgrimage video analytics using CNNBull. Electr. Eng. Inform.20211052598260610.11591/eei.v10i5.2361 – reference: Alafif, T., Hadi, A., Allahyani, M., Alzahrani, B., Alhothali, A., Alotaibi, R., Barnawi, A.: Hybrid classifiers for spatio-temporal real-time abnormal behaviors detection, tracking, and recognition in massive hajj crowds (2022). arXiv preprint arXiv:2207.11931 – reference: SikdarAChowdhuryASAn adaptive training-less framework for anomaly detection in crowd scenesNeurocomputing202041531733110.1016/j.neucom.2020.07.058 – reference: General Authority for statistics, Hajj and Umrah Statistics (2022). https://www.stats.gov.sa/ar (Accessed 25 Sep 2022) – reference: UsmanIAlbesherAAAbnormal crowd behavior detection using heuristic search and motion awarenessInt. J. Comput. Sci. Netw. Secur.202121413113910.22937/IJCSNS.2021.21.4.18 – reference: Nguyen, D.T. et al.: Anomaly detection with multiple-hypotheses predictions. International Conference on Machine Learning. PMLR (2019) – reference: KoKESimKBDeep convolutional framework for abnormal behavior detection in a smart surveillance systemEng. Appl. Artif. Intell.20186722623410.1016/j.engappai.2017.10.001 – reference: Gudi, A., Büttner, F., and van Gemert, J.: Proximally sensitive error for anomaly detection and feature learning, Jun. (2022) [Online]. Available: http://arxiv.org/abs/2206.00506 – reference: HabibSAbnormal activity recognition from surveillance videos using convolutional neural networkSensors20212124829110.3390/s21248291 – reference: BasahelAYaminMMeasuring success of e-government of Saudi ArabiaInt. J. Inf. Technol. (Singapore)20179328729310.1007/s41870-017-0029-4 – reference: Madhuri, G.S., and Usha Rani, M.: Statistical approaches to detect anomalies, pp. 499–509 (2020). https://doi.org/10.1007/978-981-15-0135-7_46 – reference: Pawar, K., and Attar, V.: Application of deep learning for crowd anomaly detection from surveillance videos. In: 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Jan 2021, pp. 506–511. https://doi.org/10.1109/Confluence51648.2021.9377055 – reference: LiAMiaoZCenYZhangX-PZhangLChenSAbnormal event detection in surveillance videos based on low-rank and compact coefficient dictionary learningPattern Recognit.202010810735510.1016/j.patcog.2020.107355 – reference: Shaukat, K. et al.: A review of time-series anomaly detection techniques: a step to future perspectives, pp. 865–877 (2021). https://doi.org/10.1007/978-3-030-73100-7_60 – reference: SiddiquiAAGwynneSMVEmploying pedestrian observations in engineering analysisSaf. Sci.201250347849310.1016/j.ssci.2011.10.011 – reference: Park, Y.H.: Concise logarithmic loss function for robust training of anomaly detection model. arXiv preprint: arXiv:2201.05748 (2022) – reference: ParkYHWonSPYeongBKAnomaly detection in particulate matter sensor using hypothesis pruning generative adversarial networkETRI J.20204351152310.4218/etrij.2020-0052 – reference: ChowJKAnomaly detection of defects on concrete structures with the convolutional autoencoderAdv. Eng. Inform.20204510110510.1016/j.aei.2020.101105 – reference: LiuHTangXShenSDepth-map completion for large indoor scene reconstructionPattern Recognit.20209910711210.1016/j.patcog.2019.107112 – reference: LinWGaoJWangQLiXLearning to detect anomaly events in crowd scenes from synthetic dataNeurocomputing202143624825910.1016/j.neucom.2021.01.031 – reference: SchleglTf-AnoGAN: fast unsupervised anomaly detection with generative adversarial networksMed. Image Anal.201954304410.1016/j.media.2019.01.010 – reference: Saudi Press Agency, Hajj Crowd (2019). https://www.spa.gov.sa (Accessed 24 Sep 2022). – reference: TraoreAAkhloufiMAViolence detection in videos using deep recurrent and convolutional neural networksIEEE Trans. Syst. Man Cybern. Syst.2020202015415910.1109/SMC42975.2020.9282971 – reference: Aytekin, C. et al.: Clustering and unsupervised anomaly detection with l 2 normalized deep auto encoder representations. 2018 International Joint Conference on Neural Networks (IJCNN). IEEE (2018) – reference: GuanYHuWHuXAbnormal behavior recognition using 3D-CNN combined with LSTMMultimed. Tools Appl.20218012187871880110.1007/s11042-021-10667-9 – reference: SabokrouMFayyazMFathyMMoayedZKletteRDeep-anomaly: fully convolutional neural network for fast anomaly detection in crowded scenesComput. Vis. Image Underst.2018172889710.1016/j.cviu.2018.02.006 – reference: DeepakKChandrakalaSMohanCKResidual spatiotemporal autoencoder for unsupervised video anomaly detectionSignal Image Video Process.202115121522210.1007/s11760-020-01740-1 – reference: Liu, H., Jin, F., Zeng, H., Pu, H., Fan, B.: Image enhancement guided object detection in visually degraded scenes. In: IEEE Transactions on Neural Networks and Learning Systems (2023) – volume: 8 start-page: 61085 year: 2020 ident: 3124_CR59 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982906 – ident: 3124_CR25 doi: 10.1007/978-981-33-4673-4_18 – ident: 3124_CR51 – ident: 3124_CR8 – volume: 5 start-page: 21954 year: 2017 ident: 3124_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2762418 – volume: 15 start-page: 215 issue: 1 year: 2021 ident: 3124_CR28 publication-title: Signal Image Video Process. doi: 10.1007/s11760-020-01740-1 – volume: 9 start-page: 1 issue: 2 year: 2020 ident: 3124_CR42 publication-title: Ann. Data Sci. – ident: 3124_CR41 – ident: 3124_CR29 doi: 10.1109/Confluence51648.2021.9377055 – volume: 18 start-page: 1308 issue: 5 year: 2018 ident: 3124_CR44 publication-title: Sensors doi: 10.3390/s18051308 – volume: 2020 start-page: 154 year: 2020 ident: 3124_CR58 publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/SMC42975.2020.9282971 – volume: 415 start-page: 317 year: 2020 ident: 3124_CR64 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.058 – volume: 77 start-page: 3223 issue: 4 year: 2021 ident: 3124_CR56 publication-title: J. Supercomput. doi: 10.1007/s11227-020-03391-y – volume: 32 start-page: 03040 year: 2020 ident: 3124_CR34 publication-title: ITM Web Conf. doi: 10.1051/itmconf/20203203040 – volume: 436 start-page: 248 year: 2021 ident: 3124_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.031 – volume: 10 start-page: 2598 issue: 5 year: 2021 ident: 3124_CR32 publication-title: Bull. Electr. Eng. Inform. doi: 10.11591/eei.v10i5.2361 – ident: 3124_CR5 doi: 10.1109/INDIACom51348.2021.00067 – ident: 3124_CR52 – ident: 3124_CR46 – volume: 7 start-page: 39172 year: 2019 ident: 3124_CR62 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906275 – ident: 3124_CR38 doi: 10.1109/ICCV.2019.00179 – volume: 80 start-page: 18787 issue: 12 year: 2021 ident: 3124_CR33 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10667-9 – volume: 108 start-page: 107355 year: 2020 ident: 3124_CR18 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107355 – volume: 557 start-page: 302 year: 2021 ident: 3124_CR24 publication-title: Inf. Sci. (NY) doi: 10.1016/j.ins.2019.05.023 – volume: 54 start-page: 30 year: 2019 ident: 3124_CR47 publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.01.010 – volume: 363 start-page: 246 year: 2019 ident: 3124_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.07.034 – volume: 11 start-page: 6153 issue: 13 year: 2021 ident: 3124_CR53 publication-title: Appl. Sci. (Switzerland) doi: 10.3390/app11136153 – volume: 51 start-page: 11 year: 2016 ident: 3124_CR2 publication-title: Smart Innov. Syst. Technol. doi: 10.1007/978-3-319-30927-9_2 – volume: 18 start-page: 3573 issue: 10 year: 2018 ident: 3124_CR45 publication-title: Sensors doi: 10.3390/s18103573 – volume: 11 start-page: 205 year: 2022 ident: 3124_CR30 publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi11030205 – ident: 3124_CR61 doi: 10.1007/978-981-13-2622-6_4 – volume: 172 start-page: 88 year: 2018 ident: 3124_CR65 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2018.02.006 – volume: 45 start-page: 101105 year: 2020 ident: 3124_CR48 publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2020.101105 – volume: 444 start-page: 170 year: 2021 ident: 3124_CR26 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.08.087 – volume: 8 start-page: 951 issue: 2 year: 2021 ident: 3124_CR20 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3009180 – ident: 3124_CR17 doi: 10.1109/WACV51458.2022.00306 – volume: 18 start-page: 401 issue: 2 year: 2019 ident: 3124_CR27 publication-title: Struct. Health Monit. doi: 10.1177/1475921718757405 – volume: 43 start-page: 511 year: 2020 ident: 3124_CR49 publication-title: ETRI J. doi: 10.4218/etrij.2020-0052 – ident: 3124_CR57 doi: 10.1109/ICIMIA48430.2020.9074920 – ident: 3124_CR7 – volume: 99 start-page: 107112 year: 2020 ident: 3124_CR37 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107112 – ident: 3124_CR50 – ident: 3124_CR13 doi: 10.1007/978-3-030-73100-7_60 – volume: 21 start-page: 131 issue: 4 year: 2021 ident: 3124_CR16 publication-title: Int. J. Comput. Sci. Netw. Secur. doi: 10.22937/IJCSNS.2021.21.4.18 – volume: 21 start-page: 2811 issue: 8 year: 2021 ident: 3124_CR55 publication-title: Sensors doi: 10.3390/s21082811 – volume: 129 start-page: 1202 year: 2021 ident: 3124_CR36 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-020-01427-7 – ident: 3124_CR54 – volume: 1 start-page: 3 year: 2021 ident: 3124_CR19 publication-title: J. Ambient Intell. Humaniz Comput. doi: 10.1007/s12652-021-03323-5 – volume: 67 start-page: 226 year: 2018 ident: 3124_CR63 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.001 – ident: 3124_CR3 doi: 10.3390/electronics12051165 – ident: 3124_CR11 doi: 10.3390/aerospace6110117 – ident: 3124_CR35 doi: 10.1109/TNNLS.2023.3274926 – ident: 3124_CR43 doi: 10.1109/IJCNN.2018.8489068 – ident: 3124_CR14 doi: 10.1016/j.procs.2022.01.057 – volume: 9 start-page: 287 issue: 3 year: 2017 ident: 3124_CR9 publication-title: Int. J. Inf. Technol. (Singapore) doi: 10.1007/s41870-017-0029-4 – ident: 3124_CR6 doi: 10.1109/INMIC50486.2020.9318140 – volume: 19 start-page: 2472 issue: 11 year: 2019 ident: 3124_CR10 publication-title: Sensors (Switzerland) doi: 10.3390/s19112472 – ident: 3124_CR40 doi: 10.1145/3357254.3357273 – volume: 21 start-page: 8291 issue: 24 year: 2021 ident: 3124_CR31 publication-title: Sensors doi: 10.3390/s21248291 – volume: 25 start-page: 70 issue: 1/2021 year: 2021 ident: 3124_CR23 publication-title: Inform. Econ. doi: 10.24818/issn14531305/25.1.2021.06 – volume: 50 start-page: 478 issue: 3 year: 2012 ident: 3124_CR4 publication-title: Saf. Sci. doi: 10.1016/j.ssci.2011.10.011 – volume: 513 start-page: 386 year: 2020 ident: 3124_CR21 publication-title: Inf. Sci. (NY) doi: 10.1016/j.ins.2019.10.069 – volume: 8 start-page: 80408 year: 2020 ident: 3124_CR60 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990355 – ident: 3124_CR1 doi: 10.1007/978-981-15-0135-7_46 – volume: 112 start-page: 104229 year: 2021 ident: 3124_CR39 publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2021.104229 |
| SSID | ssj0017749 |
| Score | 2.401719 |
| Snippet | Hajj is an annual Islamic event attended by millions of pilgrims every year from around the globe. It is considered to be the biggest religious event that... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5589 |
| SubjectTerms | Anomalies Artificial Intelligence Automation Behavior Computer Graphics Computer Science Computer vision Crowd monitoring Deep learning Image Processing and Computer Vision Loss reduction Original Article Pilgrimages Pilgrims Surveillance Violations |
| SummonAdditionalLinks | – databaseName: Springer Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA4yfdAHp1NxOiUPvmlgTdKsfRzimC9DmMjeSn7KxuzGWhX_e69Zu6mooM9NQ3KXy31H7r5D6EKwjqFGK0JDyQl3IZiU0zERTrlQMR61jfPNJjqDQTQaxXdlUVhWZbtXT5L-pl4Vu3l2OQI-hsBBpJxAzLMZFmwzRYw-fFi9HQCg8aA3gPioqPMsS2W-n-OzO1pjzC_Pot7b9Or_W-ce2i3RJe4uj8M-2rBpA9Wrzg24NOQG2vlAQ3iAbrvYWDvHZQeJR1wRjWNAtFimsyc5fYMhuU_bSvE4xdMigZxkoGCL-3IywbC9V5MdomHv5v66T8oWC0SD7eXEKCWY1VaE4OZjrpViDu5HuAAFdyKiTGoRGqt4RAPFpHVMRJq2ZeCYcRE7QrV0ltpjhBlMYY0p2OYlp1THVkAsJovSVw7ImDdRUMk50SX7eNEEY5qseJO93BKQW-LllgRNdLn6Z77k3vh1dKtSX1LaYZawdsQh4oP9NNFVpa71559nO_nb8FO0TQHtLDMDW6iWL57tGdrSL_k4W5z78_kOIzXciQ priority: 102 providerName: Springer Nature |
| Title | A deep learning approach for anomaly detection in large-scale Hajj crowds |
| URI | https://link.springer.com/article/10.1007/s00371-023-03124-1 https://www.proquest.com/docview/3084114111 |
| Volume | 40 |
| WOSCitedRecordID | wos001090630400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1432-2315 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: P5Z dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1432-2315 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: K7- dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-2315 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1432-2315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LT9swGP-0FQ7bgcEGWnnJh902a43tuOkJwQSCS1UBmhCXyE8EKmlpuiH-ez67TgtIcOHiSxzLyff62d8L4IfkXcus0ZTlSlDhcxQpb3pUeu1zzUXRsT42m-j2-8XFRW-QLtzqFFbZ6MSoqO3IhDvy37xTCMTuKJp74zsaukYF72pqofERljKGSjg4Zbt07kVAaBPhb4YnpZDxmZJmYupcrFVH0WJRZGsmaPbcMC3Q5gsHabQ7R1_eu-NVWEmIk-zPWGQNPrjqK3x-UofwG5zsE-vcmKQWElekqTROENISVY1u1fABp0xj3FZFrisyDBHktEYKO3Ksbm4IftW9rdfh7Ojw_M8xTT0WqEHhm1KrteTOOJmjne8JozX3qCBx01J4WTCujMyt06JgmebKeS4Lwzoq89z6gm9AqxpV7jsQjks4a0O5eSUYMz0n8TCmQu6rQGgs2pA1v7c0qfx46IIxLOeFkyNJSiRJGUlSZm34OX9nPCu-8ebs7YYOZRLEulwQoQ2_GkouHr--2ubbq23BJ4bwZhYKuA2t6eSf24Fl8396XU92YengsD843Y3siOMgv8Tx9OzvIx0n46Y |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7RUKlwoKUtIgWKD_TUWmRtr9kcEAIKSgSNUMuBU1d-VqCwCWwA8Z_6Ixk7u0lbqdw4cF7vSOv5Zubzeh4AG5JvWWaNpixVggqfokl506bSa59qLrKW9XHYxFavl52dtU9m4HddCxPSKmufGB21HZjwj3yTtzKB3B1Nc2d4RcPUqHC7Wo_QGMPiyN3f4ZGt3O5-Rf1-Yuzw4HS_Q6upAtQg3EbUai25M06mGNnawmjNPboEFCyFlxnjysjUOi0ylmiunOcyM6ylEs-tzzhKfQGzgguZNmB276B38n1ya4FUKtLtBE9mocK0KtKJpXqxNx7FCEnRjJigyd-BcMpu_7mQjXHu8PXz2qE3sFDxabI7NoBFmHHFW5j_o8viO-juEuvckFQDMn6Ruo86QcJOVDG4VP17XDKKWWkFOS9IP-TH0xLx60hHXVwQ3MM7W76HH0_wJUvQKAaFWwbCUYSzNjTTV4Ix03YSj5oqVPYKJP6iCUmtzNxUzdXDjI9-PmkLHQGQIwDyCIA8acLnyTvDcWuRR1ev1lrPKzdT5lOVN-FLjZvp4_9L-_C4tHV41Tn9dpwfd3tHKzDHkMiNkx5XoTG6vnFr8NLcjs7L64-VCRD4-bSIegDa5D2A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5ERfRgfWJ95uBNg90kG7fHohZFKaIi3pY8pVLXYlfFf-9sulsfqCCeNxuSmUzmGzLzDcC25PuWWaMpi5WgwsdoUt40qfTax5qLpGF9aDax3-kkNzfN8w9V_CHbvXqSHNY0FCxNWb7Xt35vVPgWmOYo-huKh5IJivHPhMBIpkjquri8Hr0jILgJADjCWKmo-SzLZr6f47NresebX55Ig-dp1_6_5jmYLVEnaQ2PyTyMuWwBalVHB1Ia-ALMfKAnXISTFrHO9UnZWeKWVATkBJEuUdnDveq94pA8pHNlpJuRXpFYTgeoeEeO1d0dwa2-2MESXLaPrg6Oadl6gRq0yZxarSV3xskY3X9TGK25x3sTL0YpvEwYV0bG1mmRsEhz5TyXiWENFXlufcKXYTx7yNwKEI5TOGsLFnolGDNNJzFGU0VJrEDELOoQVTJPTclKXjTH6KUjPuUgtxTllga5pVEddkb_9IecHL-OXq9UmZb2OUh5IxEYCeJ-6rBbqe7988-zrf5t-BZMnR-207OTzukaTDMERMPkwXUYzx-f3AZMmue8O3jcDMf2DSUW6FE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+approach+for+anomaly+detection+in+large-scale+Hajj+crowds&rft.jtitle=The+Visual+computer&rft.au=Aldayri%2C+Amnah&rft.au=Albattah%2C+Waleed&rft.date=2024-08-01&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=8&rft.spage=5589&rft.epage=5603&rft_id=info:doi/10.1007%2Fs00371-023-03124-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00371_023_03124_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |