A deep learning approach for anomaly detection in large-scale Hajj crowds

Hajj is an annual Islamic event attended by millions of pilgrims every year from around the globe. It is considered to be the biggest religious event that includes large human crowds in the world. Managing such crowds and detecting abnormal behaviors is one of the most significant challenges for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer Jg. 40; H. 8; S. 5589 - 5603
Hauptverfasser: Aldayri, Amnah, Albattah, Waleed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
Springer Nature B.V
Schlagworte:
ISSN:0178-2789, 1432-2315
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Hajj is an annual Islamic event attended by millions of pilgrims every year from around the globe. It is considered to be the biggest religious event that includes large human crowds in the world. Managing such crowds and detecting abnormal behaviors is one of the most significant challenges for the host country, particularly the crowds of pilgrims. Most of the current solutions can only handle small-scale crowd management issues, that involve simple and clear abnormal behaviors. Therefore, there is a need to have a human abnormal behavior detection approach that can deal with large-scale crowd situations. This study aims to propose a computer vision-based framework that automatically analyzes video sequences and detects human abnormal behaviors. The Convolutional LSTM Autoencoder is used for analyzing video scenes and extracting valuable spatial and temporal features. The proposed approach has achieved a good loss reduction of 0.176587 in detecting abnormal pilgrims’ behavior. The results demonstrate a promising picture of the effectiveness of computer vision technologies to detect abnormal behavior in large-scale crowds.
AbstractList Hajj is an annual Islamic event attended by millions of pilgrims every year from around the globe. It is considered to be the biggest religious event that includes large human crowds in the world. Managing such crowds and detecting abnormal behaviors is one of the most significant challenges for the host country, particularly the crowds of pilgrims. Most of the current solutions can only handle small-scale crowd management issues, that involve simple and clear abnormal behaviors. Therefore, there is a need to have a human abnormal behavior detection approach that can deal with large-scale crowd situations. This study aims to propose a computer vision-based framework that automatically analyzes video sequences and detects human abnormal behaviors. The Convolutional LSTM Autoencoder is used for analyzing video scenes and extracting valuable spatial and temporal features. The proposed approach has achieved a good loss reduction of 0.176587 in detecting abnormal pilgrims’ behavior. The results demonstrate a promising picture of the effectiveness of computer vision technologies to detect abnormal behavior in large-scale crowds.
Author Albattah, Waleed
Aldayri, Amnah
Author_xml – sequence: 1
  givenname: Amnah
  surname: Aldayri
  fullname: Aldayri, Amnah
  organization: Department of Information Technology, College of Computer, Qassim University
– sequence: 2
  givenname: Waleed
  orcidid: 0000-0003-0292-7304
  surname: Albattah
  fullname: Albattah, Waleed
  email: w.albattah@qu.edu.sa
  organization: Department of Information Technology, College of Computer, Qassim University
BookMark eNp9kEFLAzEQhYNUsK3-AU8Bz9FMku5mj6WoLRQ86D1ks0ndZZtdky3Sf2_aFQQPhYFh4H0zb94MTXznLUL3QB-B0vwpUspzIJRxQjkwQeAKTUFwRhiHxQRNKeSSsFwWN2gWY0PTnItiijZLXFnb49bq4Gu_w7rvQ6fNJ3ZdwNp3e90ek2SwZqg7j2uPWx12lkSjW4vXummwCd13FW_RtdNttHe_fY7eX54_VmuyfXvdrJZbYjgUA6nKMuPW2GzBhCiEKUvuZJ4BQCZcJhnXJltUthSSQcm1dTyThlENjldO8jl6GLcml18HGwfVdIfg00HFqRQAqSCp2KhK1mIM1qk-1HsdjgqoOgWmxsBUCkydA1MnSP6DTD3o09dD0HV7GeUjGtMdv7Phz9UF6gecnIDd
CitedBy_id crossref_primary_10_1007_s40747_024_01422_2
crossref_primary_10_1109_ACCESS_2025_3532385
crossref_primary_10_1016_j_eswa_2024_125504
crossref_primary_10_3390_electronics13244925
Cites_doi 10.1109/ACCESS.2020.2982906
10.1007/978-981-33-4673-4_18
10.1109/ACCESS.2017.2762418
10.1007/s11760-020-01740-1
10.1109/Confluence51648.2021.9377055
10.3390/s18051308
10.1109/SMC42975.2020.9282971
10.1016/j.neucom.2020.07.058
10.1007/s11227-020-03391-y
10.1051/itmconf/20203203040
10.1016/j.neucom.2021.01.031
10.11591/eei.v10i5.2361
10.1109/INDIACom51348.2021.00067
10.1109/ACCESS.2019.2906275
10.1109/ICCV.2019.00179
10.1007/s11042-021-10667-9
10.1016/j.patcog.2020.107355
10.1016/j.ins.2019.05.023
10.1016/j.media.2019.01.010
10.1016/j.neucom.2019.07.034
10.3390/app11136153
10.1007/978-3-319-30927-9_2
10.3390/s18103573
10.3390/ijgi11030205
10.1007/978-981-13-2622-6_4
10.1016/j.cviu.2018.02.006
10.1016/j.aei.2020.101105
10.1016/j.neucom.2020.08.087
10.1109/JIOT.2020.3009180
10.1109/WACV51458.2022.00306
10.1177/1475921718757405
10.4218/etrij.2020-0052
10.1109/ICIMIA48430.2020.9074920
10.1016/j.patcog.2019.107112
10.1007/978-3-030-73100-7_60
10.22937/IJCSNS.2021.21.4.18
10.3390/s21082811
10.1007/s11263-020-01427-7
10.1007/s12652-021-03323-5
10.1016/j.engappai.2017.10.001
10.3390/electronics12051165
10.3390/aerospace6110117
10.1109/TNNLS.2023.3274926
10.1109/IJCNN.2018.8489068
10.1016/j.procs.2022.01.057
10.1007/s41870-017-0029-4
10.1109/INMIC50486.2020.9318140
10.3390/s19112472
10.1145/3357254.3357273
10.3390/s21248291
10.24818/issn14531305/25.1.2021.06
10.1016/j.ssci.2011.10.011
10.1016/j.ins.2019.10.069
10.1109/ACCESS.2020.2990355
10.1007/978-981-15-0135-7_46
10.1016/j.imavis.2021.104229
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00371-023-03124-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 5603
ExternalDocumentID 10_1007_s00371_023_03124_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-dbb63ece6524494cbb3f87611164f6823ac65deb4821b3aef368c20a1f3df83
IEDL.DBID K7-
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090630400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-2789
IngestDate Wed Nov 05 04:18:03 EST 2025
Tue Nov 18 22:12:27 EST 2025
Sat Nov 29 02:23:32 EST 2025
Fri Feb 21 02:40:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Surveillance system
Human crowd
Abnormal behavior
Mass gathering
Anomaly detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-dbb63ece6524494cbb3f87611164f6823ac65deb4821b3aef368c20a1f3df83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0292-7304
PQID 3084114111
PQPubID 2043737
PageCount 15
ParticipantIDs proquest_journals_3084114111
crossref_primary_10_1007_s00371_023_03124_1
crossref_citationtrail_10_1007_s00371_023_03124_1
springer_journals_10_1007_s00371_023_03124_1
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ZhangXHanYXuWWangQHOBA: a novel feature engineering methodology for credit card fraud detection with a deep learning architectureInf. Sci. (NY)202155730231610.1016/j.ins.2019.05.023
SonkarRRathodSJadhavRPatilDCrowd abnormal behaviour detection using deep learningITM Web Conf.2020320304010.1051/itmconf/20203203040
Abi Sen, A.A., Alsaawy, Y., Alkhodre, A., Bahbouh, N.M., and Alhaboob, M.: Smart street design for managing crowds in Hajj. In: Proceedings of the 2021 8th International Conference on Computing for Sustainable Global Development, INDIACom 2021, pp. 385–389 (2021). https://doi.org/10.1109/INDIACom51348.2021.00067
Shaukat, K. et al.: A review of time-series anomaly detection techniques: a step to future perspectives, pp. 865–877 (2021). https://doi.org/10.1007/978-3-030-73100-7_60
SiddiquiAAGwynneSMVEmploying pedestrian observations in engineering analysisSaf. Sci.201250347849310.1016/j.ssci.2011.10.011
LiAMiaoZCenYZhangX-PZhangLChenSAbnormal event detection in surveillance videos based on low-rank and compact coefficient dictionary learningPattern Recognit.202010810735510.1016/j.patcog.2020.107355
Nguyen, D.T. et al.: Anomaly detection with multiple-hypotheses predictions. International Conference on Machine Learning. PMLR (2019)
YangJBridge health anomaly detection using deep support vector data descriptionNeurocomputing202144417017810.1016/j.neucom.2020.08.087
Gong, D. et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (2019)
SainiDKAhirDGanatraATechniques and challenges in building intelligent systems: anomaly detection in camera surveillanceSmart Innov. Syst. Technol.201651112110.1007/978-3-319-30927-9_2
Gudi, A., Büttner, F., and van Gemert, J.: Proximally sensitive error for anomaly detection and feature learning, Jun. (2022) [Online]. Available: http://arxiv.org/abs/2206.00506
GuanYHuWHuXAbnormal behavior recognition using 3D-CNN combined with LSTMMultimed. Tools Appl.20218012187871880110.1007/s11042-021-10667-9
UllahFUMUllahAMuhammadKHaqIUBaikSWViolence detection using spatiotemporal features with 3D convolutional neural networkSensors (Switzerland)20191911247210.3390/s19112472
SongWZhangDZhaoXYuJZhengRWangAA novel violent video detection scheme based on modified 3D convolutional neural networksIEEE Access20197391723917910.1109/ACCESS.2019.2906275
Madhuri, G.S., and Usha Rani, M.: Statistical approaches to detect anomalies, pp. 499–509 (2020). https://doi.org/10.1007/978-981-15-0135-7_46
YinCZhuYFeiJHeXA deep learning approach for intrusion detection using recurrent neural networksIEEE Access20175219542196110.1109/ACCESS.2017.2762418
Aytekin, C. et al.: Clustering and unsupervised anomaly detection with l 2 normalized deep auto encoder representations. 2018 International Joint Conference on Neural Networks (IJCNN). IEEE (2018)
General Authority for statistics, Hajj and Umrah Statistics (2022). https://www.stats.gov.sa/ar (Accessed 25 Sep 2022)
Park, Y.H.: Concise logarithmic loss function for robust training of anomaly detection model. arXiv preprint: arXiv:2201.05748 (2022)
BasahelAYaminMMeasuring success of e-government of Saudi ArabiaInt. J. Inf. Technol. (Singapore)20179328729310.1007/s41870-017-0029-4
Owaidah, A., Olaru, D., Bennamoun, M., Sohel, F.-D., and Khan, N.: Review of Modelling and Simulating Crowds at Mass Gathering Events: Hajj as a Case Study
LiuHTangXShenSDepth-map completion for large indoor scene reconstructionPattern Recognit.20209910711210.1016/j.patcog.2019.107112
Lee, S.-W.: Detection of abnormal behavior with self-supervised gaze estimation, Jul. (2021) [Online]. Available: http://arxiv.org/abs/2107.06530
DirekogluCAbnormal crowd behavior detection using motion information images and convolutional neural networksIEEE Access20208804088041610.1109/ACCESS.2020.2990355
Aqeel, M., Khan, K.B., Azam, M.A., Ghouri, M.H., Khalid, H.-R., and Jaskani, F.H.: Detection of anomaly in videos using convolutional autoencoder and generative adversarial network model. In: 2020 IEEE 23rd International Multitopic Conference (INMIC), pp. 1–6 (2020). https://doi.org/10.1109/INMIC50486.2020.9318140
Basora, L., Olive, X., and Dubot, T.: Recent advances in anomaly detection methods applied to aviation. Aerospace 6(11), 117 (2019). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/aerospace6110117
VoicanOCredit card fraud detection using deep learning techniquesInform. Econ.2021251/2021708510.24818/issn14531305/25.1.2021.06
BhuiyanRHajj pilgrimage video analytics using CNNBull. Electr. Eng. Inform.20211052598260610.11591/eei.v10i5.2361
HabibSAbnormal activity recognition from surveillance videos using convolutional neural networkSensors20212124829110.3390/s21248291
KimDKimHMokYPaikJReal-time surveillance system for analyzing abnormal behavior of pedestriansAppl. Sci. (Switzerland)20211113615310.3390/app11136153
UsmanIAlbesherAAAbnormal crowd behavior detection using heuristic search and motion awarenessInt. J. Comput. Sci. Netw. Secur.202121413113910.22937/IJCSNS.2021.21.4.18
KoKESimKBDeep convolutional framework for abnormal behavior detection in a smart surveillance systemEng. Appl. Artif. Intell.20186722623410.1016/j.engappai.2017.10.001
UllahWUllahAHussainTKhanZABaikSWAn efficient anomaly recognition framework using an attention residual LSTM in surveillance videosSensors2021218281110.3390/s21082811
GaoJOmni SCADA intrusion detection using deep learning algorithmsIEEE Internet Things J.20218295196110.1109/JIOT.2020.3009180
AlafifTAlzahraniBCaoYAlotaibiRBarnawiAChenMGenerative adversarial network based abnormal behavior detection in massive crowd videos: a Hajj case studyJ. Ambient Intell. Humaniz Comput.20211310.1007/s12652-021-03323-5
OhDYYunIDResidual error based anomaly detection using auto-encoder in SMD machine soundSensors2018185130810.3390/s18051308
XiaLLiZA new method of abnormal behavior detection using LSTM network with temporal attention mechanismJ. Supercomput.20217743223324110.1007/s11227-020-03391-y
DeepakKChandrakalaSMohanCKResidual spatiotemporal autoencoder for unsupervised video anomaly detectionSignal Image Video Process.202115121522210.1007/s11760-020-01740-1
SikdarAChowdhuryASAn adaptive training-less framework for anomaly detection in crowd scenesNeurocomputing202041531733110.1016/j.neucom.2020.07.058
Ma, J., Xu, Y., Zhang, Y., and Jiang, Y.: An abnormal behavior detection method of video crowds and vehicles based on deep learning. In: ACM International Conference Proceeding Series, pp. 10–12 (2019). https://doi.org/10.1145/3357254.3357273
Doshi, K., and Yilmaz, Y.: A Modular and Unified Framework for Detecting and Localizing Video Anomalies (2021) [Online]. Available: http://arxiv.org/abs/2103.11299
CanizoMTrigueroICondeAOnievaEMulti-head CNN–RNN for multi-time series anomaly detection: an industrial case studyNeurocomputing201936324626010.1016/j.neucom.2019.07.034
Brownlee, J. (2020) How to choose loss functions when Training Deep Learning Neural Networks, MachineLearningMastery.com. Available at: https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/ (Accessed: 08 September 2023)
TraoreAAkhloufiMAViolence detection in videos using deep recurrent and convolutional neural networksIEEE Trans. Syst. Man Cybern. Syst.2020202015415910.1109/SMC42975.2020.9282971
Yang, J., Xu, R., Qi, Z., Shi, Y.: Visual anomaly detection for images: a survey. (2021). arXiv preprint arXiv:2109.13157
SchleglTf-AnoGAN: fast unsupervised anomaly detection with generative adversarial networksMed. Image Anal.201954304410.1016/j.media.2019.01.010
SabokrouMFayyazMFathyMMoayedZKletteRDeep-anomaly: fully convolutional neural network for fast anomaly detection in crowded scenesComput. Vis. Image Underst.2018172889710.1016/j.cviu.2018.02.006
Al-DhamariASudirmanRMahmoodNHTransfer deep learning along with binary support vector machine for abnormal behavior detectionIEEE Access20208610856109510.1109/ACCESS.2020.2982906
BaoYTangZLiHZhangYComputer vision and deep learning–based data anomaly detection method for structural health monitoringStruct. Health Monit.201918240142110.1177/1475921718757405
MansourRFEscorcia-GutierrezJGamarraMVillanuevaJALealNIntelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning modelImage Vis. Comput.202111210422910.1016/j.imavis.2021.104229
Tahura, S., Hasnat Samiul, S.M., Shamim Kaiser, M., and Mahmud, M.: Anomaly Detection in Electroencephalography Signal Using Deep Learning Model, pp. 205–217 (2021). https://doi.org/10.1007/978-981-33-4673-4_18
ChowJKAnomaly detection of defects on concrete structures with the convolutional autoencoderAdv. Eng. Inform.20204510110510.1016/j.aei.2020.101105
ParkYHWonSPYeongBKAnomaly detection in particulate matter sensor using hypothesis pruning generative adversarial networkETRI J.20204351152310.4218/etrij.2020-0052
WangQMaYZhaoKTianYA comprehensive survey of loss functions in machine learningAnn. Data Sci.202092126
Liu, H., Jin, F., Zeng, H., Pu, H., Fan, B.: Image enhancement guided object detection in visually degraded scenes. In: IEEE Transactions on Neural Networks and Learning Systems (2023)
Saudi Press Agency, Hajj Crowd (2019). https://www.spa.gov.sa (Accessed 24 Sep 2022).
Alafif, T., Hadi, A., Allahyani, M., Alzahrani, B., Alhothali, A., Alotaibi, R., Barnawi, A.: Hybrid classifiers for spatio-temporal real-time abnormal behaviors detection, tracking, and recognition in massive hajj crowds (2022). arXiv preprint arXiv:2207.11931
LinWGaoJWangQLiXLearning to detect anomaly events in crowd scenes from synthetic dataNeurocomputing202143624825910.1016/j.neucom.2021.01.031
Amrutha, C.V., Jyotsna, C., and Amudha, J.: Deep learning approach for suspicious activity detection from surveillance video. In: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), pp. 335–339. IEEE (2020)
FengJCrowd anoma
M Canizo (3124_CR12) 2019; 363
DY Oh (3124_CR44) 2018; 18
MM Hassan (3124_CR21) 2020; 513
A Li (3124_CR18) 2020; 108
DK Saini (3124_CR2) 2016; 51
K Deepak (3124_CR28) 2021; 15
O Voican (3124_CR23) 2021; 25
A Al-Dhamari (3124_CR59) 2020; 8
3124_CR35
3124_CR38
J Gao (3124_CR20) 2021; 8
T Alafif (3124_CR19) 2021; 1
L Xia (3124_CR56) 2021; 77
3124_CR41
I Usman (3124_CR16) 2021; 21
3124_CR40
3124_CR43
JK Chow (3124_CR48) 2020; 45
M Sabokrou (3124_CR65) 2018; 172
R Sonkar (3124_CR34) 2020; 32
X Zhang (3124_CR24) 2021; 557
AA Siddiqui (3124_CR4) 2012; 50
Y Guan (3124_CR33) 2021; 80
YH Park (3124_CR45) 2018; 18
W Song (3124_CR62) 2019; 7
3124_CR46
D Kim (3124_CR53) 2021; 11
T Schlegl (3124_CR47) 2019; 54
FUM Ullah (3124_CR10) 2019; 19
S Habib (3124_CR31) 2021; 21
A Basahel (3124_CR9) 2017; 9
3124_CR6
3124_CR50
3124_CR7
3124_CR8
3124_CR52
3124_CR51
3124_CR54
3124_CR11
W Lin (3124_CR15) 2021; 436
3124_CR1
H Liu (3124_CR37) 2020; 99
A Sikdar (3124_CR64) 2020; 415
3124_CR3
3124_CR5
C Direkoglu (3124_CR60) 2020; 8
3124_CR14
3124_CR13
3124_CR57
3124_CR17
C Yin (3124_CR22) 2017; 5
3124_CR61
A Traore (3124_CR58) 2020; 2020
KE Ko (3124_CR63) 2018; 67
X Gao (3124_CR36) 2021; 129
RF Mansour (3124_CR39) 2021; 112
Q Wang (3124_CR42) 2020; 9
R Bhuiyan (3124_CR32) 2021; 10
J Feng (3124_CR30) 2022; 11
3124_CR25
J Yang (3124_CR26) 2021; 444
Y Bao (3124_CR27) 2019; 18
YH Park (3124_CR49) 2020; 43
3124_CR29
W Ullah (3124_CR55) 2021; 21
References_xml – reference: MansourRFEscorcia-GutierrezJGamarraMVillanuevaJALealNIntelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning modelImage Vis. Comput.202111210422910.1016/j.imavis.2021.104229
– reference: Tay, N.C., Connie, T., Ong, T. S., Goh, K. O. M., Teh, P.S.: A robust abnormal behavior detection method using convolutional neural network. In: Computational Science and Technology: 5th ICCST 2018, Kota Kinabalu, Malaysia, 29-30 August 2018, pp. 37–47. Springer Singapore (2019)
– reference: SongWZhangDZhaoXYuJZhengRWangAA novel violent video detection scheme based on modified 3D convolutional neural networksIEEE Access20197391723917910.1109/ACCESS.2019.2906275
– reference: UllahWUllahAHussainTKhanZABaikSWAn efficient anomaly recognition framework using an attention residual LSTM in surveillance videosSensors2021218281110.3390/s21082811
– reference: DirekogluCAbnormal crowd behavior detection using motion information images and convolutional neural networksIEEE Access20208804088041610.1109/ACCESS.2020.2990355
– reference: SonkarRRathodSJadhavRPatilDCrowd abnormal behaviour detection using deep learningITM Web Conf.2020320304010.1051/itmconf/20203203040
– reference: HassanMMGumaeiAAlsanadAAlrubaianMFortinoGA hybrid deep learning model for efficient intrusion detection in big data environmentInf. Sci. (NY)202051338639610.1016/j.ins.2019.10.069
– reference: Doshi, K., and Yilmaz, Y.: A Modular and Unified Framework for Detecting and Localizing Video Anomalies (2021) [Online]. Available: http://arxiv.org/abs/2103.11299
– reference: BaoYTangZLiHZhangYComputer vision and deep learning–based data anomaly detection method for structural health monitoringStruct. Health Monit.201918240142110.1177/1475921718757405
– reference: Basora, L., Olive, X., and Dubot, T.: Recent advances in anomaly detection methods applied to aviation. Aerospace 6(11), 117 (2019). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/aerospace6110117
– reference: Gong, D. et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (2019)
– reference: XiaLLiZA new method of abnormal behavior detection using LSTM network with temporal attention mechanismJ. Supercomput.20217743223324110.1007/s11227-020-03391-y
– reference: YinCZhuYFeiJHeXA deep learning approach for intrusion detection using recurrent neural networksIEEE Access20175219542196110.1109/ACCESS.2017.2762418
– reference: Tahura, S., Hasnat Samiul, S.M., Shamim Kaiser, M., and Mahmud, M.: Anomaly Detection in Electroencephalography Signal Using Deep Learning Model, pp. 205–217 (2021). https://doi.org/10.1007/978-981-33-4673-4_18
– reference: Lee, S.-W.: Detection of abnormal behavior with self-supervised gaze estimation, Jul. (2021) [Online]. Available: http://arxiv.org/abs/2107.06530
– reference: ZhangXHanYXuWWangQHOBA: a novel feature engineering methodology for credit card fraud detection with a deep learning architectureInf. Sci. (NY)202155730231610.1016/j.ins.2019.05.023
– reference: GaoJOmni SCADA intrusion detection using deep learning algorithmsIEEE Internet Things J.20218295196110.1109/JIOT.2020.3009180
– reference: Ma, J., Xu, Y., Zhang, Y., and Jiang, Y.: An abnormal behavior detection method of video crowds and vehicles based on deep learning. In: ACM International Conference Proceeding Series, pp. 10–12 (2019). https://doi.org/10.1145/3357254.3357273
– reference: OhDYYunIDResidual error based anomaly detection using auto-encoder in SMD machine soundSensors2018185130810.3390/s18051308
– reference: Owaidah, A., Olaru, D., Bennamoun, M., Sohel, F.-D., and Khan, N.: Review of Modelling and Simulating Crowds at Mass Gathering Events: Hajj as a Case Study
– reference: SainiDKAhirDGanatraATechniques and challenges in building intelligent systems: anomaly detection in camera surveillanceSmart Innov. Syst. Technol.201651112110.1007/978-3-319-30927-9_2
– reference: GaoXIncremental rotation averagingInt. J. Comput. Vis.20211291202121610.1007/s11263-020-01427-7
– reference: Al-DhamariASudirmanRMahmoodNHTransfer deep learning along with binary support vector machine for abnormal behavior detectionIEEE Access20208610856109510.1109/ACCESS.2020.2982906
– reference: YangJBridge health anomaly detection using deep support vector data descriptionNeurocomputing202144417017810.1016/j.neucom.2020.08.087
– reference: VoicanOCredit card fraud detection using deep learning techniquesInform. Econ.2021251/2021708510.24818/issn14531305/25.1.2021.06
– reference: KimDKimHMokYPaikJReal-time surveillance system for analyzing abnormal behavior of pedestriansAppl. Sci. (Switzerland)20211113615310.3390/app11136153
– reference: Abi Sen, A.A., Alsaawy, Y., Alkhodre, A., Bahbouh, N.M., and Alhaboob, M.: Smart street design for managing crowds in Hajj. In: Proceedings of the 2021 8th International Conference on Computing for Sustainable Global Development, INDIACom 2021, pp. 385–389 (2021). https://doi.org/10.1109/INDIACom51348.2021.00067
– reference: CanizoMTrigueroICondeAOnievaEMulti-head CNN–RNN for multi-time series anomaly detection: an industrial case studyNeurocomputing201936324626010.1016/j.neucom.2019.07.034
– reference: UllahFUMUllahAMuhammadKHaqIUBaikSWViolence detection using spatiotemporal features with 3D convolutional neural networkSensors (Switzerland)20191911247210.3390/s19112472
– reference: Aqeel, M., Khan, K.B., Azam, M.A., Ghouri, M.H., Khalid, H.-R., and Jaskani, F.H.: Detection of anomaly in videos using convolutional autoencoder and generative adversarial network model. In: 2020 IEEE 23rd International Multitopic Conference (INMIC), pp. 1–6 (2020). https://doi.org/10.1109/INMIC50486.2020.9318140
– reference: WangQMaYZhaoKTianYA comprehensive survey of loss functions in machine learningAnn. Data Sci.202092126
– reference: Amrutha, C.V., Jyotsna, C., and Amudha, J.: Deep learning approach for suspicious activity detection from surveillance video. In: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), pp. 335–339. IEEE (2020)
– reference: AlafifTAlzahraniBCaoYAlotaibiRBarnawiAChenMGenerative adversarial network based abnormal behavior detection in massive crowd videos: a Hajj case studyJ. Ambient Intell. Humaniz Comput.20211310.1007/s12652-021-03323-5
– reference: Yang, J., Xu, R., Qi, Z., Shi, Y.: Visual anomaly detection for images: a survey. (2021). arXiv preprint arXiv:2109.13157
– reference: FengJCrowd anomaly detection via spatial constraints and meaningful perturbationISPRS Int. J. Geo-Inf.20221120510.3390/ijgi11030205
– reference: ParkYHYunIDFast adaptive RNN encoder–decoder for anomaly detection in SMD assembly machineSensors20181810357310.3390/s18103573
– reference: Brownlee, J. (2020) How to choose loss functions when Training Deep Learning Neural Networks, MachineLearningMastery.com. Available at: https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/ (Accessed: 08 September 2023)
– reference: BhuiyanRHajj pilgrimage video analytics using CNNBull. Electr. Eng. Inform.20211052598260610.11591/eei.v10i5.2361
– reference: Alafif, T., Hadi, A., Allahyani, M., Alzahrani, B., Alhothali, A., Alotaibi, R., Barnawi, A.: Hybrid classifiers for spatio-temporal real-time abnormal behaviors detection, tracking, and recognition in massive hajj crowds (2022). arXiv preprint arXiv:2207.11931
– reference: SikdarAChowdhuryASAn adaptive training-less framework for anomaly detection in crowd scenesNeurocomputing202041531733110.1016/j.neucom.2020.07.058
– reference: General Authority for statistics, Hajj and Umrah Statistics (2022). https://www.stats.gov.sa/ar (Accessed 25 Sep 2022)
– reference: UsmanIAlbesherAAAbnormal crowd behavior detection using heuristic search and motion awarenessInt. J. Comput. Sci. Netw. Secur.202121413113910.22937/IJCSNS.2021.21.4.18
– reference: Nguyen, D.T. et al.: Anomaly detection with multiple-hypotheses predictions. International Conference on Machine Learning. PMLR (2019)
– reference: KoKESimKBDeep convolutional framework for abnormal behavior detection in a smart surveillance systemEng. Appl. Artif. Intell.20186722623410.1016/j.engappai.2017.10.001
– reference: Gudi, A., Büttner, F., and van Gemert, J.: Proximally sensitive error for anomaly detection and feature learning, Jun. (2022) [Online]. Available: http://arxiv.org/abs/2206.00506
– reference: HabibSAbnormal activity recognition from surveillance videos using convolutional neural networkSensors20212124829110.3390/s21248291
– reference: BasahelAYaminMMeasuring success of e-government of Saudi ArabiaInt. J. Inf. Technol. (Singapore)20179328729310.1007/s41870-017-0029-4
– reference: Madhuri, G.S., and Usha Rani, M.: Statistical approaches to detect anomalies, pp. 499–509 (2020). https://doi.org/10.1007/978-981-15-0135-7_46
– reference: Pawar, K., and Attar, V.: Application of deep learning for crowd anomaly detection from surveillance videos. In: 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Jan 2021, pp. 506–511. https://doi.org/10.1109/Confluence51648.2021.9377055
– reference: LiAMiaoZCenYZhangX-PZhangLChenSAbnormal event detection in surveillance videos based on low-rank and compact coefficient dictionary learningPattern Recognit.202010810735510.1016/j.patcog.2020.107355
– reference: Shaukat, K. et al.: A review of time-series anomaly detection techniques: a step to future perspectives, pp. 865–877 (2021). https://doi.org/10.1007/978-3-030-73100-7_60
– reference: SiddiquiAAGwynneSMVEmploying pedestrian observations in engineering analysisSaf. Sci.201250347849310.1016/j.ssci.2011.10.011
– reference: Park, Y.H.: Concise logarithmic loss function for robust training of anomaly detection model. arXiv preprint: arXiv:2201.05748 (2022)
– reference: ParkYHWonSPYeongBKAnomaly detection in particulate matter sensor using hypothesis pruning generative adversarial networkETRI J.20204351152310.4218/etrij.2020-0052
– reference: ChowJKAnomaly detection of defects on concrete structures with the convolutional autoencoderAdv. Eng. Inform.20204510110510.1016/j.aei.2020.101105
– reference: LiuHTangXShenSDepth-map completion for large indoor scene reconstructionPattern Recognit.20209910711210.1016/j.patcog.2019.107112
– reference: LinWGaoJWangQLiXLearning to detect anomaly events in crowd scenes from synthetic dataNeurocomputing202143624825910.1016/j.neucom.2021.01.031
– reference: SchleglTf-AnoGAN: fast unsupervised anomaly detection with generative adversarial networksMed. Image Anal.201954304410.1016/j.media.2019.01.010
– reference: Saudi Press Agency, Hajj Crowd (2019). https://www.spa.gov.sa (Accessed 24 Sep 2022).
– reference: TraoreAAkhloufiMAViolence detection in videos using deep recurrent and convolutional neural networksIEEE Trans. Syst. Man Cybern. Syst.2020202015415910.1109/SMC42975.2020.9282971
– reference: Aytekin, C. et al.: Clustering and unsupervised anomaly detection with l 2 normalized deep auto encoder representations. 2018 International Joint Conference on Neural Networks (IJCNN). IEEE (2018)
– reference: GuanYHuWHuXAbnormal behavior recognition using 3D-CNN combined with LSTMMultimed. Tools Appl.20218012187871880110.1007/s11042-021-10667-9
– reference: SabokrouMFayyazMFathyMMoayedZKletteRDeep-anomaly: fully convolutional neural network for fast anomaly detection in crowded scenesComput. Vis. Image Underst.2018172889710.1016/j.cviu.2018.02.006
– reference: DeepakKChandrakalaSMohanCKResidual spatiotemporal autoencoder for unsupervised video anomaly detectionSignal Image Video Process.202115121522210.1007/s11760-020-01740-1
– reference: Liu, H., Jin, F., Zeng, H., Pu, H., Fan, B.: Image enhancement guided object detection in visually degraded scenes. In: IEEE Transactions on Neural Networks and Learning Systems (2023)
– volume: 8
  start-page: 61085
  year: 2020
  ident: 3124_CR59
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982906
– ident: 3124_CR25
  doi: 10.1007/978-981-33-4673-4_18
– ident: 3124_CR51
– ident: 3124_CR8
– volume: 5
  start-page: 21954
  year: 2017
  ident: 3124_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2762418
– volume: 15
  start-page: 215
  issue: 1
  year: 2021
  ident: 3124_CR28
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-020-01740-1
– volume: 9
  start-page: 1
  issue: 2
  year: 2020
  ident: 3124_CR42
  publication-title: Ann. Data Sci.
– ident: 3124_CR41
– ident: 3124_CR29
  doi: 10.1109/Confluence51648.2021.9377055
– volume: 18
  start-page: 1308
  issue: 5
  year: 2018
  ident: 3124_CR44
  publication-title: Sensors
  doi: 10.3390/s18051308
– volume: 2020
  start-page: 154
  year: 2020
  ident: 3124_CR58
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/SMC42975.2020.9282971
– volume: 415
  start-page: 317
  year: 2020
  ident: 3124_CR64
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.058
– volume: 77
  start-page: 3223
  issue: 4
  year: 2021
  ident: 3124_CR56
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03391-y
– volume: 32
  start-page: 03040
  year: 2020
  ident: 3124_CR34
  publication-title: ITM Web Conf.
  doi: 10.1051/itmconf/20203203040
– volume: 436
  start-page: 248
  year: 2021
  ident: 3124_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.031
– volume: 10
  start-page: 2598
  issue: 5
  year: 2021
  ident: 3124_CR32
  publication-title: Bull. Electr. Eng. Inform.
  doi: 10.11591/eei.v10i5.2361
– ident: 3124_CR5
  doi: 10.1109/INDIACom51348.2021.00067
– ident: 3124_CR52
– ident: 3124_CR46
– volume: 7
  start-page: 39172
  year: 2019
  ident: 3124_CR62
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906275
– ident: 3124_CR38
  doi: 10.1109/ICCV.2019.00179
– volume: 80
  start-page: 18787
  issue: 12
  year: 2021
  ident: 3124_CR33
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10667-9
– volume: 108
  start-page: 107355
  year: 2020
  ident: 3124_CR18
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107355
– volume: 557
  start-page: 302
  year: 2021
  ident: 3124_CR24
  publication-title: Inf. Sci. (NY)
  doi: 10.1016/j.ins.2019.05.023
– volume: 54
  start-page: 30
  year: 2019
  ident: 3124_CR47
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.010
– volume: 363
  start-page: 246
  year: 2019
  ident: 3124_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.034
– volume: 11
  start-page: 6153
  issue: 13
  year: 2021
  ident: 3124_CR53
  publication-title: Appl. Sci. (Switzerland)
  doi: 10.3390/app11136153
– volume: 51
  start-page: 11
  year: 2016
  ident: 3124_CR2
  publication-title: Smart Innov. Syst. Technol.
  doi: 10.1007/978-3-319-30927-9_2
– volume: 18
  start-page: 3573
  issue: 10
  year: 2018
  ident: 3124_CR45
  publication-title: Sensors
  doi: 10.3390/s18103573
– volume: 11
  start-page: 205
  year: 2022
  ident: 3124_CR30
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi11030205
– ident: 3124_CR61
  doi: 10.1007/978-981-13-2622-6_4
– volume: 172
  start-page: 88
  year: 2018
  ident: 3124_CR65
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2018.02.006
– volume: 45
  start-page: 101105
  year: 2020
  ident: 3124_CR48
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101105
– volume: 444
  start-page: 170
  year: 2021
  ident: 3124_CR26
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.08.087
– volume: 8
  start-page: 951
  issue: 2
  year: 2021
  ident: 3124_CR20
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3009180
– ident: 3124_CR17
  doi: 10.1109/WACV51458.2022.00306
– volume: 18
  start-page: 401
  issue: 2
  year: 2019
  ident: 3124_CR27
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718757405
– volume: 43
  start-page: 511
  year: 2020
  ident: 3124_CR49
  publication-title: ETRI J.
  doi: 10.4218/etrij.2020-0052
– ident: 3124_CR57
  doi: 10.1109/ICIMIA48430.2020.9074920
– ident: 3124_CR7
– volume: 99
  start-page: 107112
  year: 2020
  ident: 3124_CR37
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107112
– ident: 3124_CR50
– ident: 3124_CR13
  doi: 10.1007/978-3-030-73100-7_60
– volume: 21
  start-page: 131
  issue: 4
  year: 2021
  ident: 3124_CR16
  publication-title: Int. J. Comput. Sci. Netw. Secur.
  doi: 10.22937/IJCSNS.2021.21.4.18
– volume: 21
  start-page: 2811
  issue: 8
  year: 2021
  ident: 3124_CR55
  publication-title: Sensors
  doi: 10.3390/s21082811
– volume: 129
  start-page: 1202
  year: 2021
  ident: 3124_CR36
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-020-01427-7
– ident: 3124_CR54
– volume: 1
  start-page: 3
  year: 2021
  ident: 3124_CR19
  publication-title: J. Ambient Intell. Humaniz Comput.
  doi: 10.1007/s12652-021-03323-5
– volume: 67
  start-page: 226
  year: 2018
  ident: 3124_CR63
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.001
– ident: 3124_CR3
  doi: 10.3390/electronics12051165
– ident: 3124_CR11
  doi: 10.3390/aerospace6110117
– ident: 3124_CR35
  doi: 10.1109/TNNLS.2023.3274926
– ident: 3124_CR43
  doi: 10.1109/IJCNN.2018.8489068
– ident: 3124_CR14
  doi: 10.1016/j.procs.2022.01.057
– volume: 9
  start-page: 287
  issue: 3
  year: 2017
  ident: 3124_CR9
  publication-title: Int. J. Inf. Technol. (Singapore)
  doi: 10.1007/s41870-017-0029-4
– ident: 3124_CR6
  doi: 10.1109/INMIC50486.2020.9318140
– volume: 19
  start-page: 2472
  issue: 11
  year: 2019
  ident: 3124_CR10
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s19112472
– ident: 3124_CR40
  doi: 10.1145/3357254.3357273
– volume: 21
  start-page: 8291
  issue: 24
  year: 2021
  ident: 3124_CR31
  publication-title: Sensors
  doi: 10.3390/s21248291
– volume: 25
  start-page: 70
  issue: 1/2021
  year: 2021
  ident: 3124_CR23
  publication-title: Inform. Econ.
  doi: 10.24818/issn14531305/25.1.2021.06
– volume: 50
  start-page: 478
  issue: 3
  year: 2012
  ident: 3124_CR4
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2011.10.011
– volume: 513
  start-page: 386
  year: 2020
  ident: 3124_CR21
  publication-title: Inf. Sci. (NY)
  doi: 10.1016/j.ins.2019.10.069
– volume: 8
  start-page: 80408
  year: 2020
  ident: 3124_CR60
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990355
– ident: 3124_CR1
  doi: 10.1007/978-981-15-0135-7_46
– volume: 112
  start-page: 104229
  year: 2021
  ident: 3124_CR39
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2021.104229
SSID ssj0017749
Score 2.401719
Snippet Hajj is an annual Islamic event attended by millions of pilgrims every year from around the globe. It is considered to be the biggest religious event that...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5589
SubjectTerms Anomalies
Artificial Intelligence
Automation
Behavior
Computer Graphics
Computer Science
Computer vision
Crowd monitoring
Deep learning
Image Processing and Computer Vision
Loss reduction
Original Article
Pilgrimages
Pilgrims
Surveillance
Violations
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA4yfdAHp1NxOiUPvmlgTdKsfRzimC9DmMjeSn7KxuzGWhX_e69Zu6mooM9NQ3KXy31H7r5D6EKwjqFGK0JDyQl3IZiU0zERTrlQMR61jfPNJjqDQTQaxXdlUVhWZbtXT5L-pl4Vu3l2OQI-hsBBpJxAzLMZFmwzRYw-fFi9HQCg8aA3gPioqPMsS2W-n-OzO1pjzC_Pot7b9Or_W-ce2i3RJe4uj8M-2rBpA9Wrzg24NOQG2vlAQ3iAbrvYWDvHZQeJR1wRjWNAtFimsyc5fYMhuU_bSvE4xdMigZxkoGCL-3IywbC9V5MdomHv5v66T8oWC0SD7eXEKCWY1VaE4OZjrpViDu5HuAAFdyKiTGoRGqt4RAPFpHVMRJq2ZeCYcRE7QrV0ltpjhBlMYY0p2OYlp1THVkAsJovSVw7ImDdRUMk50SX7eNEEY5qseJO93BKQW-LllgRNdLn6Z77k3vh1dKtSX1LaYZawdsQh4oP9NNFVpa71559nO_nb8FO0TQHtLDMDW6iWL57tGdrSL_k4W5z78_kOIzXciQ
  priority: 102
  providerName: Springer Nature
Title A deep learning approach for anomaly detection in large-scale Hajj crowds
URI https://link.springer.com/article/10.1007/s00371-023-03124-1
https://www.proquest.com/docview/3084114111
Volume 40
WOSCitedRecordID wos001090630400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LT9swGP-0FQ7bgcEGWnnJh902a43tuOkJwQSCS1UBmhCXyE8EKmlpuiH-ez67TgtIcOHiSxzLyff62d8L4IfkXcus0ZTlSlDhcxQpb3pUeu1zzUXRsT42m-j2-8XFRW-QLtzqFFbZ6MSoqO3IhDvy37xTCMTuKJp74zsaukYF72pqofERljKGSjg4Zbt07kVAaBPhb4YnpZDxmZJmYupcrFVH0WJRZGsmaPbcMC3Q5gsHabQ7R1_eu-NVWEmIk-zPWGQNPrjqK3x-UofwG5zsE-vcmKQWElekqTROENISVY1u1fABp0xj3FZFrisyDBHktEYKO3Ksbm4IftW9rdfh7Ojw_M8xTT0WqEHhm1KrteTOOJmjne8JozX3qCBx01J4WTCujMyt06JgmebKeS4Lwzoq89z6gm9AqxpV7jsQjks4a0O5eSUYMz0n8TCmQu6rQGgs2pA1v7c0qfx46IIxLOeFkyNJSiRJGUlSZm34OX9nPCu-8ebs7YYOZRLEulwQoQ2_GkouHr--2ubbq23BJ4bwZhYKuA2t6eSf24Fl8396XU92YengsD843Y3siOMgv8Tx9OzvIx0n46Y
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7RUKlwoKUtIgWKD_TUWmRtr9kcEAIKSgSNUMuBU1d-VqCwCWwA8Z_6Ixk7u0lbqdw4cF7vSOv5Zubzeh4AG5JvWWaNpixVggqfokl506bSa59qLrKW9XHYxFavl52dtU9m4HddCxPSKmufGB21HZjwj3yTtzKB3B1Nc2d4RcPUqHC7Wo_QGMPiyN3f4ZGt3O5-Rf1-Yuzw4HS_Q6upAtQg3EbUai25M06mGNnawmjNPboEFCyFlxnjysjUOi0ylmiunOcyM6ylEs-tzzhKfQGzgguZNmB276B38n1ya4FUKtLtBE9mocK0KtKJpXqxNx7FCEnRjJigyd-BcMpu_7mQjXHu8PXz2qE3sFDxabI7NoBFmHHFW5j_o8viO-juEuvckFQDMn6Ruo86QcJOVDG4VP17XDKKWWkFOS9IP-TH0xLx60hHXVwQ3MM7W76HH0_wJUvQKAaFWwbCUYSzNjTTV4Ix03YSj5oqVPYKJP6iCUmtzNxUzdXDjI9-PmkLHQGQIwDyCIA8acLnyTvDcWuRR1ev1lrPKzdT5lOVN-FLjZvp4_9L-_C4tHV41Tn9dpwfd3tHKzDHkMiNkx5XoTG6vnFr8NLcjs7L64-VCRD4-bSIegDa5D2A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5ERfRgfWJ95uBNg90kG7fHohZFKaIi3pY8pVLXYlfFf-9sulsfqCCeNxuSmUzmGzLzDcC25PuWWaMpi5WgwsdoUt40qfTax5qLpGF9aDax3-kkNzfN8w9V_CHbvXqSHNY0FCxNWb7Xt35vVPgWmOYo-huKh5IJivHPhMBIpkjquri8Hr0jILgJADjCWKmo-SzLZr6f47NresebX55Ig-dp1_6_5jmYLVEnaQ2PyTyMuWwBalVHB1Ia-ALMfKAnXISTFrHO9UnZWeKWVATkBJEuUdnDveq94pA8pHNlpJuRXpFYTgeoeEeO1d0dwa2-2MESXLaPrg6Oadl6gRq0yZxarSV3xskY3X9TGK25x3sTL0YpvEwYV0bG1mmRsEhz5TyXiWENFXlufcKXYTx7yNwKEI5TOGsLFnolGDNNJzFGU0VJrEDELOoQVTJPTclKXjTH6KUjPuUgtxTllga5pVEddkb_9IecHL-OXq9UmZb2OUh5IxEYCeJ-6rBbqe7988-zrf5t-BZMnR-207OTzukaTDMERMPkwXUYzx-f3AZMmue8O3jcDMf2DSUW6FE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+approach+for+anomaly+detection+in+large-scale+Hajj+crowds&rft.jtitle=The+Visual+computer&rft.au=Aldayri%2C+Amnah&rft.au=Albattah%2C+Waleed&rft.date=2024-08-01&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=8&rft.spage=5589&rft.epage=5603&rft_id=info:doi/10.1007%2Fs00371-023-03124-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00371_023_03124_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon