Nonconvex Dantzig selector and its parallel computing algorithm
The Dantzig selector is a popular ℓ 1 -type variable selection method widely used across various research fields. However, ℓ 1 -type methods may not perform well for variable selection without complex irrepresentable conditions. In this article, we introduce a nonconvex Dantzig selector for ultrahig...
Uložené v:
| Vydané v: | Statistics and computing Ročník 34; číslo 6 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.12.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0960-3174, 1573-1375 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The Dantzig selector is a popular
ℓ
1
-type variable selection method widely used across various research fields. However,
ℓ
1
-type methods may not perform well for variable selection without complex irrepresentable conditions. In this article, we introduce a nonconvex Dantzig selector for ultrahigh-dimensional linear models. We begin by demonstrating that the oracle estimator serves as a local optimum for the nonconvex Dantzig selector. In addition, we propose a one-step local linear approximation estimator, called the Dantzig-LLA estimator, for the nonconvex Dantzig selector, and establish its strong oracle property. The proposed regularization method avoids the restrictive conditions imposed by
ℓ
1
regularization methods to guarantee the model selection consistency. Furthermore, we propose an efficient and parallelizable computing algorithm based on feature-splitting to address the computational challenges associated with the nonconvex Dantzig selector in high-dimensional settings. A comprehensive numerical study is conducted to evaluate the performance of the nonconvex Dantzig selector and the computing efficiency of the feature-splitting algorithm. The results demonstrate that the Dantzig selector with nonconvex penalty outperforms the
ℓ
1
penalty-based selector, and the feature-splitting algorithm performs well in high-dimensional settings where linear programming solver may fail. Finally, we generalize the concept of nonconvex Dantzig selector to deal with more general loss functions. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0960-3174 1573-1375 |
| DOI: | 10.1007/s11222-024-10492-8 |