Hybrid momentum accelerated bat algorithm with GWO based optimization approach for spam classification
Spam emails have become more prevalent, necessitating the development of more effective and reliable anti-spam filters. Internet users face security threats, and youngsters are exposed to inappropriate content while receiving spam emails. The gigantic data flow between billions of people and the tre...
Saved in:
| Published in: | Multimedia tools and applications Vol. 83; no. 9; pp. 26929 - 26969 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.03.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1573-7721, 1380-7501, 1573-7721 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Spam emails have become more prevalent, necessitating the development of more effective and reliable anti-spam filters. Internet users face security threats, and youngsters are exposed to inappropriate content while receiving spam emails. The gigantic data flow between billions of people and the tremendous number of features (attributes) makes the task more tiresome and complex. Feature Selection (FS) technique is essential for overwhelming accuracy, time and spatial complexity when we have high dimensional data (i.e., the number of features is very large). Spam emails have been successfully filtered and detected using Machine Learning (ML) methods by various researchers nowadays. This work proposes a hybrid binary Metaheuristic Algorithm (MA) based Feature Selection (FS) approach for classifying email spam. The proposed FS approach is based upon two MA, i.e., Bat Algorithm (BA) with Grey Wolf Optimization(GWO). A novel concept of bat momentum has been introduced here, replacing the previous bat velocity. Two quantity, i.e., velocity and momentum, has an entirely different effect on the particle (i.e. bats). But they always follow the exact directions for both of them. To provide the best possible set of features for the FS process, the proposed approach uses an amalgamation technique to reach both the global and local optimum solution. To get the global optimum solution, a new momentum-based equation has been added to the BA, substituting the velocity equation from the prior BA. The GWO property has been added to the momentum-based equation mentioned above to improve the FS process search capabilities. Here a novel concept convergence timer has been introduced, which can eliminate the convergence issue in the iterative algorithm if it arises. A novel GWO based lévy flight update has been introduced here to produce the local optimum solution. We have evaluated our proposed method on two benchmark spam corpora (
Spambase
,
SpamAssassin
) having different significant properties. The proposed FS approach has been tested on various classification and clustering algorithms to check the robustness and how the model will behave on unknown data. After comparing multiple state-of-the-art and existing approaches, the proposed method is superior in boosting classification accuracy while minimizing the features in the feature set for misclassifying legitimate emails as spam. |
|---|---|
| AbstractList | Spam emails have become more prevalent, necessitating the development of more effective and reliable anti-spam filters. Internet users face security threats, and youngsters are exposed to inappropriate content while receiving spam emails. The gigantic data flow between billions of people and the tremendous number of features (attributes) makes the task more tiresome and complex. Feature Selection (FS) technique is essential for overwhelming accuracy, time and spatial complexity when we have high dimensional data (i.e., the number of features is very large). Spam emails have been successfully filtered and detected using Machine Learning (ML) methods by various researchers nowadays. This work proposes a hybrid binary Metaheuristic Algorithm (MA) based Feature Selection (FS) approach for classifying email spam. The proposed FS approach is based upon two MA, i.e., Bat Algorithm (BA) with Grey Wolf Optimization(GWO). A novel concept of bat momentum has been introduced here, replacing the previous bat velocity. Two quantity, i.e., velocity and momentum, has an entirely different effect on the particle (i.e. bats). But they always follow the exact directions for both of them. To provide the best possible set of features for the FS process, the proposed approach uses an amalgamation technique to reach both the global and local optimum solution. To get the global optimum solution, a new momentum-based equation has been added to the BA, substituting the velocity equation from the prior BA. The GWO property has been added to the momentum-based equation mentioned above to improve the FS process search capabilities. Here a novel concept convergence timer has been introduced, which can eliminate the convergence issue in the iterative algorithm if it arises. A novel GWO based lévy flight update has been introduced here to produce the local optimum solution. We have evaluated our proposed method on two benchmark spam corpora (Spambase, SpamAssassin) having different significant properties. The proposed FS approach has been tested on various classification and clustering algorithms to check the robustness and how the model will behave on unknown data. After comparing multiple state-of-the-art and existing approaches, the proposed method is superior in boosting classification accuracy while minimizing the features in the feature set for misclassifying legitimate emails as spam. Spam emails have become more prevalent, necessitating the development of more effective and reliable anti-spam filters. Internet users face security threats, and youngsters are exposed to inappropriate content while receiving spam emails. The gigantic data flow between billions of people and the tremendous number of features (attributes) makes the task more tiresome and complex. Feature Selection (FS) technique is essential for overwhelming accuracy, time and spatial complexity when we have high dimensional data (i.e., the number of features is very large). Spam emails have been successfully filtered and detected using Machine Learning (ML) methods by various researchers nowadays. This work proposes a hybrid binary Metaheuristic Algorithm (MA) based Feature Selection (FS) approach for classifying email spam. The proposed FS approach is based upon two MA, i.e., Bat Algorithm (BA) with Grey Wolf Optimization(GWO). A novel concept of bat momentum has been introduced here, replacing the previous bat velocity. Two quantity, i.e., velocity and momentum, has an entirely different effect on the particle (i.e. bats). But they always follow the exact directions for both of them. To provide the best possible set of features for the FS process, the proposed approach uses an amalgamation technique to reach both the global and local optimum solution. To get the global optimum solution, a new momentum-based equation has been added to the BA, substituting the velocity equation from the prior BA. The GWO property has been added to the momentum-based equation mentioned above to improve the FS process search capabilities. Here a novel concept convergence timer has been introduced, which can eliminate the convergence issue in the iterative algorithm if it arises. A novel GWO based lévy flight update has been introduced here to produce the local optimum solution. We have evaluated our proposed method on two benchmark spam corpora ( Spambase , SpamAssassin ) having different significant properties. The proposed FS approach has been tested on various classification and clustering algorithms to check the robustness and how the model will behave on unknown data. After comparing multiple state-of-the-art and existing approaches, the proposed method is superior in boosting classification accuracy while minimizing the features in the feature set for misclassifying legitimate emails as spam. |
| Author | Dhal, Pradip Azad, Chandrashekhar |
| Author_xml | – sequence: 1 givenname: Pradip orcidid: 0000-0003-2097-6601 surname: Dhal fullname: Dhal, Pradip email: pradip1780@gmail.com organization: Department of Computer Science and Engineering, ITER, National Institute of Technology, Department of Computer Science and Engineering, Siksha ‘O’ Anusandhan (Deemed to Be University) – sequence: 2 givenname: Chandrashekhar surname: Azad fullname: Azad, Chandrashekhar organization: Department of Computer Science and Engineering, ITER, National Institute of Technology |
| BookMark | eNp9kM1KAzEUhYNUsK2-gKuA69H8zDSTpRRthUI3isuQySRtysxkTFJKfXpjR1BcdJMbcs93c-6ZgFHnOg3ALUb3GCH2EDBGOckQoRme5XmZHS7AGBeMZowRPPpzvwKTEHYI4VlB8jEwy2PlbQ1b1-ou7lsoldKN9jLqGlYyQtlsnLdx28JDOuHifZ2eQ2q6PtrWfspoXQdl33sn1RYa52HoZQtVI0OwxqqT4BpcGtkEffNTp-Dt-el1vsxW68XL_HGVKYp5zOqq0JqRtAanjNaK87pGqC5rRXWqCiliKlYiygskDVczpXHJpay4lqWhmk7B3TA32fnY6xDFzu19l74UhFNKZoyjMqnKQaW8C8FrI5SNJ5_RS9sIjMR3qmJIVSQ74pSqOCSU_EN7b1vpj-chOkAhibuN9r-uzlBf2XyPQQ |
| CitedBy_id | crossref_primary_10_1177_14727978251366518 crossref_primary_10_1007_s42452_024_06209_1 crossref_primary_10_1038_s41598_024_79674_8 crossref_primary_10_1038_s41598_025_01092_1 crossref_primary_10_3390_a18040222 crossref_primary_10_1007_s42484_024_00207_7 crossref_primary_10_1016_j_fss_2025_109536 crossref_primary_10_1109_TSMC_2024_3392732 crossref_primary_10_1007_s12083_024_01678_y crossref_primary_10_1007_s00371_025_04032_2 |
| Cites_doi | 10.1016/j.engappai.2014.11.001 10.1016/j.eswa.2013.09.023 10.1016/j.eswa.2018.11.018 10.1016/j.advengsoft.2013.12.007 10.5815/ijcnis.2018.01.07 10.1007/s13042-020-01128-0 10.1016/j.asoc.2016.02.018 10.1142/S1793962320500324 10.3934/mbe.2022091 10.1016/j.renene.2017.10.075 10.1108/EL-07-2019-0181 10.1109/ACCESS.2019.2954791 10.1109/ACCESS.2019.2937021 10.1016/j.jksuci.2018.06.004 10.1016/j.heliyon.2019.e01802 10.1007/s12652-022-04335-5 10.1016/j.ipm.2011.08.002 10.1016/j.knosys.2019.104938 10.1103/PhysRevE.49.4677 10.1016/j.eswa.2011.01.174 10.1016/j.jksuci.2018.05.010 10.1109/ACCESS.2022.3204593 10.1016/j.asoc.2014.05.002 10.1016/j.compeleceng.2017.08.008 10.1007/s11042-022-13496-6 10.1016/j.asoc.2016.12.022 10.1016/j.inffus.2018.08.002 10.1109/ACCESS.2021.3105914 10.1016/j.jvcir.2022.103598 10.1177/003754970107600201 10.7551/mitpress/3927.001.0001 10.1002/sec.1412 10.1111/coin.12397 10.1016/j.engappai.2013.12.001 10.1007/978-1-4615-5689-3 10.1016/j.apacoust.2023.109279 10.1142/S0219649219500084 10.1109/ACCESS.2020.3030751 10.1016/j.eswa.2011.01.077 10.1007/978-3-319-45243-2_46 10.1016/j.future.2019.02.028 10.1016/j.eswa.2023.119643 10.1109/ACCESS.2019.2963084 10.1016/j.jocs.2018.10.002 10.1109/4235.585892 10.1007/s00521-017-3100-y 10.1016/j.asoc.2019.105954 10.1109/MAP.2011.5773566 10.1016/j.asoc.2008.05.003 10.1016/j.neucom.2011.03.034 10.1007/s13369-022-06653-4 10.19026/rjaset.7.299 10.3390/app9142931 10.1155/2018/3847951 10.1007/978-981-15-5093-5_37 10.1016/j.procs.2022.03.087 10.1007/978-3-319-74690-6_1 10.1109/ICNN.1995.488968 10.22067/cke.v2i2.81750 10.1016/B978-0-12-821986-7.00016-0 10.1007/978-3-642-12538-6_6 10.1016/j.eswa.2015.10.039 10.1155/2016/8031560 10.1016/j.neucom.2014.06.067 10.1016/B978-0-12-405163-8.00009-0 10.1155/2017/3235720 10.30880/jscdm.2020.01.02.005 10.3390/sym11070925 10.1109/AEECT.2015.7360576 10.1007/s12652-017-0621-2 10.1007/s42452-019-0394-7 10.5121/ijcsit.2011.3112 10.1155/2017/2030489 10.1016/j.eswa.2021.114639 10.1109/ACCESS.2019.2944089 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-023-16448-w |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection (ProQuest Business/Economics) (LUT) ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 26969 |
| ExternalDocumentID | 10_1007_s11042_023_16448_w |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SC 7XB 8AL 8FD 8FK AFFHD JQ2 L.- L7M L~C L~D MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-db5ee720239373dc99dd00d8dc3e00dc0c2fb7803950af9c6ce189aab9ea8f3e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001059026300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Wed Nov 05 04:11:35 EST 2025 Tue Nov 18 22:06:59 EST 2025 Sat Nov 29 06:20:34 EST 2025 Fri Feb 21 02:41:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Feature selection Grey wolf optimization Bat algorithm Spam detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-db5ee720239373dc99dd00d8dc3e00dc0c2fb7803950af9c6ce189aab9ea8f3e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2097-6601 |
| PQID | 2933267908 |
| PQPubID | 54626 |
| PageCount | 41 |
| ParticipantIDs | proquest_journals_2933267908 crossref_citationtrail_10_1007_s11042_023_16448_w crossref_primary_10_1007_s11042_023_16448_w springer_journals_10_1007_s11042_023_16448_w |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Liu, Yao, Li (CR47) 2020; 87 Mitchell (CR56) 1998 Rocca, Oliveri, Massa (CR67) 2011; 53 Zamir, Khan, Mehmood, Iqbal, Akram (CR87) 2020 Ebadati, Ahmadzadeh (CR16) 2019; 18 CR39 CR37 CR36 Liu, Motoda (CR45) 1998 Abdulwahab, Noraziah, Alsewari, Salih (CR1) 2019; 7 CR33 CR76 Dada, Bassi, Chiroma, Abdulhamid, Adetunmbi, Ajibuwa (CR11) 2019; 5 CR75 CR74 Pramanik, Pramanik, Sarkar (CR65) 2023; 219 Rodrigues, Pereira, Nakamura, Costa, Yang, Souza, Papa (CR68) 2014; 41 CR72 Karim, Azam, Shanmugam, Kannoorpatti, Alazab (CR38) 2019; 7 CR70 Xie, Qin, Zhou, Zhou, Zhang, Janicki, Zhao (CR84) 2019; 186 Geem, Kim, Loganathan (CR23) 2001; 76 Shahin, Alomari, Nassif, Afyouni, Hashem, Elnagar (CR71) 2023; 205 Idris, Selamat, Thanh Nguyen, Omatu, Krejcar, Kuca, Penhaker (CR31) 2015; 39 CR2 CR4 CR3 Dorigo, Gambardella (CR15) 1997; 1 CR7 CR49 CR44 CR42 CR86 CR41 CR85 Vidyadhari, Sandhya, Premchand (CR80) 2020; 11 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR27) 2019; 97 CR82 Dhal, Azad (CR13) 2022 Bahassine, Madani, Al-Sarem, Kissi (CR8) 2020; 32 Mantegna (CR51) 1994; 49 Mirjalili, Mirjalili, Lewis (CR54) 2014; 69 Wang, Li, Song, Wei, Li (CR83) 2011; 38 Dinkar, Deep (CR14) 2018; 29 Feng, Guo, Jing, Hao (CR22) 2012; 48 CR18 CR17 Rafat, Xin, Javed, Jalil, Ahmad (CR66) 2022; 19 Sahoo, Chandra (CR69) 2017; 52 Larabi Marie-Sainte, Alalyani (CR43) 2020; 32 CR59 CR12 Tang, Dai, Xiang (CR77) 2019; 120 Igawa, Ohashi (CR32) 2009; 9 Lopes, Cortez, Sousa, Rocha, Rio (CR48) 2011; 38 CR55 CR10 Vidyadhari, Sandhya, Premchand (CR81) 2020; 11 CR52 Liu, Yan, Lu (CR46) 2020; 8 CR50 Taylor, Sochima (CR78) 2020; 6 Niu, Wang, Zhang, Du (CR60) 2018; 118 Idris, Selamat, Omatu (CR30) 2014; 28 Mohammadzadeh, Gharehchopogh (CR58) 2021; 37 Aslam, Kolekar (CR5) 2022; 81 Mohammad (CR57) 2020; 47 Mirjalili, Mirjalili, Lewis (CR53) 2014; 69 Pare, Bhandari, Kumar, Singh (CR64) 2018; 70 Shuaib Bobi, Osho, Idris, Alhassan, Abdulhamid (CR73) 2018; 1 Olatunji (CR61) 2019; 31 Bahassine, Madani, Al-Sarem, Kissi (CR9) 2020; 32 Kaya, Ertugrul (CR40) 2016; 9 CR28 Idris, Selamat (CR29) 2014; 22 Jensi, Jiji (CR34) 2016; 43 Ghaleb, Mohamad, Ghanem, Nasser, Ghetas, Abdullahi, Saleh, Arshad, Omolara, Abiodun (CR25) 2022; 10 Ghaleb, Mohamad, Fadzli, Ghanem (CR24) 2021; 9 Faris, Aljarah, Al-Shboul, Nguyen, Iliadis, Manolopoulos, Trawiński (CR19) 2016 CR21 Gibson, Issac, Zhang, Jacob (CR26) 2020; 8 Verma, Saini, Saini (CR79) 2020 CR63 Aslam, Rai, Kolekar (CR6) 2022; 87 Faris, Al-Zoubi, Heidari, Aljarah, Mafarja, Hassonah, Fujita (CR20) 2019; 48 Kabir, Shahjahan, Murase (CR35) 2011; 74 Oludare, Stephen, Ayodele, Temitayo (CR62) 2014; 3 P Dhal (16448_CR13) 2022 16448_CR3 O Oludare (16448_CR62) 2014; 3 16448_CR4 16448_CR7 SK Dinkar (16448_CR14) 2018; 29 16448_CR39 SAA Ghaleb (16448_CR24) 2021; 9 OME Ebadati (16448_CR16) 2019; 18 S Gibson (16448_CR26) 2020; 8 H Liu (16448_CR45) 1998 16448_CR2 S Mirjalili (16448_CR54) 2014; 69 A Karim (16448_CR38) 2019; 7 16448_CR42 16448_CR86 16448_CR41 16448_CR85 H Faris (16448_CR19) 2016 16448_CR44 D Rodrigues (16448_CR68) 2014; 41 SAA Ghaleb (16448_CR25) 2022; 10 MM Kabir (16448_CR35) 2011; 74 16448_CR82 N Aslam (16448_CR6) 2022; 87 H Mohammadzadeh (16448_CR58) 2021; 37 ZW Geem (16448_CR23) 2001; 76 I Idris (16448_CR30) 2014; 28 H Faris (16448_CR20) 2019; 48 AK Verma (16448_CR79) 2020 16448_CR28 S Wang (16448_CR83) 2011; 38 16448_CR75 N Aslam (16448_CR5) 2022; 81 16448_CR74 O Taylor (16448_CR78) 2020; 6 16448_CR33 S Larabi Marie-Sainte (16448_CR43) 2020; 32 16448_CR76 S Mirjalili (16448_CR53) 2014; 69 16448_CR37 16448_CR36 C Vidyadhari (16448_CR81) 2020; 11 M Dorigo (16448_CR15) 1997; 1 16448_CR70 S Bahassine (16448_CR8) 2020; 32 16448_CR72 S Bahassine (16448_CR9) 2020; 32 M Shuaib Bobi (16448_CR73) 2018; 1 X Xie (16448_CR84) 2019; 186 16448_CR17 16448_CR18 I Idris (16448_CR31) 2015; 39 F Liu (16448_CR46) 2020; 8 AA Heidari (16448_CR27) 2019; 97 P Rocca (16448_CR67) 2011; 53 T Niu (16448_CR60) 2018; 118 16448_CR63 16448_CR21 G Feng (16448_CR22) 2012; 48 Y Kaya (16448_CR40) 2016; 9 I Shahin (16448_CR71) 2023; 205 K Igawa (16448_CR32) 2009; 9 HA Abdulwahab (16448_CR1) 2019; 7 X Tang (16448_CR77) 2019; 120 A Zamir (16448_CR87) 2020 S Pare (16448_CR64) 2018; 70 C Vidyadhari (16448_CR80) 2020; 11 RMA Mohammad (16448_CR57) 2020; 47 KF Rafat (16448_CR66) 2022; 19 EG Dada (16448_CR11) 2019; 5 A Sahoo (16448_CR69) 2017; 52 R Jensi (16448_CR34) 2016; 43 SO Olatunji (16448_CR61) 2019; 31 16448_CR49 R Pramanik (16448_CR65) 2023; 219 RN Mantegna (16448_CR51) 1994; 49 16448_CR52 16448_CR55 16448_CR10 M Mitchell (16448_CR56) 1998 16448_CR12 M Liu (16448_CR47) 2020; 87 I Idris (16448_CR29) 2014; 22 16448_CR59 C Lopes (16448_CR48) 2011; 38 16448_CR50 |
| References_xml | – volume: 39 start-page: 33 year: 2015 end-page: 44 ident: CR31 article-title: A combined negative selection algorithm-particle swarm optimization for an email spam detection system publication-title: Eng Appl Art Intell doi: 10.1016/j.engappai.2014.11.001 – ident: CR70 – volume: 41 start-page: 2250 issue: 5 year: 2014 end-page: 2258 ident: CR68 article-title: A wrapper approach for feature selection based on bat algorithm and optimum-path forest publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2013.09.023 – volume: 120 start-page: 207 year: 2019 end-page: 216 ident: CR77 article-title: Feature selection based on feature interactions with application to text categorization publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2018.11.018 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR53 publication-title: Grey wolf optimizer. Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 1 start-page: 60 year: 2018 end-page: 67 ident: CR73 article-title: Comparative analysis of classification algorithms for email spam detection publication-title: Int J Comput Netw Inf Sec (IJCNIS) doi: 10.5815/ijcnis.2018.01.07 – ident: CR49 – ident: CR74 – year: 2020 ident: CR79 article-title: A new bat optimization algorithm based feature selection method for electrocardiogram heartbeat classification using empirical wavelet transform and fisher ratio publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01128-0 – ident: CR4 – volume: 43 start-page: 248 year: 2016 end-page: 261 ident: CR34 article-title: An enhanced particle swarm optimization with levy flight for global optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.02.018 – ident: CR39 – volume: 11 start-page: 2050032 issue: 04 year: 2020 ident: CR80 article-title: Bat-grey wolf optimizer and kernel mapping for automatic incremental clustering publication-title: Int J Model Simul Sci Comput doi: 10.1142/S1793962320500324 – ident: CR12 – volume: 19 start-page: 1926 issue: 2 year: 2022 end-page: 1943 ident: CR66 article-title: Evading obscure communication from spam emails publication-title: Math Biosci Eng doi: 10.3934/mbe.2022091 – volume: 118 start-page: 213 year: 2018 end-page: 229 ident: CR60 article-title: Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy publication-title: Renew Energy doi: 10.1016/j.renene.2017.10.075 – year: 2020 ident: CR87 article-title: A feature-centric spam email detection model using diverse supervised machine learning algorithms publication-title: The Electronic Library ahead-of-print doi: 10.1108/EL-07-2019-0181 – volume: 7 start-page: 168261 year: 2019 end-page: 168295 ident: CR38 article-title: A comprehensive survey for intelligent spam email detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2954791 – volume: 7 start-page: 142085 year: 2019 end-page: 142096 ident: CR1 article-title: An enhanced version of black hole algorithm via levy flight for optimization and data clustering problems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937021 – volume: 32 start-page: 320 issue: 3 year: 2020 end-page: 328 ident: CR43 article-title: Firefly algorithm based feature selection for arabic text classification publication-title: J King Saud Univ - Comput Inf Sci doi: 10.1016/j.jksuci.2018.06.004 – volume: 5 issue: 6 year: 2019 ident: CR11 article-title: Machine learning for email spam filtering: review, approaches and open research problems publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01802 – ident: CR42 – ident: CR21 – year: 2022 ident: CR13 article-title: A lightweight filter based feature selection approach for multi-label text classification publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-022-04335-5 – ident: CR75 – volume: 48 start-page: 283 issue: 2 year: 2012 end-page: 302 ident: CR22 article-title: A bayesian feature selection paradigm for text classification publication-title: Inf Process Manag doi: 10.1016/j.ipm.2011.08.002 – ident: CR50 – volume: 186 year: 2019 ident: CR84 article-title: A novel test-cost-sensitive attribute reduction approach using the binary bat algorithm publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.104938 – volume: 49 start-page: 4677 year: 1994 end-page: 4683 ident: CR51 article-title: Fast, accurate algorithm for numerical simulation of lévy stable stochastic processes publication-title: Phys Rev E doi: 10.1103/PhysRevE.49.4677 – ident: CR36 – ident: CR85 – volume: 38 start-page: 9365 issue: 8 year: 2011 end-page: 9372 ident: CR48 article-title: Symbiotic filtering for spam email detection publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2011.01.174 – volume: 32 start-page: 225 issue: 2 year: 2020 end-page: 231 ident: CR8 article-title: Feature selection using an improved chi-square for arabic text classification publication-title: J King Saud Univ - Comput Inf Sci doi: 10.1016/j.jksuci.2018.05.010 – volume: 10 start-page: 98475 year: 2022 end-page: 98489 ident: CR25 article-title: Feature selection by multiobjective optimization: Application to spam detection system by neural networks and grasshopper optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3204593 – volume: 22 start-page: 11 year: 2014 end-page: 27 ident: CR29 article-title: Improved email spam detection model with negative selection algorithm and particle swarm optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.05.002 – volume: 70 start-page: 476 year: 2018 end-page: 495 ident: CR64 article-title: A new technique for multilevel color image thresholding based on modified fuzzy entropy and lévy flight firefly algorithm publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2017.08.008 – volume: 81 start-page: 1 year: 2022 end-page: 26 ident: CR5 article-title: Unsupervised anomalous event detection in videos using spatio-temporal inter-fused autoencoder publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13496-6 – volume: 3 start-page: 7 year: 2014 ident: CR62 article-title: An optimized feature selection technique for email classification publication-title: Int J Sci Technol Res – volume: 52 start-page: 64 year: 2017 end-page: 80 ident: CR69 article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.12.022 – volume: 48 start-page: 67 year: 2019 end-page: 83 ident: CR20 article-title: An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks publication-title: Inf Fusion doi: 10.1016/j.inffus.2018.08.002 – ident: CR18 – ident: CR72 – volume: 9 start-page: 116768 year: 2021 end-page: 116813 ident: CR24 article-title: Training neural networks by enhance grasshopper optimization algorithm for spam detection system publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3105914 – volume: 87 year: 2022 ident: CR6 article-title: A3n: Attention-based adversarial autoencoder network for detecting anomalies in video sequence publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2022.103598 – volume: 76 start-page: 60 issue: 2 year: 2001 end-page: 68 ident: CR23 article-title: A new heuristic optimization algorithm: Harmony search publication-title: SIMULATION doi: 10.1177/003754970107600201 – year: 1998 ident: CR56 publication-title: An Introduction to Genetic Algorithms doi: 10.7551/mitpress/3927.001.0001 – ident: CR2 – ident: CR37 – volume: 9 start-page: 1216 issue: 10 year: 2016 end-page: 1225 ident: CR40 article-title: A novel approach for spam email detection based on shifted binary patterns publication-title: Security and Communication Networks doi: 10.1002/sec.1412 – volume: 37 start-page: 176 issue: 1 year: 2021 end-page: 209 ident: CR58 article-title: A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study email spam detection publication-title: Comput Intell doi: 10.1111/coin.12397 – volume: 11 start-page: 2050032 issue: 04 year: 2020 ident: CR81 article-title: Bat-grey wolf optimizer and kernel mapping for automatic incremental clustering publication-title: Int J Model Simul Sci Comput doi: 10.1142/S1793962320500324 – ident: CR10 – volume: 28 start-page: 97 year: 2014 end-page: 110 ident: CR30 article-title: Hybrid email spam detection model with negative selection algorithm and differential evolution publication-title: Eng Appl Art Intell doi: 10.1016/j.engappai.2013.12.001 – ident: CR33 – ident: CR82 – year: 1998 ident: CR45 publication-title: Feature Selection for Knowledge Discovery and Data Mining doi: 10.1007/978-1-4615-5689-3 – ident: CR86 – ident: CR63 – volume: 205 year: 2023 ident: CR71 article-title: An efficient feature selection method for arabic and english speech emotion recognition using grey wolf optimizer publication-title: Appl Acoust doi: 10.1016/j.apacoust.2023.109279 – volume: 18 start-page: 1950008 issue: 01 year: 2019 ident: CR16 article-title: Classification spam email with elimination of unsuitable features with hybrid of ga-naive bayes publication-title: J Inf Knowl Manag doi: 10.1142/S0219649219500084 – volume: 8 start-page: 187914 year: 2020 end-page: 187932 ident: CR26 article-title: Detecting spam email with machine learning optimized with bio-inspired metaheuristic algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3030751 – volume: 38 start-page: 8696 issue: 7 year: 2011 end-page: 8702 ident: CR83 article-title: A feature selection method based on improved fisher’s discriminant ratio for text sentiment classification publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2011.01.077 – volume: 47 start-page: 187 year: 2020 end-page: 198 ident: CR57 article-title: An improved multi-class classification algorithm based on association classification approach and its application to spam emails publication-title: IAENG Int J Comput Sci – volume: 6 start-page: 1 year: 2020 end-page: 11 ident: CR78 article-title: A model to detect spam email using support vector classifier and random forest classifier publication-title: Int J Comput Sci Math Theo – start-page: 498 year: 2016 end-page: 508 ident: CR19 article-title: A hybrid approach based on particle swarm optimization and random forests for e-mail spam filtering publication-title: Computational Collective Intelligence doi: 10.1007/978-3-319-45243-2_46 – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: CR27 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – ident: CR44 – volume: 219 year: 2023 ident: CR65 article-title: Breast cancer detection in thermograms using a hybrid of ga and gwo based deep feature selection method publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2023.119643 – ident: CR3 – volume: 8 start-page: 4244 year: 2020 end-page: 4249 ident: CR46 article-title: Feature selection for image steganalysis using binary bat algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963084 – volume: 32 start-page: 225 year: 2020 end-page: 231 ident: CR9 article-title: Feature selection using an improved chi-square for arabic text classification publication-title: J King Saud Univ - Comput Inf Sci – ident: CR52 – ident: CR17 – volume: 29 start-page: 119 year: 2018 end-page: 141 ident: CR14 article-title: An efficient opposition based lévy flight antlion optimizer for optimization problems publication-title: J Computational Science doi: 10.1016/j.jocs.2018.10.002 – ident: CR55 – volume: 1 start-page: 53 issue: 1 year: 1997 end-page: 66 ident: CR15 article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585892 – volume: 31 start-page: 691 issue: 3 year: 2019 end-page: 699 ident: CR61 article-title: Improved email spam detection model based on support vector machines publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3100-y – ident: CR7 – ident: CR59 – ident: CR76 – volume: 87 year: 2020 ident: CR47 article-title: Hybrid whale optimization algorithm enhanced with lévy flight and differential evolution for job shop scheduling problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105954 – ident: CR28 – ident: CR41 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR54 publication-title: Grey wolf optimizer. Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 53 start-page: 38 issue: 1 year: 2011 end-page: 49 ident: CR67 article-title: Differential evolution as applied to electromagnetics publication-title: IEEE Antennas and Propag Mag doi: 10.1109/MAP.2011.5773566 – volume: 9 start-page: 431 issue: 1 year: 2009 end-page: 438 ident: CR32 article-title: A negative selection algorithm for classification and reduction of the noise effect publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2008.05.003 – volume: 74 start-page: 2914 issue: 17 year: 2011 end-page: 2928 ident: CR35 article-title: A new local search based hybrid genetic algorithm for feature selection publication-title: Neurocomput doi: 10.1016/j.neucom.2011.03.034 – volume: 5 issue: 6 year: 2019 ident: 16448_CR11 publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01802 – volume: 87 year: 2022 ident: 16448_CR6 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2022.103598 – volume: 38 start-page: 8696 issue: 7 year: 2011 ident: 16448_CR83 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2011.01.077 – volume: 69 start-page: 46 year: 2014 ident: 16448_CR53 publication-title: Grey wolf optimizer. Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 219 year: 2023 ident: 16448_CR65 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2023.119643 – volume: 81 start-page: 1 year: 2022 ident: 16448_CR5 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13496-6 – volume: 74 start-page: 2914 issue: 17 year: 2011 ident: 16448_CR35 publication-title: Neurocomput doi: 10.1016/j.neucom.2011.03.034 – volume: 186 year: 2019 ident: 16448_CR84 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.104938 – ident: 16448_CR2 doi: 10.1007/s13369-022-06653-4 – volume: 32 start-page: 225 year: 2020 ident: 16448_CR9 publication-title: J King Saud Univ - Comput Inf Sci – volume: 38 start-page: 9365 issue: 8 year: 2011 ident: 16448_CR48 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2011.01.174 – volume-title: An Introduction to Genetic Algorithms year: 1998 ident: 16448_CR56 doi: 10.7551/mitpress/3927.001.0001 – ident: 16448_CR49 – volume: 1 start-page: 60 year: 2018 ident: 16448_CR73 publication-title: Int J Comput Netw Inf Sec (IJCNIS) doi: 10.5815/ijcnis.2018.01.07 – volume: 37 start-page: 176 issue: 1 year: 2021 ident: 16448_CR58 publication-title: Comput Intell doi: 10.1111/coin.12397 – start-page: 498 volume-title: Computational Collective Intelligence year: 2016 ident: 16448_CR19 doi: 10.1007/978-3-319-45243-2_46 – volume: 43 start-page: 248 year: 2016 ident: 16448_CR34 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.02.018 – volume: 69 start-page: 46 year: 2014 ident: 16448_CR54 publication-title: Grey wolf optimizer. Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – ident: 16448_CR18 doi: 10.19026/rjaset.7.299 – volume: 18 start-page: 1950008 issue: 01 year: 2019 ident: 16448_CR16 publication-title: J Inf Knowl Manag doi: 10.1142/S0219649219500084 – ident: 16448_CR36 doi: 10.3390/app9142931 – ident: 16448_CR50 doi: 10.1155/2018/3847951 – ident: 16448_CR12 doi: 10.1007/978-981-15-5093-5_37 – volume: 10 start-page: 98475 year: 2022 ident: 16448_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3204593 – ident: 16448_CR52 doi: 10.1016/j.procs.2022.03.087 – ident: 16448_CR17 doi: 10.1007/978-3-319-74690-6_1 – ident: 16448_CR41 doi: 10.1109/ICNN.1995.488968 – volume: 6 start-page: 1 year: 2020 ident: 16448_CR78 publication-title: Int J Comput Sci Math Theo – ident: 16448_CR63 – ident: 16448_CR76 doi: 10.22067/cke.v2i2.81750 – volume: 48 start-page: 67 year: 2019 ident: 16448_CR20 publication-title: Inf Fusion doi: 10.1016/j.inffus.2018.08.002 – volume: 47 start-page: 187 year: 2020 ident: 16448_CR57 publication-title: IAENG Int J Comput Sci – ident: 16448_CR86 doi: 10.1016/B978-0-12-821986-7.00016-0 – volume: 49 start-page: 4677 year: 1994 ident: 16448_CR51 publication-title: Phys Rev E doi: 10.1103/PhysRevE.49.4677 – ident: 16448_CR85 doi: 10.1007/978-3-642-12538-6_6 – volume: 32 start-page: 225 issue: 2 year: 2020 ident: 16448_CR8 publication-title: J King Saud Univ - Comput Inf Sci doi: 10.1016/j.jksuci.2018.05.010 – volume: 120 start-page: 207 year: 2019 ident: 16448_CR77 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2018.11.018 – volume: 29 start-page: 119 year: 2018 ident: 16448_CR14 publication-title: J Computational Science doi: 10.1016/j.jocs.2018.10.002 – volume: 48 start-page: 283 issue: 2 year: 2012 ident: 16448_CR22 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2011.08.002 – volume: 8 start-page: 4244 year: 2020 ident: 16448_CR46 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963084 – ident: 16448_CR55 doi: 10.1016/j.eswa.2015.10.039 – volume: 11 start-page: 2050032 issue: 04 year: 2020 ident: 16448_CR81 publication-title: Int J Model Simul Sci Comput doi: 10.1142/S1793962320500324 – volume: 32 start-page: 320 issue: 3 year: 2020 ident: 16448_CR43 publication-title: J King Saud Univ - Comput Inf Sci doi: 10.1016/j.jksuci.2018.06.004 – ident: 16448_CR72 doi: 10.1155/2016/8031560 – volume: 118 start-page: 213 year: 2018 ident: 16448_CR60 publication-title: Renew Energy doi: 10.1016/j.renene.2017.10.075 – volume: 28 start-page: 97 year: 2014 ident: 16448_CR30 publication-title: Eng Appl Art Intell doi: 10.1016/j.engappai.2013.12.001 – ident: 16448_CR39 doi: 10.1016/j.neucom.2014.06.067 – volume: 205 year: 2023 ident: 16448_CR71 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2023.109279 – volume: 1 start-page: 53 issue: 1 year: 1997 ident: 16448_CR15 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585892 – ident: 16448_CR59 doi: 10.1016/B978-0-12-405163-8.00009-0 – volume: 9 start-page: 116768 year: 2021 ident: 16448_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3105914 – volume: 7 start-page: 142085 year: 2019 ident: 16448_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937021 – ident: 16448_CR42 doi: 10.1109/ICNN.1995.488968 – ident: 16448_CR37 – year: 2020 ident: 16448_CR87 publication-title: The Electronic Library ahead-of-print doi: 10.1108/EL-07-2019-0181 – ident: 16448_CR4 – volume: 87 year: 2020 ident: 16448_CR47 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105954 – ident: 16448_CR28 doi: 10.1155/2017/3235720 – ident: 16448_CR7 doi: 10.30880/jscdm.2020.01.02.005 – ident: 16448_CR44 doi: 10.3390/sym11070925 – ident: 16448_CR21 doi: 10.1109/AEECT.2015.7360576 – volume-title: Feature Selection for Knowledge Discovery and Data Mining year: 1998 ident: 16448_CR45 doi: 10.1007/978-1-4615-5689-3 – volume: 3 start-page: 7 year: 2014 ident: 16448_CR62 publication-title: Int J Sci Technol Res – ident: 16448_CR10 doi: 10.1007/s12652-017-0621-2 – ident: 16448_CR74 doi: 10.1007/s42452-019-0394-7 – year: 2020 ident: 16448_CR79 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01128-0 – volume: 39 start-page: 33 year: 2015 ident: 16448_CR31 publication-title: Eng Appl Art Intell doi: 10.1016/j.engappai.2014.11.001 – ident: 16448_CR33 – volume: 53 start-page: 38 issue: 1 year: 2011 ident: 16448_CR67 publication-title: IEEE Antennas and Propag Mag doi: 10.1109/MAP.2011.5773566 – ident: 16448_CR82 doi: 10.5121/ijcsit.2011.3112 – volume: 52 start-page: 64 year: 2017 ident: 16448_CR69 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.12.022 – ident: 16448_CR75 doi: 10.1155/2017/2030489 – volume: 9 start-page: 1216 issue: 10 year: 2016 ident: 16448_CR40 publication-title: Security and Communication Networks doi: 10.1002/sec.1412 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 16448_CR23 publication-title: SIMULATION doi: 10.1177/003754970107600201 – ident: 16448_CR70 doi: 10.1016/j.eswa.2021.114639 – ident: 16448_CR3 doi: 10.1109/ACCESS.2019.2944089 – volume: 7 start-page: 168261 year: 2019 ident: 16448_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2954791 – volume: 8 start-page: 187914 year: 2020 ident: 16448_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3030751 – volume: 11 start-page: 2050032 issue: 04 year: 2020 ident: 16448_CR80 publication-title: Int J Model Simul Sci Comput doi: 10.1142/S1793962320500324 – volume: 9 start-page: 431 issue: 1 year: 2009 ident: 16448_CR32 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2008.05.003 – volume: 22 start-page: 11 year: 2014 ident: 16448_CR29 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.05.002 – volume: 31 start-page: 691 issue: 3 year: 2019 ident: 16448_CR61 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3100-y – volume: 70 start-page: 476 year: 2018 ident: 16448_CR64 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2017.08.008 – volume: 41 start-page: 2250 issue: 5 year: 2014 ident: 16448_CR68 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2013.09.023 – volume: 97 start-page: 849 year: 2019 ident: 16448_CR27 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – year: 2022 ident: 16448_CR13 publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-022-04335-5 – volume: 19 start-page: 1926 issue: 2 year: 2022 ident: 16448_CR66 publication-title: Math Biosci Eng doi: 10.3934/mbe.2022091 |
| SSID | ssj0016524 |
| Score | 2.4165702 |
| Snippet | Spam emails have become more prevalent, necessitating the development of more effective and reliable anti-spam filters. Internet users face security threats,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 26929 |
| SubjectTerms | Algorithms Classification Clustering Complexity Computer Communication Networks Computer Science Convergence Data Structures and Information Theory Feature selection Heuristic methods Iterative algorithms Iterative methods Machine learning Momentum Multimedia Information Systems Optimization Spamming Special Purpose and Application-Based Systems |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGmCgPEWhIA9sYOE4TW1PCFUUBl4DCLbI8QOQmrbQQMW_x06dFpBgYcoQx7F89n3n8913APtC2iSRuoWtiRVuWur0IKUZ1i0ek4xKY7OSMv-CXV3xhwdxExxuwxBWWenEUlHrvvI-8iMHS87SYILw48EL9lWj_O1qKKExC_PesvEhfZekPblFaCWhqC0n2CFjFJJmxqlzkU9McYiFI39EwaPvwDS1Nn9ckJa406n9d8QrsBwsTnQyXiKrMGN6a1CrqjmgsLnXYOkLNeE62PMPn8uFcs_QULzlSCrlEMoTS2iUyQLJ7qP7WfGUI-_KRWf318gjokZ9p4TykN2JKspy5Gxj5JRXjpQ31318UtlgA-46p7ftcxxqMmDlNmuBdZYYw2jJnMZirYTQmhDNtYqNeyqiqM0YJ7FIiLRCtZSJuJAyE0ZyG5t4E-Z6_Z7ZAiQpscJqHnNmm9QkmVsf1h3_WERZpJmuQ1QJJFWBsNzXzeimU6plL8TUDSYthZiO6nAw-WYwpuv4s3Wjklwatu4wnYqtDoeV7Kevf-9t--_edmDRTVtzHL_WgLni9c3swoJ6L56Hr3vlwv0EFh71lA priority: 102 providerName: ProQuest |
| Title | Hybrid momentum accelerated bat algorithm with GWO based optimization approach for spam classification |
| URI | https://link.springer.com/article/10.1007/s11042-023-16448-w https://www.proquest.com/docview/2933267908 |
| Volume | 83 |
| WOSCitedRecordID | wos001059026300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1573-7721 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: M2O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOsABCgWxFFY-cANLjrNZ20dAUCTKsuJNL5HjR4tEdtFuAPHvGWcTFqqC1F4cRRlHlsfzsD3zDcCm0j5JtG1T72JDW56jHuQ8o7YtY5Zx7XxWQub_EJ2OvL5W3SopbFhHu9dXkqWmHie7RSGVBG0MjcKmgj5NwjSaOxkKNpyeXb7eHbQT3qrSY_7e770JGvuVf1yFlhbmYOH_xvYF5iuPkuyMlsAiTLjeEizU1RpIJbxLMPcGevAr-MPnkKtF8oDAUDzkRBuDFigAR1iS6YLou1_9wW3xOyfhqJZ8vzohweJZ0kclk1fZm6SGJCfo-xJUTjkxwR0P8UclwTJcHOyf7x3SquYCNSiMBbVZ4pzgJTKaiK1RylrGrLQmdvg0zHCfCclilTDtlWkbF0mldaaclj528QpM9fo9twpEc-aVtzKWwre4SzLkv8ftnYi4iKywDYhqNqSmAiQPdTHu0jGUcpjWFAeTltOaPjVg67XP_QiO41Pq9Zq7aSWawxT9G3RZhWKyAds1N8efP_7b2r-Rf4NZnMbWKF5tHaaKwYPbgBnzWNwOB02YFFc3TZje3e90T_HtSFBsj9leaPkJtt3kZ7Nc2C-RXPDL |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTxQxFH9BJFEPoIhxFbEHOWFDp7OzbQ_GGBWW7LpwgMBt6PQDSHZ2kR3c8E_5N_I6HyyYwI2DpzlMpzPt_Po-2vd-D-CT0j5JtO1Q72JD256jHOQ8o7YjY5Zx7XxWUub3xWAgj47U3hz8bXJhQlhlIxNLQW3HJuyRb6JaQktDKCa_nv-moWpUOF1tSmhUsOi5qym6bJMvOz_w_65zvvVz_3uX1lUFqEG4FdRmiXOCl9xfIrZGKWsZs9Ka2OHVMMN9JiSLVcK0V6ZjXCSV1plyWvrYxdjvE3jajqUI66on6M2pRSepi-hKRlETR3WSTpWqF4VEGHwrjYJLRKd3FeHMuv3nQLbUc1tL_9sMvYTF2qIm36ol8Arm3GgZlppqFaQWXsvw4hb14mvw3auQq0bywEBRXOZEG4MaOBBnWJLpgujhCQ6uOM1J2Kom24e7JGh8S8YoZPM6e5U0lOwEbX-CwjknJrgjIf6qbLACB48y9jcwPxqP3FsgmjOvvJUIFN_mLskQ_x7dWxFxEVlhWxA1AEhNTcge6oIM0xmVdABNih-TlqBJpy3YuHnmvKIjebD1aoOUtBZNk3QGkxZ8brA2u31_b-8e7u0jPOvu_-qn_Z1B7z08xylsV7F6qzBfXFy6D7Bg_hRnk4u1ctEQOH5sDF4DHOlU-g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTxQxFH8BNAQOoghxFbUHPWlDp7OzbQ_GEGCFQNY9aCRehk4_wITZBXZww7_mX-frTIdVErlx8DSH6XSmnV_fR_ve7wG8UdpnmbY96l1qaNdzlIOcF9T2ZMoKrp0vasr8QzEYyKMjNZyDX20uTAirbGViLajt2IQ98k1US2hpCMXkpo9hEcOd_sfzCxoqSIWT1racRgORA3c9Rfdt8mF_B__1W877u1-292isMEANQq-itsicE7zmAROpNUpZy5iV1qQOr4YZ7gshWaoypr0yPeMSqbQulNPSpy7FfufhgUAfM4QTDrPvNycYvSwW1JWMolZOYsJOk7aXhKQYfCtNgntEp38rxZmle-twttZ5_ZX_ebYew6NoaZOtZmk8gTk3WoWVtooFiUJtFZb_oGR8Cn7vOuSwkTIwU1RXJdHGoGYOhBqWFLoi-uwEB1edliRsYZNP3z6TYAlYMkbhW8asVtJStRP0CQgK7ZKY4KaEuKy6wRp8vZexr8PCaDxyz4BozrzyVqZS-C53WYHrwqPbKxIuEitsB5IWDLmJRO2hXshZPqOYDgDK8WPyGkD5tAPvbp45b2hK7my90aImjyJrks8g04H3Le5mt__d2_O7e3sNiwi9_HB_cPAClnAGu00I3wYsVJdX7iU8ND-rH5PLV_X6IXB83xD8DRS5Xh4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+momentum+accelerated+bat+algorithm+with+GWO+based+optimization+approach+for+spam+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Dhal%2C+Pradip&rft.au=Azad%2C+Chandrashekhar&rft.date=2024-03-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=9&rft.spage=26929&rft.epage=26969&rft_id=info:doi/10.1007%2Fs11042-023-16448-w&rft.externalDocID=10_1007_s11042_023_16448_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |