Nonconvex Dantzig selector and its parallel computing algorithm

The Dantzig selector is a popular ℓ 1 -type variable selection method widely used across various research fields. However, ℓ 1 -type methods may not perform well for variable selection without complex irrepresentable conditions. In this article, we introduce a nonconvex Dantzig selector for ultrahig...

Full description

Saved in:
Bibliographic Details
Published in:Statistics and computing Vol. 34; no. 6
Main Authors: Wen, Jiawei, Yang, Songshan, Zhao, Delin
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2024
Springer Nature B.V
Subjects:
ISSN:0960-3174, 1573-1375
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Dantzig selector is a popular ℓ 1 -type variable selection method widely used across various research fields. However, ℓ 1 -type methods may not perform well for variable selection without complex irrepresentable conditions. In this article, we introduce a nonconvex Dantzig selector for ultrahigh-dimensional linear models. We begin by demonstrating that the oracle estimator serves as a local optimum for the nonconvex Dantzig selector. In addition, we propose a one-step local linear approximation estimator, called the Dantzig-LLA estimator, for the nonconvex Dantzig selector, and establish its strong oracle property. The proposed regularization method avoids the restrictive conditions imposed by ℓ 1 regularization methods to guarantee the model selection consistency. Furthermore, we propose an efficient and parallelizable computing algorithm based on feature-splitting to address the computational challenges associated with the nonconvex Dantzig selector in high-dimensional settings. A comprehensive numerical study is conducted to evaluate the performance of the nonconvex Dantzig selector and the computing efficiency of the feature-splitting algorithm. The results demonstrate that the Dantzig selector with nonconvex penalty outperforms the ℓ 1 penalty-based selector, and the feature-splitting algorithm performs well in high-dimensional settings where linear programming solver may fail. Finally, we generalize the concept of nonconvex Dantzig selector to deal with more general loss functions.
AbstractList The Dantzig selector is a popular ℓ1-type variable selection method widely used across various research fields. However, ℓ1-type methods may not perform well for variable selection without complex irrepresentable conditions. In this article, we introduce a nonconvex Dantzig selector for ultrahigh-dimensional linear models. We begin by demonstrating that the oracle estimator serves as a local optimum for the nonconvex Dantzig selector. In addition, we propose a one-step local linear approximation estimator, called the Dantzig-LLA estimator, for the nonconvex Dantzig selector, and establish its strong oracle property. The proposed regularization method avoids the restrictive conditions imposed by ℓ1 regularization methods to guarantee the model selection consistency. Furthermore, we propose an efficient and parallelizable computing algorithm based on feature-splitting to address the computational challenges associated with the nonconvex Dantzig selector in high-dimensional settings. A comprehensive numerical study is conducted to evaluate the performance of the nonconvex Dantzig selector and the computing efficiency of the feature-splitting algorithm. The results demonstrate that the Dantzig selector with nonconvex penalty outperforms the ℓ1 penalty-based selector, and the feature-splitting algorithm performs well in high-dimensional settings where linear programming solver may fail. Finally, we generalize the concept of nonconvex Dantzig selector to deal with more general loss functions.
The Dantzig selector is a popular ℓ 1 -type variable selection method widely used across various research fields. However, ℓ 1 -type methods may not perform well for variable selection without complex irrepresentable conditions. In this article, we introduce a nonconvex Dantzig selector for ultrahigh-dimensional linear models. We begin by demonstrating that the oracle estimator serves as a local optimum for the nonconvex Dantzig selector. In addition, we propose a one-step local linear approximation estimator, called the Dantzig-LLA estimator, for the nonconvex Dantzig selector, and establish its strong oracle property. The proposed regularization method avoids the restrictive conditions imposed by ℓ 1 regularization methods to guarantee the model selection consistency. Furthermore, we propose an efficient and parallelizable computing algorithm based on feature-splitting to address the computational challenges associated with the nonconvex Dantzig selector in high-dimensional settings. A comprehensive numerical study is conducted to evaluate the performance of the nonconvex Dantzig selector and the computing efficiency of the feature-splitting algorithm. The results demonstrate that the Dantzig selector with nonconvex penalty outperforms the ℓ 1 penalty-based selector, and the feature-splitting algorithm performs well in high-dimensional settings where linear programming solver may fail. Finally, we generalize the concept of nonconvex Dantzig selector to deal with more general loss functions.
ArticleNumber 180
Author Zhao, Delin
Wen, Jiawei
Yang, Songshan
Author_xml – sequence: 1
  givenname: Jiawei
  surname: Wen
  fullname: Wen, Jiawei
  organization: Meta
– sequence: 2
  givenname: Songshan
  surname: Yang
  fullname: Yang, Songshan
  organization: Center for Applied Statistics and Institute of Statistics and Big Data, Renmin University of China
– sequence: 3
  givenname: Delin
  surname: Zhao
  fullname: Zhao, Delin
  email: delin1997@ruc.edu.cn
  organization: Center for Applied Statistics and Institute of Statistics and Big Data, Renmin University of China
BookMark eNp9kD1PwzAURS1UJNrCH2CKxGzwR1LHE0KFAlIFC8zWi-MEV6kdbBcBv55AkJAYOr3lnnufzgxNnHcGoVNKzikh4iJSyhjDhOWYklwyXB6gKS0Ex5SLYoKmRC4I5lTkR2gW44YQShc8n6LLB--0d2_mPbsGlz5tm0XTGZ18yMDVmU0x6yFA15ku037b75J1bQZd64NNL9tjdNhAF83J752j59XN0_IOrx9v75dXa6w5lQnXVQGNyFldMsHFgnNWMdmwnIMRAgottdYF1xKgEsBKrplpQJqqlEVNmKn5HJ2NvX3wrzsTk9r4XXDDpOKUFJJLWtIhxcaUDj7GYBrVB7uF8KEoUd-i1ChKDaLUjyhVDlD5D9I2QbLepQC224_yEY3DjmtN-PtqD_UFbZl_aA
CitedBy_id crossref_primary_10_1007_s11222_025_10631_9
crossref_primary_10_1007_s11222_025_10658_y
Cites_doi 10.1111/j.1467-9868.2008.00668.x
10.1214/13-AOS1198
10.1198/jasa.2008.tm08516
10.3150/12-BEJSP17
10.1080/00401706.1995.10484371
10.1080/10618600.2022.2143785
10.1214/10-AOAS388
10.1137/140964357
10.1080/01621459.2012.656014
10.1214/08-AOS620
10.1093/nsr/nwt032
10.18637/jss.v033.i01
10.1214/009053607000000604
10.1109/TSP.2018.2868269
10.1111/j.2517-6161.1996.tb02080.x
10.1093/biomet/asp013
10.1109/TIP.2019.2924339
10.1198/jasa.2009.0127
10.1016/j.csda.2012.04.019
10.1214/09-AOS729
10.1198/016214501753382273
10.1080/00401706.1970.10488634
10.1201/9780429096280
10.1016/j.jeconom.2022.04.004
10.1080/01621459.2023.2202433
10.1198/016214506000000735
10.1007/s10444-017-9559-3
10.1080/01621459.2020.1840989
10.1111/j.1467-9868.2005.00503.x
10.1017/9781108627771
10.1214/15-AOAS842
10.1016/j.jeconom.2023.01.028
10.1109/ICASSP.2019.8683703
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11222-024-10492-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
ExternalDocumentID 10_1007_s11222_024_10492_8
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-db5af742d827376332b29f243ae77a5c9ccc53c9aab7a283c2efa9eb895d02ed3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001314713100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
IngestDate Thu Oct 02 15:04:53 EDT 2025
Tue Nov 18 21:45:50 EST 2025
Sat Nov 29 03:32:46 EST 2025
Fri Feb 21 02:38:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Local linear approximation
Parallel computing
SCAD
High-dimensional regularization model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-db5af742d827376332b29f243ae77a5c9ccc53c9aab7a283c2efa9eb895d02ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3105939181
PQPubID 2043829
ParticipantIDs proquest_journals_3105939181
crossref_primary_10_1007_s11222_024_10492_8
crossref_citationtrail_10_1007_s11222_024_10492_8
springer_journals_10_1007_s11222_024_10492_8
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zhang (CR39) 2010; 38
Wang (CR35) 2009; 104
Cai, Li, Wen, Yang (CR5) 2024; 239
Jordan (CR21) 2013; 19
Zhao, Yu (CR40) 2006; 7
Zou, Li (CR44) 2008; 36
Park, He, Zhou (CR27) 2017; 24
CR18
Fan (CR9) 2014
CR38
Zou, Hastie (CR43) 2005; 67
Fan, Lv (CR11) 2010; 20
Lu, Pong, Zhang (CR26) 2012; 56
James, Radchenko (CR19) 2009; 96
James, Radchenko, Lv (CR20) 2009; 71
Zhou, Wang, Zou (CR41) 2024; 119
Li, Dicker, Zhao (CR23) 2014; 24
Sun, Jiang, Cheng, Zhu (CR30) 2018; 66
Breheny, Huang (CR3) 2011; 5
Sun, Barrio, Rodríguez, Jiang (CR32) 2019; 28
Fan, Han, Liu (CR12) 2014; 1
Fan, Li, Zhang, Zou (CR14) 2020
Tibshirani (CR33) 1996; 58
Wainwright (CR34) 2019
Li, Liang (CR22) 2008; 36
Wang, Peng, Bradic, Li, Wu (CR37) 2020; 115
CR8
CR7
CR28
Sun, Toh, Yang (CR29) 2015; 25
Wang, Wu, Li (CR36) 2012; 107
Fan, Xue, Zou (CR13) 2014; 42
Gai, Zhu, Lin (CR16) 2013; 23
Liang, Li (CR25) 2009; 104
Bickel, Ritov, Tsybakov (CR1) 2009; 37
Friedman, Hastie, Tibshirani (CR15) 2010; 33
Li, Li, Wen, Yang, Zhan (CR24) 2023; 32
Breiman (CR4) 1995; 37
Fan, Li (CR10) 2001; 96
Sun, Yin, Cheng, Jiang (CR31) 2018; 44
Candes, Tao (CR6) 2007; 35
Hoerl, Kennard (CR17) 1970; 12
Bogdan, van den Berg, Sabatti, Su, Candès (CR2) 2015; 9
Zou (CR42) 2006; 101
J Fan (10492_CR11) 2010; 20
Z Cai (10492_CR5) 2024; 239
M Wainwright (10492_CR34) 2019
Y Gai (10492_CR16) 2013; 23
AE Hoerl (10492_CR17) 1970; 12
S Park (10492_CR27) 2017; 24
J Fan (10492_CR14) 2020
H Zou (10492_CR42) 2006; 101
H Liang (10492_CR25) 2009; 104
Z Lu (10492_CR26) 2012; 56
GM James (10492_CR20) 2009; 71
T Sun (10492_CR31) 2018; 44
J Fan (10492_CR10) 2001; 96
MI Jordan (10492_CR21) 2013; 19
P Zhao (10492_CR40) 2006; 7
H Zou (10492_CR43) 2005; 67
T Sun (10492_CR32) 2019; 28
C-H Zhang (10492_CR39) 2010; 38
R Tibshirani (10492_CR33) 1996; 58
H Wang (10492_CR35) 2009; 104
10492_CR28
JH Friedman (10492_CR15) 2010; 33
GM James (10492_CR19) 2009; 96
E Candes (10492_CR6) 2007; 35
C Li (10492_CR24) 2023; 32
P Breheny (10492_CR3) 2011; 5
L Wang (10492_CR36) 2012; 107
H Zou (10492_CR44) 2008; 36
D Sun (10492_CR29) 2015; 25
L Breiman (10492_CR4) 1995; 37
Y Li (10492_CR23) 2014; 24
J Fan (10492_CR12) 2014; 1
T Sun (10492_CR30) 2018; 66
M Bogdan (10492_CR2) 2015; 9
10492_CR7
L Zhou (10492_CR41) 2024; 119
PJ Bickel (10492_CR1) 2009; 37
R Li (10492_CR22) 2008; 36
10492_CR38
L Wang (10492_CR37) 2020; 115
10492_CR18
J Fan (10492_CR9) 2014
10492_CR8
J Fan (10492_CR13) 2014; 42
References_xml – volume: 71
  start-page: 127
  issue: 1
  year: 2009
  end-page: 142
  ident: CR20
  article-title: Dasso: connections between the Dantzig selector and lasso
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2008.00668.x
– volume: 42
  start-page: 819
  issue: 3
  year: 2014
  end-page: 849
  ident: CR13
  article-title: Strong oracle optimality of folded concave penalized estimation
  publication-title: Ann. Stat.
  doi: 10.1214/13-AOS1198
– volume: 104
  start-page: 1512
  issue: 488
  year: 2009
  end-page: 1524
  ident: CR35
  article-title: Forward regression for ultra-high dimensional variable screening
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2008.tm08516
– volume: 19
  start-page: 1378
  issue: 4
  year: 2013
  end-page: 1390
  ident: CR21
  article-title: On statistics, computation and scalability
  publication-title: Bernoulli
  doi: 10.3150/12-BEJSP17
– volume: 24
  start-page: 251
  issue: 1
  year: 2014
  end-page: 268
  ident: CR23
  article-title: The Dantzig selector for censored linear regression models
  publication-title: Statistica Sinica
– ident: CR18
– volume: 37
  start-page: 373
  issue: 4
  year: 1995
  end-page: 384
  ident: CR4
  article-title: Better subset regression using the nonnegative garrote
  publication-title: Technometrics
  doi: 10.1080/00401706.1995.10484371
– volume: 32
  start-page: 1074
  issue: 3
  year: 2023
  end-page: 1082
  ident: CR24
  article-title: Regularized linear programming discriminant rule with folded concave penalty for ultrahigh-dimensional data
  publication-title: J. Comput. Graph. Stat
  doi: 10.1080/10618600.2022.2143785
– volume: 5
  start-page: 232
  issue: 1
  year: 2011
  end-page: 253
  ident: CR3
  article-title: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS388
– volume: 23
  start-page: 615
  issue: 2
  year: 2013
  end-page: 634
  ident: CR16
  article-title: Model selection consistency of Dantzig selector
  publication-title: Statistica Sinica
– volume: 25
  start-page: 882
  issue: 2
  year: 2015
  end-page: 915
  ident: CR29
  article-title: A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints
  publication-title: SIAM J. Optim.
  doi: 10.1137/140964357
– volume: 24
  start-page: 1619
  issue: 1
  year: 2017
  end-page: 1638
  ident: CR27
  article-title: Dantzig-type penalization for multiple quantile regression with high dimensional covariates
  publication-title: Statistica Sinica
– volume: 107
  start-page: 214
  issue: 497
  year: 2012
  end-page: 222
  ident: CR36
  article-title: Quantile regression for analyzing heterogeneity in ultra-high dimension
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2012.656014
– volume: 37
  start-page: 1705
  issue: 4
  year: 2009
  end-page: 1732
  ident: CR1
  article-title: Simultaneous analysis of lasso and Dantzig selector
  publication-title: Ann. Stat.
  doi: 10.1214/08-AOS620
– volume: 1
  start-page: 293
  issue: 2
  year: 2014
  end-page: 314
  ident: CR12
  article-title: Challenges of big data analysis
  publication-title: Nat. Sci. Rev.
  doi: 10.1093/nsr/nwt032
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  end-page: 22
  ident: CR15
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 35
  start-page: 2313
  issue: 6
  year: 2007
  end-page: 2351
  ident: CR6
  article-title: The Dantzig selector: statistical estimation when p is much larger than n
  publication-title: Ann. Stat.
– ident: CR8
– volume: 36
  start-page: 261
  issue: 1
  year: 2008
  end-page: 286
  ident: CR22
  article-title: Variable selection in semiparametric regression modeling
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000604
– volume: 66
  start-page: 5380
  issue: 20
  year: 2018
  end-page: 5391
  ident: CR30
  article-title: Iteratively linearized reweighted alternating direction method of multipliers for a class of nonconvex problems
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2868269
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  ident: CR33
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 96
  start-page: 323
  issue: 2
  year: 2009
  end-page: 337
  ident: CR19
  article-title: A generalized Dantzig selector with shrinkage tuning
  publication-title: Biometrika
  doi: 10.1093/biomet/asp013
– volume: 28
  start-page: 6211
  issue: 12
  year: 2019
  end-page: 6224
  ident: CR32
  article-title: Inertial nonconvex alternating minimizations for the image deblurring
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2924339
– volume: 36
  start-page: 1509
  issue: 4
  year: 2008
  end-page: 1533
  ident: CR44
  article-title: One-step sparse estimates in nonconcave penalized likelihood models
  publication-title: Ann. Stat.
– volume: 104
  start-page: 234
  issue: 485
  year: 2009
  end-page: 248
  ident: CR25
  article-title: Variable selection for partially linear models with measurement errors
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.0127
– volume: 56
  start-page: 4037
  issue: 12
  year: 2012
  end-page: 4046
  ident: CR26
  article-title: An alternating direction method for finding Dantzig selectors
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2012.04.019
– volume: 38
  start-page: 894
  issue: 2
  year: 2010
  end-page: 942
  ident: CR39
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  end-page: 1360
  ident: CR10
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 20
  start-page: 101
  issue: 1
  year: 2010
  end-page: 148
  ident: CR11
  article-title: A selective overview of variable selection in high dimensional feature space
  publication-title: Statistica Sinica
– volume: 12
  start-page: 55
  issue: 1
  year: 1970
  end-page: 67
  ident: CR17
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– ident: CR38
– year: 2020
  ident: CR14
  publication-title: Statistical Foundations of Data Science
  doi: 10.1201/9780429096280
– volume: 239
  issue: 2
  year: 2024
  ident: CR5
  article-title: Asset splitting algorithm for ultrahigh dimensional portfolio selection and its theoretical property
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2022.04.004
– volume: 119
  start-page: 1500
  issue: 546
  year: 2024
  end-page: 1512
  ident: CR41
  article-title: Sparse convoluted rank regression in high dimensions
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2023.2202433
– ident: CR7
– volume: 101
  start-page: 1418
  issue: 476
  year: 2006
  end-page: 1429
  ident: CR42
  article-title: The adaptive lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– volume: 7
  start-page: 2541
  issue: 90
  year: 2006
  end-page: 2563
  ident: CR40
  article-title: On model selection consistency of Lasso
  publication-title: J. Mach. Learn. Res.
– start-page: 507
  year: 2014
  end-page: 523
  ident: CR9
  publication-title: Features of Big Data and Sparsest Solution in High Confidence Set
– ident: CR28
– volume: 44
  start-page: 723
  year: 2018
  end-page: 744
  ident: CR31
  article-title: Alternating direction method of multipliers with difference of convex functions
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-017-9559-3
– volume: 115
  start-page: 1700
  issue: 532
  year: 2020
  end-page: 1714
  ident: CR37
  article-title: A tuning-free robust and efficient approach to high-dimensional regression
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2020.1840989
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  end-page: 320
  ident: CR43
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2005.00503.x
– year: 2019
  ident: CR34
  publication-title: High-dimensional Statistics: A Non-asymptotic Viewpoint
  doi: 10.1017/9781108627771
– volume: 9
  start-page: 1103
  issue: 3
  year: 2015
  end-page: 1140
  ident: CR2
  article-title: Slope-adaptive variable selection via convex optimization
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/15-AOAS842
– volume: 37
  start-page: 373
  issue: 4
  year: 1995
  ident: 10492_CR4
  publication-title: Technometrics
  doi: 10.1080/00401706.1995.10484371
– volume: 42
  start-page: 819
  issue: 3
  year: 2014
  ident: 10492_CR13
  publication-title: Ann. Stat.
  doi: 10.1214/13-AOS1198
– volume: 104
  start-page: 1512
  issue: 488
  year: 2009
  ident: 10492_CR35
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2008.tm08516
– volume: 5
  start-page: 232
  issue: 1
  year: 2011
  ident: 10492_CR3
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS388
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10492_CR43
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 96
  start-page: 323
  issue: 2
  year: 2009
  ident: 10492_CR19
  publication-title: Biometrika
  doi: 10.1093/biomet/asp013
– volume: 66
  start-page: 5380
  issue: 20
  year: 2018
  ident: 10492_CR30
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2868269
– volume-title: High-dimensional Statistics: A Non-asymptotic Viewpoint
  year: 2019
  ident: 10492_CR34
  doi: 10.1017/9781108627771
– ident: 10492_CR38
  doi: 10.1016/j.jeconom.2023.01.028
– volume: 19
  start-page: 1378
  issue: 4
  year: 2013
  ident: 10492_CR21
  publication-title: Bernoulli
  doi: 10.3150/12-BEJSP17
– volume: 38
  start-page: 894
  issue: 2
  year: 2010
  ident: 10492_CR39
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– volume: 36
  start-page: 1509
  issue: 4
  year: 2008
  ident: 10492_CR44
  publication-title: Ann. Stat.
– volume: 239
  issue: 2
  year: 2024
  ident: 10492_CR5
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2022.04.004
– volume: 32
  start-page: 1074
  issue: 3
  year: 2023
  ident: 10492_CR24
  publication-title: J. Comput. Graph. Stat
  doi: 10.1080/10618600.2022.2143785
– volume: 119
  start-page: 1500
  issue: 546
  year: 2024
  ident: 10492_CR41
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2023.2202433
– start-page: 507
  volume-title: Features of Big Data and Sparsest Solution in High Confidence Set
  year: 2014
  ident: 10492_CR9
– volume: 20
  start-page: 101
  issue: 1
  year: 2010
  ident: 10492_CR11
  publication-title: Statistica Sinica
– ident: 10492_CR8
– volume: 56
  start-page: 4037
  issue: 12
  year: 2012
  ident: 10492_CR26
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2012.04.019
– volume: 44
  start-page: 723
  year: 2018
  ident: 10492_CR31
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-017-9559-3
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10492_CR33
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 71
  start-page: 127
  issue: 1
  year: 2009
  ident: 10492_CR20
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2008.00668.x
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 10492_CR15
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– ident: 10492_CR18
– volume: 25
  start-page: 882
  issue: 2
  year: 2015
  ident: 10492_CR29
  publication-title: SIAM J. Optim.
  doi: 10.1137/140964357
– volume: 24
  start-page: 1619
  issue: 1
  year: 2017
  ident: 10492_CR27
  publication-title: Statistica Sinica
– volume: 1
  start-page: 293
  issue: 2
  year: 2014
  ident: 10492_CR12
  publication-title: Nat. Sci. Rev.
  doi: 10.1093/nsr/nwt032
– volume: 28
  start-page: 6211
  issue: 12
  year: 2019
  ident: 10492_CR32
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2924339
– volume: 101
  start-page: 1418
  issue: 476
  year: 2006
  ident: 10492_CR42
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– volume: 37
  start-page: 1705
  issue: 4
  year: 2009
  ident: 10492_CR1
  publication-title: Ann. Stat.
  doi: 10.1214/08-AOS620
– volume: 23
  start-page: 615
  issue: 2
  year: 2013
  ident: 10492_CR16
  publication-title: Statistica Sinica
– volume: 36
  start-page: 261
  issue: 1
  year: 2008
  ident: 10492_CR22
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000604
– volume: 35
  start-page: 2313
  issue: 6
  year: 2007
  ident: 10492_CR6
  publication-title: Ann. Stat.
– ident: 10492_CR28
  doi: 10.1109/ICASSP.2019.8683703
– volume: 7
  start-page: 2541
  issue: 90
  year: 2006
  ident: 10492_CR40
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 1103
  issue: 3
  year: 2015
  ident: 10492_CR2
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/15-AOAS842
– volume: 12
  start-page: 55
  issue: 1
  year: 1970
  ident: 10492_CR17
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– ident: 10492_CR7
– volume: 107
  start-page: 214
  issue: 497
  year: 2012
  ident: 10492_CR36
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2012.656014
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  ident: 10492_CR10
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 104
  start-page: 234
  issue: 485
  year: 2009
  ident: 10492_CR25
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.0127
– volume: 24
  start-page: 251
  issue: 1
  year: 2014
  ident: 10492_CR23
  publication-title: Statistica Sinica
– volume: 115
  start-page: 1700
  issue: 532
  year: 2020
  ident: 10492_CR37
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2020.1840989
– volume-title: Statistical Foundations of Data Science
  year: 2020
  ident: 10492_CR14
  doi: 10.1201/9780429096280
SSID ssj0011634
Score 2.4228246
Snippet The Dantzig selector is a popular ℓ 1 -type variable selection method widely used across various research fields. However, ℓ 1 -type methods may not perform...
The Dantzig selector is a popular ℓ1-type variable selection method widely used across various research fields. However, ℓ1-type methods may not perform well...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Computing time
Feature selection
Linear programming
Original Paper
Probability and Statistics in Computer Science
Regularization
Regularization methods
Splitting
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
Title Nonconvex Dantzig selector and its parallel computing algorithm
URI https://link.springer.com/article/10.1007/s11222-024-10492-8
https://www.proquest.com/docview/3105939181
Volume 34
WOSCitedRecordID wos001314713100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60eqgHq1WxWmUP3jSQZpMmOYmIxYMW8VF6C_tKLcRUmijir3d2kzQoKug5m2WZ57eP-QbgyI25sIXNLR57fcuVgmuXCizKbJvjdszhpsp1dOUPh8F4HN6URWFZ9dq9upI0kbouduthLrMwp2DocEP042VYwXQX6IYNt3ejxd0BIgxDGoXYHCOM75alMt_P8Tkd1Rjzy7WoyTaD1v_WuQHrJbokZ4U5bMKSStvQqjo3kNKR27B2vWBrzdrQ1IizIGzegtPhLDVP0d8IWkT-Pp2QTBVn-4SlkkzzjGi-8CRRCRFmZlwdYclkNp_mj0_b8DC4uD-_tMouC5ZA98styT0W4wZZBohkMNpQhzth7LiUKd9nngiFEB4VIWPcZwhGhKNiFioehJ60HSXpDjTSWap2gdg95lPZR9Uz32V2wJke6FHFlORBL-5ArxJ2JEoKct0JI4lq8mQtvAiFFxnhRUEHjhf_PBcEHL-O7lY6jEpnzCKqMSQNEct04KTSWf3559n2_jZ8H5qOUbt-7NKFRj5_UQewKl5RhfNDY6Qf3avggw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7oFJwHp1NxOjUHb1romnZtTyLimLgN0Tl2K0mazkHtZK0i_vW-ZO2GooKem4bwfn5J3vsCcGJHXJjC5AaPnKZhh4Irl_IMykyT43bM4rrLddBxez1vOPRv86awtKh2L64kdaReNLs1MJcZmFMwdNg--vEyrNiYsRRj_t39YH53gAhDk0YhNscI49p5q8z3c3xORwuM-eVaVGebVuV_69yEjRxdkouZOWzBkkyqUClebiC5I1dhvTtna02rUFaIc0bYvA3nvUmiS9HfCFpE9j4ekVTOzvYJS0IyzlKi-MLjWMZE6JlxdYTFo8l0nD0-7cBD66p_2TbyVxYMge6XGSF3WIQb5NBDJIPRhlrc8iPLpky6LnOEL4RwqPAZ4y5DMCIsGTFfcs93QtOSId2FUjJJ5B4Qs8FcGjZR9cy1melxpgY6VDIZcq8R1aBRCDsQOQW5egkjDhbkyUp4AQov0MILvBqczv95nhFw_Dq6XugwyJ0xDajCkNRHLFODs0Jni88_z7b_t-HHsNbudztB57p3cwBlS5uAKnypQymbvshDWBWvqM7pkTbYD2x742c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IXqwWhXrcw_eNDTNJk1yElGLohZBLb2FfUULMS1tFPHXO7tJWhUVxHMmyzI7j293Z74F2HdjLmxhc4vHXtNypeDapQKLMtvmuB1zuOly7Vz57XbQ7YY3H7r4TbV7eSWZ9zRolqY0qw9kXJ80vjUwr1mYXzCMuCH69DTMurqQXu_XbzvjewREG4ZACnE6RhvfLdpmvh_jc2qa4M0vV6Qm87Qq_5_zMiwVqJMc52ayAlMqrUKlfNGBFA5ehcXrMYvrqAoLGonmRM6rcNTup6ZE_ZWgpWRvvQcyUvmZP2GpJL1sRDSPeJKohAgzMs6UsOShP-xlj09rcN86uzs5t4rXFyyBbplZknssxo2zDBDhYBSiDnfC2HEpU77PPBEKITwqQsa4zxCkCEfFLFQ8CD1pO0rSdZhJ-6naAGI3mE9lE02C-S6zA860oEcVU5IHjbgGjVLxkSioyfULGUk0IVXWyotQeZFRXhTU4GD8zyAn5vhVertcz6hw0lFENbakIWKcGhyW6zf5_PNom38T34P5m9NWdHXRvtyCBcdYgK6H2YaZbPisdmBOvOBqDneN7b4DMZbsSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonconvex+Dantzig+selector+and+its+parallel+computing+algorithm&rft.jtitle=Statistics+and+computing&rft.au=Wen+Jiawei&rft.au=Yang+Songshan&rft.au=Zhao%2C+Delin&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=34&rft.issue=6&rft_id=info:doi/10.1007%2Fs11222-024-10492-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon